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Abstract

The finite element (FE) model updating technology was originally developed in the aerospace and mechanical

engineering disciplines to automatically update numerical models of structures to match their experimentally measured

counterparts. The process of updating identifies the drawbacks in the FE modelling and the updated FE model could be

used to produce more reliable results in further dynamic analysis. In the last decade, the updating technology has been

introduced into civil structural engineering. It can serve as an advanced tool for getting reliable modal properties of large

structures. The updating process has four key phases: initial FE modelling, modal testing, manual model tuning and

automatic updating (conducted using specialist software). However, the published literature does not connect well these

phases, although this is crucial when implementing the updating technology. This paper therefore aims to clarify the

importance of this linking and to describe the complete model updating process as applicable in civil structural engineering.

The complete process consisting the four phases is outlined and brief theory is presented as appropriate. Then, the

procedure is implemented on a lively steel box girder footbridge. It was found that even a very detailed initial FE model

underestimated the natural frequencies of all seven experimentally identified modes of vibration, with the maximum error

being almost 30%. Manual FE model tuning by trial and error found that flexible supports in the longitudinal direction

should be introduced at the girder ends to improve correlation between the measured and FE-calculated modes. This

significantly reduced the maximum frequency error to only 4%. It was demonstrated that only then could the FE model be

automatically updated in a meaningful way. The automatic updating was successfully conducted by updating 22 uncertain

structural parameters. Finally, a physical interpretation of all parameter changes is discussed. This interpretation is often

missing in the published literature. It was found that the composite slabs were less stiff than originally assumed and that

the asphalt layer contributed considerably to the deck stiffness.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As civil engineering structures, and in particular footbridges, are becoming increasingly slender due to
improvements in construction materials and technology, they are also becoming lighter and less damped.
In principle, this means that new footbridge structures tend to be easier to excite than older ones and there is
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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S. Živanović et al. / Journal of Sound and Vibration 301 (2007) 126–145 127
a higher potential for vibration serviceability problems to occur. This has already been experienced by many
new structures in the last decade—the new London Millennium Bridge [1] being a particularly high-profile
example. For slender and lightly damped bridges, their dynamic response due to near-resonant excitation
governs their vibration performance. When doing response calculations in design, simulation of this type of
near-resonant dynamic response is very sensitive to even small variations in modal properties, such as
damping ratio, natural frequency and modal mass. These are key input parameters in the analysis. Therefore,
knowing modal properties of a footbridge, together with its mode shapes, as precisely as possible has become
very important. This is important not only for the design of new structures with similar layouts, but also for
the rectification of existing lively footbridges, as well as for seismic analysis and general research into vibration
serviceability. However, despite the huge importance of modal properties in the assessment of vibration
performance of footbridges, their reliability when predicted via finite element (FE) modelling is still rather
uncertain. The main reason for this is the general lack of information on modal properties of as-built
footbridge structures and their correlation with FE modelling based on design data and best engineering
judgement.

Developing a numerical model of a civil engineering structure that has sufficiently reliable dynamic
properties is a complex issue. It requires a rather wide range of skills and expertise in areas as diverse as FE
modelling, modal testing of full-scale structures and FE model correlation, tuning and updating with the
regard to experimentally obtained modal properties. This methodology is nowadays used routinely in the
mechanical and aerospace engineering disciplines, where prototyping is part of a normal design process of
structures subject to dynamic loading.

Unfortunately, prototyping is not common in civil structural engineering design. Therefore, all this cannot
be done easily during the design (of, say, a footbridge) bearing in mind that the modal testing can be
conducted only on an already built structure, which is a unique ‘prototype’ never to be built again. Thus, it
may appear that the whole idea of getting reliable structural modal properties by FE modelling, modal testing,
and FE model correlation and updating is pointless in the case of civil engineering structures after they are
built. However, this is not the case as exercises like these are the only reliable way to gauge our ability to
predict vibration behaviour of future civil engineering structures. The whole process of FE modelling, modal
testing, and FE model correlation and updating adds to the currently very limited body of knowledge on
vibration performance of as-built structures with significant potential to use this knowledge in future designs.

Therefore, the aim of this paper is to demonstrate the complete combined analytical and experimental
process required to obtain as reliable as possible estimates of modal properties of a steel box girder footbridge.
For this purpose, every phase of the process and its purpose will be first explained briefly, with particular
attention paid to the automatic FE model updating procedure, which is a new technology still not used
commonly in civil engineering.

However, in current civil structural engineering design practice, it has become common to develop an FE
model of the structure and use it for calculation of its static and/or dynamic responses. To obtain a good
model, it is necessary to reduce the mathematical modelling errors to an acceptable level. Therefore, the
assumptions on which the model is based should be evaluated carefully. Nevertheless, even with most careful
and detailed numerical modelling based on design data available and best engineering judgement, differences
regularly occur between the modal properties of an as-built structure and their counterparts predicted
numerically. This is typically due to inevitable uncertainties linked with modelling of, in the case of
footbridges, boundary conditions, material properties, and effects of non-structural elements, such as
handrails and asphalt [2].

It should be stressed here that the errors in the natural frequencies for footbridges predicted by very
reasonable FE model in the design can be as large as 37% [3]. Not surprisingly, it is now widely accepted that
modal testing and modal properties estimated from it are much more reliable than FE modelling for assessing
dynamic performance of as-built structures [4,5].

Once the modal dynamic properties of a footbridge (mainly natural frequencies and mode shapes) are
identified experimentally and the level of error introduced by the initially developed FE models is identified,
their drawbacks in the FE modelling can be found and the initial FE model can be corrected. This procedure is
called FE model updating, and can be considered as an attempt to use the best features from both the
experimental and analytical model [5]. The former gives more reliable modal properties of the structure,
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including modal damping which cannot be obtained analytically, while the latter retains very detailed
representation of the structure.

