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Abstract

In this paper, the design of a passive vehicle suspension system was handled in the framework of nonlinear optimization.

The variance of the dynamic load resulting from the vibrating vehicle operating at a constant speed was used as the

performance measure of a suspension system. Using a quarter-car model, the performance measure was derived as an

integration of a complex function of several variables. A genetic algorithm is applied to solve the nonlinear optimization

problem. It was found from the sensitivity analysis that appropriate mutation rate, crossover rate and population size are

1.0%, 25% and 100, respectively. The optimum design parameters of the suspension systems obtained are

ks ¼ 622,180N=m, kt ¼ 1,705,449N=m and cs ¼ 26,582N s=m, respectively.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The ride quality of a vehicle is significantly influenced by its suspension system, the road surface roughness,
and the speed of the vehicle. A vehicle designer can do little to improve road surface roughness, so designing a
good suspension system with optimum vibration performance under different road conditions becomes a
prevailing philosophy in the automobile industry. Over the years, both passive and active suspension systems
have been proposed to optimize a vehicle’s ride quality [1–7]. Passive suspension systems use conventional
dampers to absorb vibration energy, while active suspension systems use additional power to provide a
response-dependent damper [8]. A passive suspension system does not require extra power, while an active
suspension system is capable of producing an improved ride quality.

The primary performance measure of a suspension system is traditionally measured in terms of ride quality
[9]. The two principal variables for the design and evaluation of the suspension system are sprung mass
acceleration, which determines ride comfort, and suspension deflection, which indicates the limit of the vehicle
body motion [10]. In the literature, the root mean square of vertical acceleration of the sprung mass is often
taken as the performance measure (objective function) to be optimized [3,4].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Ride quality as the suspension system design criterion mainly stems from taking a human ride comfort
perspective. On the other hand, from a cost-effectiveness of vehicle-infrastructure systems perspective, another
performance measure is also of significant importance, that is, the dynamic tire load applied on the pavement
[11–18]. It has been known for years that pavement damage is related to tire loads through a fourth power law
[14]. In other words, a 10% increase in the magnitude of the tire load will lead to an almost 50% increase in
pavement damage. Because of the huge maintenance cost associated with repairing transportation
infrastructure networks, it would certainly benefit the whole society, in terms of the overall cost, if the
dynamic load generated by vehicle vibration can be reduced to a minimum. To this end, a method for
optimum vehicle suspension design using dynamic tire load as a design criterion has been developed.

Conventionally, vehicle suspension system design is carried out by using nonlinear optimization
[19,20,4,6,7]. Classical nonlinear optimization algorithms such as the steepest-descent method and the
Broyden–Fltcher–Godfarb–Shanno method require the gradient to be computed during the iterative search
process [21]. The objective function used in the suspension system design is usually highly nonlinear and may
possess multiple extrema. The optimal solution obtained by using classical optimization algorithms may often
be trapped in a local minima. Genetic algorithms are randomized search techniques guided by the principles of
evolution and natural genetics. They are effective, adaptive and robust search procedures, producing near
global optimal solutions and having a large amount of implicit parallelism.

Genetic algorithms have been applied in a number of ways [22–25]. The idea utilized in a genetic algorithm
is to use the optimization strategies nature uses successfully—known as Darwinian Evolution—and transform
them for application in mathematical optimization theory to find the near global optimum. Chalasani [26],
and others use classical optimization methods to study the problem of tire force minimization. Since the
number of design parameters considered in these studies is only two, the optimal solution can even be obtained
by inspection of a contour map of the objective function as the two design parameters vary. Baumal, McPhee
and Calamai [3] applied genetic algorithm to vehicle suspension design, in which the road surface is assumed
to be a deterministic sinusoidal function. This may limit the practical value of their optimum design result, as
the actual road surface is a random field. To take advantage of genetic algorithms as well as to consider more
realistic random field models for road surfaces, we implement genetic algorithms in this paper to solve the
optimum vehicle suspension design problem.

2. Vehicle model

Two approaches can be adopted to study dynamic vehicle loads. One approach relies on experiments and
field tests, while the other approach utilizes computer modeling and simulation to conduct a numerical study.
The former is expensive but indispensable for validating the computer models. Over the years the second
approach has gained increasing popularity in research and design because of its low cost and powerful
capability for testing various scenarios. Using this approach, a vehicle needs to be simplified to develop a
vehicle model for simulating the real operation conditions. Based on the vehicle model, the dynamic response
at any position in the vehicle can be approximated numerically.