In this paper, first presented is a background review regarding the FE model updating technology. This is
followed by examples of implementation of the procedure in civil structural engineering, especially in bridge
engineering. After this, a lively steel box girder footbridge is described and the initial FE model is presented.
After the presentation of experimentally identified modal properties, the manual tuning necessary to prepare
the FE model for an automatic updating is given. Then, a sensitivity-based automatic model updating is
conducted and results are discussed.

2. Background review

In this section general information about FE model updating techniques is given first, followed by their
implementation in civil structural engineering.

2.1. Finite element model updating

The FE model updating procedure typically minimises the differences between the FE and experimentally
estimated modal properties. This is done by changing some uncertain FE modelling parameters, which have
the potential to influence modal properties. The resulting FE model can then be used in further analyses.

The updating process typically consists of manual tuning and then automatic (or formal) model updating
using some specialised software. The manual tuning involves manual changes of the model geometry and
modelling parameters by trial and error, guided by engineering judgement. The aim of this is to bring the
numerical model closer to the experimental one. Often, in this process an analyst is able to improve the initial
structural idealisation typically related to boundary conditions and non-structural elements. This process
usually includes only a small number of key parameters manageable manually. The aim of automatic updating
is to improve further the correlation between the numerical and experimental modal properties by taking into
account a larger number of uncertain parameters.

The term ‘parameter’ is used here for all input values which define the numerical model. Moreover, all
measured modal properties which are targeted in the updating process will be called ‘target responses’
hereafter.

It is important to emphasise here that not all FE models of a structure can be updated. To have a successful
automatic updating of an FE model, it is necessary to prepare the initial FE model for it. To do this, firstly it
would be necessary to minimise discretisation errors and to use modelling strategies which can represent truly
all important aspects of structural behaviour and geometry [6,7]. This means that careful attention should be
paid to model geometry and various other details. This is important because the automatic model updating
procedure cannot easily correct large errors in the geometry of the initial modelling. It can only rectify the
errors caused by uncertainties of modelling parameters in a geometrically well-defined model. Also, when
preparing the FE model for the automatic updating, the differences between analytical and experimental
modal responses (usually natural frequencies and mode shapes) should be as small as practicable. If they are
too large, the automatic updating procedure can have numerical difficulties and/or produce physically
unrealistic parameter changes during the updating process. These are reasons to recommend the manual
tuning (by trial and error and engineering judgement) of the initial FE model first. The tuned model should
therefore feature meaningful starting parameters for the formal updating [8,9].

Formal FE model updating is now a mature technology. It is widely used in the mechanical and aerospace
engineering disciplines to update analytical models of structural prototypes. A large number of updating
procedures exist [4,10] and their detailed discussion is beyond the scope of this paper. Here, only the principles
on which model updating is based are reviewed briefly.

2.2. Basic theory used in FE model updating

The main idea in formal FE model updating of minimising the differences between the analytical and
experimental models is, in essence, an optimisation problem. This problem can be solved in many different
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S. Živanović et al. / Journal of Sound and Vibration 301 (2007) 126–145 129
ways. In general, there are two groups of updating methods: direct methods and iterative (or parametric)
methods. The former are based on updating of stiffness and mass matrices directly, in a way that often has no
physical meaning. The latter, on the other hand, concentrates on the direct updating of physical parameters
which indirectly update the stiffness and mass matrices in which these parameters feature [5,11]. Iterative
methods are slower than their direct counterparts. However, their main advantage is that changes in the
updated model can be interpreted physically. Also, iterative methods can be implemented easily using existing
FE codes [12]. These are the main reasons why iterative methods are widely accepted and now used almost
exclusively in the updating exercises. This link between the iterative updating and the physical world is very
important in civil structural engineering and is the main reason why only this type of updating is considered in
this paper. Numerous examples of implementation of direct methods, mainly in mechanical engineering and
control theory, can be found elsewhere [10,13,14].

The iterative methods are mainly sensitivity based. This requires the sensitivity matrix S to be calculated in
every iteration. The sensitivity matrix is a rectangular matrix of order m� n, where m and n are the number of
target responses and parameters, respectively [15]:

S ¼ ½Sij� ¼
dRi

dPj

� �
. (1)

Sij is the sensitivity of the target response Ri (i ¼ 1,2,y,m) to a certain change in parameter Pj

(j ¼ 1,2,y,n). Operator d presents the variation of the variable. Elements of the sensitivity matrix can be
calculated numerically using, for example, the forward finite difference approach [15]:

Sij ¼
RiðPj þ DPjÞ � RiðPjÞ

ðPj þ DPjÞ � Pj

, (2)

where Ri(Pj) is the value of the ith response at the current state of the parameter Pj, while Ri(Pj+DPj) is the
value of the same ith response when the parameter Pj is increased by value DPj.

Obviously, for calculation of the sensitivities, the relevant target responses and structural parameters should
be selected. The target responses should be chosen between those measured. The responses which are mainly
considered in civil engineering applications are natural frequencies, mode shapes and frequency response
functions (FRFs), or some combination of these. The choice depends on the measured data available, their
quality, and (non)existence of close modes [4]. As a rule, only high-quality measured modal properties should
be used as target responses. As natural frequencies are normally measured quite accurately, they are almost
always selected. If close modes are present, FRFs might be a better choice for target responses.

Selection of updating parameters is probably the most important step on which the success of the model
updating depends. It is recommended to choose uncertain parameters only, and between them to choose those
to which the selected target responses are most sensitive. Also, the number of parameters should be kept to an
absolute minimum. All this is to avoid numerical problems due to ill-conditioning [11].

Once relevant (measured) target responses and structural parameters for updating have been selected, the
sensitivity matrix can be calculated. Since in the iterative model updating process the updating parameters
change at every step, the sensitivity matrix has to be recalculated in each iteration. Let us denote, for a given
iteration, the starting parameter and target response vectors as P0 and R0, respectively. The vector of updated
parameters in the current iteration is Pu, while the target response vector obtained experimentally is Re. The
targeted experimental response vector Re can be approximated via vectors R0, Ru and R0 using the linear term
in a Taylor’s expansion series:

Re � R0 þ SðPu � P0Þ. (3)

The iterative process is required here because the relationship between target responses and parameters that
is mainly nonlinear is approximated by the linear term. This means that updating parameters need to be
changed by a small amount in each iterative step until the required minimum difference between the calculated
and experimentally measured responses is achieved. Therefore, the finally updated parameters cannot be
calculated in a single step [16].

The task of updating aimed at finding parameter values Pu in the current iteration can be solved in different
ways such as using a pseudo-inverse (least squares) method, weighted least squares or Bayesian method. This
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depends on whether weighting coefficients for parameters and/or target responses are used as is the case in last
two methods [12]. The purpose of these weighting coefficients is to give different significance to numerical
parameters and measured target responses depending on the confidence in these data. For example, weighting
coefficients for responses take into account the confidence in the measured values, which is typically higher for
natural frequencies than for mode shapes. Weighting coefficients for input parameters take into account the
degree of uncertainty in them. The more uncertain a parameter is, the lower is the confidence in it, which
means that the weighting value is lower too.

If a Bayesian method is chosen, which is often the case in the commercially available model updating
software, then the aim of the updating procedure is not to simply minimise the difference between numerical
and measured target responses. Instead, an error function which includes differences, not only between the
target experimental and numerical responses, but also between updating parameters in two successive
iterations as well as parameters and target responses’ weights, is defined. In this way the aim of the updating
procedure is to minimise response differences DR and simultaneously to ensure convergence of the process via
minimisation of parameter differences DP in two successive iterations. Therefore, this error function is, in
general, defined as a function of input parameters and target responses, as well as the weighting factors. The
error function used for the case study presented in this paper is defined as [15]

EðDR; DP; CR; CPÞ ¼ DRT � CR � DRþ DPT � CP � DP, (4)

where DR ¼ Re � R0 is the vector which represents the errors in target responses while DP ¼ Pu � P0 is the
vector of parameter changes. CR and CP are diagonal matrices of weighting coefficients for target responses
and parameters, respectively, and both should be defined by the analyst based on their experience. Higher
values of these coefficients indicate greater confidence. From Eq. (4) it can be seen that the greater the
confidence, the finer tuning of the corresponding quantities is needed to make the error sufficiently small. On
the other hand, the parameters and target responses in which the confidence is small will not contribute
significantly to the error value and therefore will have a less strong influence on the final results.

Using the linear relationship between the target responses and parameters given in Eq. (3), estimating the
confidence into the parameters and target responses and expressing parameter differences DP in the current
iteration as

DP ¼ Pu � P0 ¼ GðRe � R0Þ (5)

matrix G can be found in the way to minimise the error function [16,17]. It can be proven that matrix G in the
case when there are more responses than parameters (m4n) is [15]

G ¼ ðCP þ STCRSÞ
�1STCR. (6)

Otherwise, when there are more parameters than responses (n4m) matrix G is

G ¼ C�1P STðC�1R þ SC�1P STÞ
�1. (7)

Bearing all this in mind, the updating procedure can be summarised as follows:
1.
 Choose the weighting factors for parameters and target responses.

2.
 Calculate the sensitivity matrix S for the given state of parameters P0 and responses R0.

3.
 Calculate matrix G using either Eqs. (6) or (7).

4.
 Using experimental response vector Re, the updated parameter vector Pu can be obtained via a re-arranged

Eq. (5):

Pu ¼ P0 þGðRe � R0Þ. (8)
5.
 The new response vector which corresponds to updated parameters Pu should then be calculated as a result
of modal analysis. This response vector and the vector of updated parameters then become the starting
vectors R0 and P0 for the next iteration.

The procedure then goes back to step 2 to calculate a new sensitivity matrix (which changes whenever the
model is updated between two iterations). Steps 2–5 are repeated until a satisfactory convergence of numerical
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responses to the experimental data is achieved (that is until the error function is minimised to a prespecified
tolerance).

An updating process which produces good correlation between experimental and analytical responses can
be regarded as successful only if finally obtained parameters are physically viable. If not, then either a different
error function or different parameter selection, or both, should be considered [11]. Also, some changes in the
weighting matrices should be considered, having in mind that these coefficients can be difficult to guess
correctly first time round [16]. Therefore, it is expected that some kind of additional trial and error approach is
used before a satisfactory set of updated parameters is obtained.

Generally, the updating which targets larger number of measured responses at a time is preferable because it
puts more constraints to the optimisation process. Successful updating in this case becomes more difficult but
once it is achieved it gives more confidence in the results than the same procedure using only a few responses.
This becomes clear if a simple example is considered with only one target response, say a natural frequency.
There is an infinite number of ways to achieve good correlation for this response by changing either only one
parameter at a time or some combination of them. In this way, it is not possible to decide which parameter
change is most realistic. Therefore, targeting more responses at a time decreases the number of combinations
for parameter changes. Finally, to ensure that parameter changes are physically possible, some additional
constraints in the form of physically acceptable limits for updating parameters can also be introduced. This
makes sure that if the parameter reaches its limit in a particular iteration, it will stay constant through all
subsequent iterations until the end of the updating process.