Commonly used vehicle models include quarter-, half- and full-vehicle models [27–32,15]. It is known that a
quarter-vehicle model can be used to predict ride quality and pavement loading very well [33–36]. In this paper
a quarter vehicle model is adopted to characterize vehicle dynamics. Such a quarter vehicle model is based on
the following assumptions: constant vehicle velocity, no vehicle body or axle roll, rigid vehicle bodies, linear
suspension and tire characteristics, point tire to road contact, and small pitch angles. In Fig. 1, a quarter-
vehicle model with two degrees of freedom moving on a rough pavement, in which a parallel spring and
damper with constant coefficients are used to model the tire is shown.

According to the D’Alembert’s principle, the vehicle’s suspension system is governed by

mt €yt þ csð _yt � _ysÞ þ ctð _yt �
_xÞ þ ksðyt � ysÞ þ ktðyt � xÞ ¼ 0, (1)

ms €ys � csð _yt � _ysÞ � ksðyt � ysÞ ¼ 0, (2)

where ms is the vehicle sprung mass, mt is unsprung mass, ks is suspension spring constant, kt is the tire spring
constant, cs is suspension damping constant, and ct is tire damping constant. Here, pavement roughness x is



ARTICLE IN PRESS

Fig. 1. A quarter vehicle suspension system.
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modeled as a one-dimensional random field, and ys and yt are absolute displacements of the sprung mass and
the unsprung mass, respectively. One and two dots above a symbol indicate, respectively, first and second
derivative with respect to time.

Let ztðtÞ and zsðtÞ be the respective relative displacements of the sprung mass and the unsprung mass,
namely, ztðtÞ ¼ x� yiðtÞ and zsðtÞ ¼ ytðtÞ � ysðtÞ. HtðoÞ and HsðoÞ denote the frequency response functions of
the unsprung mass and the sprung mass, respectively. Specifically, they relate the steady-state response of the
unsprung mass and the sprung mass to a sinusoidal excitation x ¼ eiot. Frequency response function of the
quarter vehicle model are determined from [15]:

o2 � ioct=mt � kt=mt iocs=mt þ ks=mt

o2 o2 þ iocs=ms þ ks=ms

" #
HtðoÞ

HsðoÞ

" #
¼

o2

o2

" #
.

The solution of the above equation gives

HtðoÞ ¼
o4 � iasð1þ _Þo3 � bsð1þ _Þo2

o4 þ iðat � _as � asÞo3 þ ðatas þ bt � bs � _bsÞo2 þ iðatbs þ asbsÞo� btbs

(3)

and

HsðoÞ ¼
�iato3 � bto

2

o4 þ iðat � _as � asÞo3 � ðatas þ bt þ bs þ _bsÞo2 þ iðatbs þ asbtÞoþ btbs

, (4)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, _ ¼ ms=mt, as ¼ cs=ms, at ¼ ct=mt, bs ¼ ks=ms and bt ¼ kt=mt.

3. Roughness excitation and vehicle response

Road surface roughness can be modeled as a zero mean Gaussian isotropic random field. Let random
variable xðxÞ be the elevation of road surface profile along the wheelpath [37–41,15]. Clearly xðxÞ is a function
of spatial distance x along the road. From Wienner–Khintchine theory, the following forms constitute a
Fourier transform couple [15]

SxðOÞ ¼
Z 1
�1

RxðX Þ e
�i2pOX dX , (5a)

RxðX Þ ¼

Z 1
�1

SxðOÞ ei2pOX dO, (5b)
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where X is the distance of two points along the road, SxðOÞ is the power spectral density in terms of
wavenumber O, and RxðX Þ is the spatial auto-correlation function. In engineering practice the single-sided
power spectral densities, denoted by, GxðOÞ, are most often used.

These are defined by

GxðOÞ ¼
2SxðOÞ for OX0;

0 for Oo0:

�
(6)

The random field describing the road surface in the space domain produces a stochastic excitation process in
the time domain when the vehicle moves along the road. Let SxðoÞ be the power spectral density of the surface
roughness as a function of angular frequency o. It can be shown that at a constant speed the wavenumber and
angular frequency power spectral densities are related through [15]

SxðoÞ ¼
1

4pn
GxðOÞ, (7)

where o ¼ 2pnO and n is the velocity.
Road surface roughness has been the subject of considerable research [42]. Over the years many power

spectral density functions of roughness have been developed for a variety of surface types, such as bridge
pavement surface [43], rail-track irregularities [44], and highway surface profiles [42,45]. It is found that many
road profiles have similar power spectral densities [43,46]. Dodds and Robson [45] presented an approximate
power spectral density function covering the entire range of spatial frequencies which is a piecewise fit in a
form of the split power law [47]:

GxðOÞ ¼
GspO�w1

1 for 0pOpO1;

CspO�w2
1 for O1pO;

(
(8)

where GxðOÞ is the single-sided power spectral density of roughness, coefficient Csp and exponents w1 and w2

relate to conditions of the pavement surface [47]. The road profile described by Eq. (8) will be used in the
following sections when developing the optimum design for the vehicle suspension system.