Finally, the success of the updating process is usually judged through a comparison of natural frequencies,
overlaying mode shapes and calculation of the modal assurance criterion (MAC) and the coordinate modal
assurance criterion (COMAC). However, if the measured responses are not particularly reliable (say from
noisy data), then convergence of the iterative procedure can become a problem. It seems that higher modes are
more difficult to update in this situation [9]. Also, if a measurement grid is not dense enough to prevent
spatial aliasing, the MAC values can suggest correlation between modes which are otherwise linearly
independent [18].

2.3. Applications in civil structural engineering

Over the last decade, there have been several attempts to transfer the updating technology from the
mechanical and aerospace engineering to civil structural engineering. The whole procedure is more difficult to
implement in civil engineering because of the larger size of the structures leading to poorer quality of
experimental data gathered in open-space noisy environments. Also, the inherent nonlinear amplitude
dependant behaviour, the presence of numerous non-structural elements and difficult to define boundary
conditions mean that the structural modelling parameters are not so controllable as is often the case in the
mechanical and aerospace disciplines. However, some successful examples of updating in civil engineering do
exist and are presented here.

In principle, papers dealing with the complete process of experimental modal testing and analytical/
numerical modelling and updating of civil engineering structures are rare. However, there are many good
papers devoted to modal testing of civil engineering structures [19–24]. As the modal testing technology has
developed and been accepted as a way for reliable estimation of dynamic properties, more researchers have
started to pay attention to the correlation between the initial FE model and experimental results from real-life
as-built structures. In this process, the structural parameters which influenced the analytical results most and
managed to shift them towards the experimental ones were identified in general. In the case of footbridges
these are stiffness of supports and non-structural elements (decks, asphalt surfacing and handrails) as well as
material properties, such as dynamic modulus of elasticity for concrete [25–27].

The logical step forward was then to try the automatic updating procedure by using specialist software
developed for this purpose. The procedure was successfully implemented on different types of structure, such
as a 48-storey building [28], a high rise tower [12], road and/or rail bridges [9,29,30] and two footbridges [8].
Also, model updating has been attempted as a tool for damage identification [6,31,32].

Reviewed papers suggest that the automatic updating of full-scale road and railway bridges might have
difficulties in achieving a high level of correlation with experimental results. For example, when updating
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a 750m long road and railway bridge, Zhang et al. [29] got a maximum frequency error in the updated model
of about 10%. A similar result was obtained by Brownjohn and Xia [9] for a curved road bridge spanning
100m. Maximum frequency difference for a 90m long road bridge of 6.2% was obtained by Jaishi and Ren
[30]. On the other hand, the automatic updating conducted by Pavic et al. [8] for two footbridges spanning 34
and 20m produced maximum frequency difference of only 2.0% and 1.1%, respectively. It, therefore, seems
that it is easier to update smaller bridges, such as pedestrian ones. This is not surprising considering that
larger structures tend to have many more features which are important for their dynamic behaviour
(e.g. connections, supports, etc.) but are difficult to model in detail in the FE model. Also, experimental data on
larger structures tend to be of poorer quality compared with their smaller counterparts. Moreover, it is worth
noting that, for example, Zhang et al. [29] conducted updating which targeted as many as 17 measured natural
frequencies, which put lot of constraints to the optimisation procedure, whilst in the case of the footbridge where
the maximum frequency error was 1.1% the updating was done according to natural frequencies and mode
shapes for three measured modes only [8]. Regarding MAC values, in most cases, they were higher than 0.80,
which is a very good mode shape agreement for civil structural engineering applications of updating.

3. Description of test footbridge structure

The investigated footbridge spans 104m over the Morača River in Podgorica, capital of Montenegro
(Fig. 1). The structural system of the Podgorica footbridge is a steel box girder with inclined supports. The
structure’s main span between inclined columns is 78m and it has two side spans of 13m each. The top flange
of the main girder forms a 3m wide deck. The depth of the girder varies from 1.4m in the middle of the central
span to 2.8m at the points where the inclined columns connect to the main box girder (Fig. 2). Along its whole
length the box girder is stiffened by longitudinal and transverse stiffeners, as shown in Fig. 2. The connection
between the inclined columns and box girder is strengthened by vertical stiffeners visible in Fig. 1. Water
supply and drainage pipes pass through the steel box section (Fig. 2), which are suspended from the top flange
of the main girder.

After its construction in the early 1970s, the footbridge fundamental natural frequency for the vertical mode
was in the region of the normal walking frequencies, which is 1.5–2.4Hz [33]. This was the reason for the
bridge to experience strong vibrations in the vertical direction under pedestrian walking excitation.
Additionally, a high concentration of stresses under a particular static load combination was found by
Fig. 1. Photograph of the Podgorica footbridge.



ARTICLE IN PRESS

composite slab (31.2m long)

composite slab composite slab

78m13m 13m

1

1

2

2

concrete

concrete

3.0m 3.0m

Section 1-1 Section 2-2

1.
4m

pipes2.
8m

transverse  
stiffeners

longitudinal
stiffeners

Fig. 2. General arrangement drawing (not to scale) of Podgorica footbridge.
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a calculation not performed during design. Consequently, the footbridge was strengthened by a concrete slab
cast over the bottom steel flange in the regions around the columns as well as over the top flange of the box
girder in the central part of the main span (Fig. 2). At the same time, additional steel plates were added to the
box columns. However, all this added not only stiffness but also some mass to the dynamic system.
Consequently, the fundamental natural frequency did not change very much and the footbridge still remains
very lively.

4. Initial FE modelling, modal testing and model tuning

This section describes the development of the initial FE model for the footbridge investigated as well as its
modal testing. Then, the manual model tuning is discussed.

4.1. Initial finite element modelling

To minimise discretisation and modelling errors a very detailed initial 3D FE model was developed using
the ANSYS FE code [34]. This initial FE model is described in detail by Živanović et al. [35]. The only
difference between that model and the starting FE model used in this paper is that the late information about
additional steel plates used to strengthen the columns in the rectification phase is now taken into account. The
model is shown in Fig. 3 and will be described briefly in this section.

The main steel box girder and its longitudinal and transverse stiffeners and box section columns were
modelled using orthotropic SHELL63 elements assuming isotropic properties. These elements are capable of
transferring both in-plane and out-of-plane loads. In the absence of more precise data, it was assumed that
two different plates used for strengthening of columns were as thick as the types of plates used in the initial
design, that is 2 and 3 cm. The composite steel–concrete slabs at three locations on the bridge structure (Fig. 2)
were modelled using an equivalent steel thickness and, again, SHELL63 elements with isotropic property. The
water and drainage pipes were modelled as distributed mass along the lines connecting points at which the
pipes were suspended from the bridge deck. The mass was calculated by assuming that water filled a half of
the pipes’ volume. The handrails were modelled using 3D BEAM4 elements while inclined column supports
were modelled as fully fixed considering solid rock foundations. Supports at both ends of the main girder were
modelled as pinned, but with a possibility to slide free in the longitudinal direction (Fig. 3: inset).
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Fig. 3. Initial FE model.

Fig. 4. Modes of vibration calculated from the initial FE model.
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Seven lowest modes of vibration from the initial FE model are presented in Fig. 4. Labels H and V stand for
the horizontal and vertical modes, respectively. Similarly, S and A stand for the symmetric and anti-symmetric
modes, respectively.

4.2. Modal testing

Modal testing based on FRF measurements was conducted to verify the seven lowest modes of vibration
obtained in the initial FE model (Fig. 4). First, modal testing for identification of the vertical modes was
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conducted. After this, the testing was repeated for the horizontal modes. During these measurements, the
footbridge was closed for pedestrian traffic.

The excitation source for the FRF-based testing was an electrodynamic shaker that generated a chirp
excitation signal. Its frequency range was chosen to be 1–9Hz based on the expected frequencies of the modes
obtained in the initial FEM. The shaker was placed at a quarter point of the main span between inclined
columns (Fig. 2) since this test point is expected to respond in all vibration modes of interest. The dynamic
force induced by the shaker was measured by a piezoelectric accelerometer attached to its armature. The same
type of transducer was used for the structural response measurements at seven points along the bridge.

The measurement procedure is described in detail in a previous paper [35]. Here, we will only add that the
identification of modal properties was conducted by using a MIMO parameter estimation procedure available
in the ICATS software [36]. The estimated natural frequencies and corresponding damping ratios are
presented in columns II and III in Table 1.

4.3. FE model tuning

All seven modes identified experimentally had their counterparts in the initial FE model (Table 1,
column V). However, the sequence of 2VA and 2HS FE modes was reversed compared to their experimental
counterparts (Table 1: columns I and IV). Also, natural frequencies of all experimental modes were
underestimated, with the frequency error being exceptionally high (29.8%) for mode 1VA (Table 1:
column VI). Another mode with quite large error of 13.8% was also vertical and anti-symmetric one (2VA).
On the other hand, all mode shapes were well correlated, with the minimum MAC being 0.81. Something was
clearly wrong with the prediction of anti-symmetric modes in the initial FE model. After visually inspecting
modes, it was established that the key difference between the vertical symmetric and anti-symmetric modes
was the horizontal longitudinal motion of the deck ends. As this motion was allowed, it was much more
pronounced in the case of anti-symmetric modes. Therefore, adding stiffness which would be engaged by this
motion would affect anti-symmetric modes much more than the symmetric ones.

Indeed, a parametric study revealed that introducing the horizontal springs in the longitudinal direction at
girder ends instead of free edges could improve significantly the correlation between measured and analytical
vertical modes, in particular the anti-symmetric ones [35]. The stiffness of these springs (modelled as
COMBIN14 element in ANSYS) was varied by trial and error until the best correlation with measured
frequencies was obtained. A stiffness value of 100 MN/m per metre width of the bridge deck produced the
smallest difference between the measured and FE-calculated natural frequencies for the first four vertical
modes of vibration (Fig. 5). This value was adopted in the manually tuned FE model developed prior to
automatic updating. Also, in this way the sequence of mode appearance became the same as in the
experimental model, and frequency error was decreased significantly with the maximum value being 4.0% for
mode 1HA (Table 2). The MAC values were improved only slightly.

The data given in Tables 1 and 2 are also presented graphically in Fig. 6. The ratio between analytical and
measured natural frequencies for the seven modes of vibration is given for the initial FE model and the
Table 1

Correlation between experimental and initial FE model

I II III IV V VI VII

Exp. mode Modal testing FE mode Initial FEM Difference Mode shape correlation

# f (Hz) z (%) # f (Hz) (fV�fII)/fII (%) MAC (%)

1 1.83 (1HS) 0.26 1 1.82 (1HS) �0.6 99.5

2 2.04 (1VS) 0.22 2 2.02 (1VS) �1.0 99.7

3 3.36 (1VA) 1.86 3 2.36 (1VA) �29.8 97.8

4 4.54 (1HA) 0.98 4 4.35 (1HA) �4.2 98.6

5 7.35 (2HS) 2.68 6 7.13 (2HS) �3.0 80.7

6 7.56 (2VA) 0.76 5 6.52 (2VA) �13.8 86.6

7 7.98 (2VS) 0.60 7 7.56 (2VS) �5.3 97.9
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Table 2

Correlation between experimental and manually tuned FE model

I II III IV V

Exp. mode Exp. model Tuned model Frequency error Mode shape correlation

# f (Hz) f (Hz) (fIII�fII)/fII (%) MAC (%)

1 1.83 (1HS) 1.82 (1HS) �0.6 99.5

2 2.04 (1VS) 2.02 (1VS) �1.0 99.7

3 3.36 (1VA) 3.47 (1VA) 3.3 99.9

4 4.54 (1HA) 4.36 (1HA) �4.0 98.7

5 7.35 (2HS) 7.15 (2HS) �2.7 81.1

6 7.56 (2VA) 7.34 (2VA) �2.9 88.9

7 7.98 (2VS) 7.74 (2VS) �3.0 98.0
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manually tuned model. Having in mind that the information about column strengthening was not present in
the original design data available, and that this information was found some time after the first FE model had
been developed [35], it is also interesting to show the frequency error which would have resulted from not
introducing this information and horizontal springs into the modelling. The frequency ratios in this model,
labelled as ‘design model’ in Fig. 6, are also shown. It can be seen that strengthening the columns influenced
the frequencies of horizontal modes strongly (‘initial FE model’ in Fig. 6), while the added springs then
improved correlation with vertical modes (‘manually tuned model’ in Fig. 6).

Having reduced the maximum frequency error in the manually tuned model to 4.0% and matching the
sequence of experimental and FE modes facilitated the successful and physically meaningful automatic
updating by the updating software [15]. Also, it can be concluded that very detailed FE modelling and some
manual tuning led to a very good correlation between experimental and analytical model. However, it would
be interesting to see if/how the automatic updating could improve these results, having in mind that this
starting model for automatic updating was much closer to the experimental results than most of the
automatically updated models reported in the reviewed literature.
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5. Automatic model updating

The updating procedure was conducted with the aim to improve further the analytical model so that it could
be used in more advanced vibration response analysis, which is beyond the scope of this paper. The procedure
is based on the theoretical principles outlined in Section 2.2.

5.1. Target response selection

Having in mind the good quality of the experimental data, all seven measured modes of vibration were
targeted in the updating process. Both measured natural frequencies and MAC values were taken into
account. Therefore, in total 14 target responses were selected for updating. To take into account the lower
reliability of identified mode shapes in comparison with measured natural frequencies, the confidence factor
for MAC values was ten times lower than that for natural frequencies. This was chosen based on previous
experience [8]. These confidence factors feature in the CR matrix, part of the error function (Eq. (4)).

5.2. Parameter selection

As previously mentioned, the main criteria for parameter selection are their uncertainty and sensitivity.
Therefore, parameters related to the geometry that was not precisely described in the design data available
were selected as uncertain. These parameters are shown in Fig. 7. For simplicity, only half of the bridge is
presented on the figure having in mind its symmetry with respect to the YZ plane. It can be seen that all
parameters that characterise the deck were selected. This is because of uncertain contribution of the asphalt
and composite slab to the stiffness of the bridge deck. Besides this, only approximate data about asphalt and
concrete thicknesses were available. The same applies to the composite slabs in the column-girder connections
(Fig. 2). Also, the fact that the bridge is more than 30-year old may contribute to the deterioration of its
components (such as the asphalt layer). Because of the unavailability of precise data related to column
strengthening, the thicknesses of the column steel plates as well as their dynamic modulus were also selected
for updating. The density of water pipe material was selected to take into account the uncertainty about the
amount of water in the pipes. Finally, the stiffnesses of the horizontal–longitudinal support springs at the
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Fig. 7. Uncertain parameters in the manually tuned FE model.
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girder ends were also taken into account. In total, 25 parameters were selected, with their sequence number
given in parentheses in Fig. 7.

After the parameter selection, a sensitivity analysis was conducted. To be able to compare the sensitivity of
different target responses to changes in different parameters, the normalised sensitivity, that is the
dimensionless number Sn,ij, defined as

Sn;ij ¼
DRi=DPj

Ri=Pj

¼
DRi

DPj

Pj

Ri

(9)

was calculated for each combination of target responses and parameters. This was done by using the forward
finite difference approach [15] with an assumed parameter change of +1% for all updating parameters.

The plot of sums of normalised sensitivities corresponding to all responses and for all parameters is shown
in Fig. 8. It was found that target responses were much less sensitive to three parameters (numbered as 11, 16
and 25 in Figs. 7 and 8) defining a composite slab in the column connection areas in comparison with other
parameters. Because of this, these three parameters were excluded from the updating process. All other
parameters entered the updating process with their starting values given in Table 3 (column IV). Also,
physically meaningful upper and lower limits for these parameters were estimated and are given in columns V
and VI.

5.3. Formal updating and its results

The updating procedure was conducted using the FEMtools updating software [15] based on the Bayesian
algorithm presented in Section 2.2. The aim was to minimise the error function of the kind defined in Eq. (4),
where both natural frequencies and MAC values for mode shapes were selected as target responses.
A constraint to the updating procedure was the introduction of the upper and the lower allowable limits for
parameter values. The parameter changes per iteration were not limited. For all parameters the same
confidence value featuring the matrix Cp was chosen.

The updating process converged after five iterations. For every mode of vibration the error in calculated
natural frequencies compared with their measured counterparts was defined as an absolute value of the
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relative difference between numerical fa and experimental fe natural frequency:

frequency error ¼
f a � f e

f e

����
����. (10)

The average value of this error across all seven modes for each iteration is presented in Fig. 9. Also, the
frequencies and MAC values obtained as a result of the updating process are presented in Table 4. It can be
seen that previous maximum frequency difference of 4.0% decreased to 1.2%. Minimum MAC value
increased from 0.81 to 0.85, with all other values being well above 0.90. The complete MAC matrix is shown in
Fig. 10. The agreement between mode shapes in updated FE model and the experimental data was very good,
which can be seen in Fig. 11.

The final parameter values are presented in Table 3 (column VII). The absolute maximum parameter
change was 42.6% for the stiffness of a support spring. Only four parameters, amongst 22 selected, reached
their allowable limits. The fact that most parameters did not go to their limiting values is a sign of a good
parameter choice.

However, when changes in the parameter values through iterations were checked it was found that very
large changes occurred in the first iteration. Maximum change was for parameter 2 (k2) which was �23%. This
could be important because of the fact that the Taylor’s series given in Eq. (3) was limited to its linear term
only. However, the relationship between responses and parameters is, in fact, nonlinear, and having very large
changes in parameters in a single iteration can violate the main principles on which the updating procedure
was based. Because of this, the updating process was repeated with parameter changes in every
iteration limited to 1%—the value which was used to calculate the sensitivity matrix in each iteration.
Limiting the maximum parameter change per iteration makes sure that parameter will take new value in the
vicinity of the previous value, enabling a more reasonable linear approximation used in Eq. (3). Nevertheless,
the new updating setup produced almost the same level of agreement between experimental and numerical
target responses as those presented previously. This time, results were obtained after 50 iterations (lasting 10
times longer than previously used five iterations). The agreement of results gave some confidence in their
reliability.

Finally, it should be said that an attempt to update the initial FE model (not featuring horizontal springs)
under the condition of maximum parameter changes per iteration of 1% led to much worse frequency and
MAC correlation (after 140 iterations) although the limits for parameters were free. At the same time, changes
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Table 3

The values of starting and updated parameters (E, r and h stand for dynamic modulus of elasticity, density and thickness of appropriate

elements in FE model, respectively)

I II III IV V VI VII VIII

Parameter

number

(Fig. 7)

Type Structural

part

Starting

value

Allowed

decrease (%)

Allowed

increase (%)

Updated

parameter value

Parameter

change (%)

1 k1 Spring support 36.1 (MN/m/m) No limit No limit 25.9 (MN/m/m) �28.6

2 k2 Spring support 72.1 (MN/m/m) No limit No limit 41.4 (MN/m/m) �42.6

3 k3 Spring support 36.1 (MN/m/m) No limit No limit 30.5 (MN/m/m) �16.0

4 k4 Spring support 72.1 (MN/m/m) No limit No limit 55.0 (MN/m/m) �23.7

5 E Deck 1 210 (GPa) �10 +10 230 (GPa) 9.5

6 E Column plate 210 (GPa) �35 +35 283 (GPa) 35.0

7 E Column plate 210 (GPa) �35 +35 228 (GPa) 8.6

8 E Deck 3 210 (GPa) �35 +35 141 (GPa) �32.9

9 E Deck 2 210 (GPa) �10 +10 189 (GPa) �10.0

10 E Slab 2 210 (GPa) �35 +35 253 (GPa) 20.5

12 r Deck 1 17475 (kg/m3) �20 +20 15987 (kg/m3) �8.5

13 r Deck 3 6712 (kg/m3) �20 +20 7450 (kg/m3) 11.0

14 r Deck 2 13625 (kg/m3) �20 +20 10900 (kg/m3) �20.0

15 r Slab 2 4977 (kg/m3) �10 +10 4480 (kg/m3) �10.0

17 r Water pipe 4858 (kg/m3) �50 +50 4479 (kg/m3) �7.8

18 r Water pipe 4858 (kg/m3) �50 +50 4475 (kg/m3) �7.9

19 h Deck 1 12mm 0 +30 13.5mm 12.5

20 h Column plate 60mm �50 +50 63.9mm 6.5

21 h Column plate 40mm �50 +50 42.0mm 5.0

22 h Deck 3 67mm �30 +30 51.2mm �23.6

23 h Deck 2 20mm 0 +20 20.0mm 0.0

24 h Slab 2 110mm �20 +20 102.7mm �6.6
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in some parameters were physically impossible. For example, the thickness of the column plates was about
25 cm which meant that all columns are completely cast in steel, which is obviously wrong. Moreover, the
column stiffness was additionally increased via increase in dynamic modulus by a factor of 2. Obviously, the
non-existence of the horizontal–longitudinal support springs in the initial FE model required changes in the
column parameters which were too large in order to try to correlate vertical modes. Therefore, the manual
model tuning conducted before the formal updating proved to be crucial for the success of the formal updating
procedure.

6. Discussion

Although a very detailed initial FE model of the Podgorica footbridge was developed based on design data
available and best engineering judgement, the discrepancies in the natural frequencies of the first seven modes
were quite large between the experimental and numerical results. Particularly poor correlation was obtained
for anti-symmetric modes and an error as high as 30% occurred for mode 1VA.

This initial FE model could not be updated in a physically meaningful way by using a sensitivity-based
procedure implemented in the FEMtools updating software. This confirmed conclusions found in papers
by Pavic et al. [8] and Brownjohn and Xia [9] that the initial FE model usually cannot be updated success-
fully when large differences between their modal properties and their experimental counterparts exist.
This is because these large differences violate the key assumption used in updating that the relationship
between response errors and parameter changes in Eq. (3) can be expressed using the first term in the Taylor’s
series only.

Therefore, the manual tuning which would reconcile as much as practicable the difference between the
initial FE model and its experimental counterpart was required before implementing the automatic updating.
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Table 4

Correlation between experimental and updated FE model

I II III IV V

Exp. mode Exp. model Updated model Frequency error Mode shape correlation

# f (Hz) f (Hz) (fIII�fII)/fII (%) MAC (%)

1 1.83 (1HS) 1.84 (1HS) 0.6 99.9

2 2.04 (1VS) 2.05 (1VS) 0.5 99.8

3 3.36 (1VA) 3.38 (1VA) 0.6 99.9

4 4.54 (1HA) 4.50 (1HA) �0.9 99.3

5 7.35 (2HS) 7.34 (2HS) �0.1 84.7

6 7.56 (2VA) 7.47 (2VA) �1.2 93.8

7 7.98 (2VS) 7.98 (2VS) 0.0 98.9
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Fig. 9. Convergence of the iterative process presented via averaged frequency error.
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For the bridge investigated, it was found that flexible supports in the longitudinal direction should
be introduced instead of free edges at girder ends to improve the correlation between the measured and
FE-calculated modes. It seems that the expansion joints at both ends of the bridge deck got jammed due to
lack of maintenance and therefore provided a restraint to the bridge movement in the longitudinal direction.
Such movement was much more pronounced in the anti-symmetric modes. Also, it might be that the end
supports deteriorated and obstructed free movement of the box girder ends.

A simple manual tuning by trial and error guided by engineering judgement was necessary to prepare the FE
model for the automatic updating and proved to be crucial for its successful implementation. Of 25 parameters
which were considered as uncertain, three were excluded from the updating process because the target responses
were not sensitive to them. This is a usual procedure which should help to prevent problems with ill-conditioning
during updating. After this, the updating procedure was successfully conducted improving correlation of natural
frequencies and MAC values between the final FE and the experimental models. Having said this, it would be
interesting here to analyse physical meaning of the parameter changes presented in Table 3.

Water pipes: For both pipes the density approximately decreased for 7.8%. This is an equivalent to the
situation when water fills 43% of the pipes volume, a little bit less then the initially assumed 50%.

Deck 1: The stiffness of deck 1 tended to increase through both dynamic modulus of elasticity and thickness
of shell elements. This means that the asphalt layer contributed to the overall stiffness of the deck which
was neglected when developing the manually tuned FE model. The overall mass of the deck remained
approximately the same.
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Deck 2: In this area, the shell stiffness tended to decrease as well as the overall mass. Having in
mind the asphalt contribution to the stiffness in the deck 1 area, it would be expected that the same
happened here but it did not. However, the result obtained for deck 2 probably means that the
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designed increase in the steel plate thickness from 12mm in the area of deck 1 to 20mm in the area of deck 2
was actually not carried out. It was impossible to confirm this information within the scope of this work.

Deck 3: Changes in dynamic modulus of elasticity, shell thickness and its density suggested that the total
mass and stiffness of this composite slab are smaller than assumed. This means that the composite slab is
composed of 1.2 cm of steel and 7.2 cm of concrete, instead of 1.2 cm of steel and 10.0 cm of concrete, as initially
assumed. The 33% decrease in dynamic modulus of elasticity also suggests that the concrete was probably
cracked over time and there was possibly certain level of slippage between the steel and concrete layers.

Slab 2: The mass of this composite slab decreased, meaning that the concrete layer is 9.4 cm thick instead of
the previously used 13.0 cm. However, the dynamic modulus of elasticity increased by 20%. This, together
with the increase of the same parameter for column plates suggests that the whole area of connection between
the box girder and columns is very stiff. The exact source of this stiffness is difficult to identify having in mind
that there are no precise data about the geometry of columns as well as of the concrete layer in the composite
slab. The final plate thicknesses almost stayed unchanged at 6 and 4 cm, which was in agreement with the rule
from the national bridge design code in Montenegro. According to this code the plates used for stiffening of a
structure can have the thickness which is, as a maximum, the same as the thickness of the original plates.

Longitudinal spring supports: The stiffnesses of these springs were free to increase and decrease. It is
interesting here that springs at the right side of the bridge were on average about 25% stiffer than those on the
left side. This parameter change probably happened due to an attempt of the numerical procedure to
accommodate slight violation of the anti-symmetry in the measured mode 2VA (Fig. 11).

Finally, having in mind that the first vertical mode of vibration is responsible for the footbridge
liveliness, the modal parameters related to this mode important for further vibration analysis of the bridge
were possible to be identified accurately by combining the FE and experimental results. These are natural
frequency of 2.04Hz (from testing), damping ratio of 0.22% (from testing) and modal mass (from the fully
updated FE model) of 58000 kg. This mass was about 10% higher than that obtained in modal testing, being
53188 kg [35].

7. Conclusions

When developing an FE model of the footbridge structure based on the design data available and best
engineering judgement where necessary, there is no guarantee that this initial model can reasonably well
estimate the modal properties (natural frequencies and mode shapes) of the bridge even when it is very
detailed. First seven modes of vibration of the Podgorica footbridge were identified via modal testing.
A comparison with their estimates from the initial FE model revealed errors in the natural frequencies,
particularly large for two vertical anti-symmetric modes.

An attempt to formally update this design model by changing its input parameters failed producing
physically meaningless changes in some parameters. This was due to large differences in the initial and
experimental models which cannot be supported by the iterative updating procedure used.

Because of this, a manual tuning of the initial FE model was required with the aim to reconcile these
differences. Adding flexible supports to the free edges in the bridge longitudinal direction at the girder ends
improved considerably the correlation between the numerical and the experimental models. Only then the
numerical model was possible to automatically update via the FEMtools software.

This formal updating further improved the frequency correlation and increased MAC values by changing the
values of 22 uncertain and sensitive structural parameters. The fact that all parameter changes were within their
physically acceptable limits was very important for judging the updated parameters as meaningful, and therefore
the whole of the updating process as successful. The parameter changes suggested that the composite slabs in the
bridge were less stiff than assumed. Also, it seemed that the asphalt layer contributed to the deck stiffness.
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