According to random vibration theory, we have [37,15]

SZt
ðoÞ ¼ jHtðoÞj2SxðoÞ,

SZs
ðoÞ ¼ jHsðoÞj2SxðoÞ, (9)

where SZt
ðoÞ and SZs

ðoÞ are the power spectral densities of the displacement responses of the unsprung mass
and the sprung mass, respectively. The power spectral density of pavement load as a function of power
spectral density of the road roughness profile is given by Sun and Deng [15]:

SPðoÞ ¼ jðkt þ ictoÞHtðoÞj2SxðoÞ ¼ AðoÞSxðoÞ ¼
X AðoÞ þ iX BðoÞ
X CðoÞ þ iX DðoÞ

����
����
2

SxðoÞ, (10)

where

X AðoÞ ¼ kt þ
ctcs

mt

þ
ctcs

ms

� �
o4 �

ktks

mt

þ
ks

mt

� �
o2,

X BðoÞ ¼ cto5 �
ktcs

mt

þ
ktcs

ms

�
ctks

mt

�
ctks

ms

� �
o3,

X CðoÞ ¼ o4 �
ctcs

mtms

þ
kt

mt

þ
ks

ms

þ
ks

ms

� �
o2 þ

ktks

mtms

,

and

X DðoÞ ¼ �
ct

mt

þ
cs

mt

þ
cs

ms

� �
o3 þ

ctks

mtms

þ
cskt

mtms

� �
o.
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Let s2P be the variance of dynamic vehicle load. The variance s2P is a measure reflecting the fluctuation of the
magnitude of dynamic vehicle load and is defined by

s2P ¼
Z 1
�1

SPðoÞdo ¼
Z 1
�1

AðoÞSxðoÞdo

¼ Csp

Z 2pnO1

0

AðoÞO�w1

1

2pn
doþ

Z 2pnO2

2pnO1

AðoÞ
2pn

o
2pn

� ��w2

do
	 


. ð11Þ

The suspension deflection is measured by s2Zs, which is calculated as

s2Zs ¼

Z 1
�1

SZsðoÞdo ¼
Z 1
�1

jHsðoÞ
2
jSxðoÞdo

¼ Csp

Z 2pnO1

0

jHsðoÞ
2
jO�w1

1

2pn
doþ

Z 2pnO2

2pnO1

jHsðoÞ
2
j

2pn
o
2pn

� ��w2

do

" #
. ð12Þ
4. Optimization via genetic algorithms

Genetic algorithms were invented in the 1960s [22,23] and developed by many others [48,49]. The metaphor
underlying genetic algorithms is that of natural evolution. In evolution, the problem each species faces is one
of searching for beneficial adaptations to a complicated and changing environment. The ‘‘knowledge’’ that
each species has gained is embodied in the makeup of the genes of its members. In general, genetic algorithms
can be perceived as a search procedure through a space of potential solutions. Classical optimization methods
work well for searching in small spaces. However, for larger spaces artificial intelligence techniques are more
effective and genetic algorithms are among such techniques. Genetic algorithms are stochastic algorithms
whose search motivations model natural evolution: genetic inheritance and Darwinian strife for survival.
Genetic algorithms are stochastic algorithms because random numbers that are generated during the
operation of the algorithm determine the search result. This means that if a genetic algorithm is deployed to
optimize the same problem twice in exactly the same way, usually two different answers will be obtained,
though they may be very close to each other.

Large magnitude dynamic vehicle loads may cause more damage on highway pavements. To mitigate load-
induced damage, the variance ðs2PÞ of the dynamic load should be minimized. For an ordinary quarter vehicle
model, the vehicle parameters used in the optimum design are mt ¼ 550 kg, ms ¼ 4450 kg, n ¼ 20m=s and
ct ¼ 0N s=m, and road roughness parameters are chosen to be Csp ¼ 1� 10�2;Ol ¼ 0:1 cycle=m,
w1 ¼ w2 ¼ 2:0. Specifically, having ks and cs as the design variables, the optimum suspension design is
formulated as

minimization of s2p subject to the constraints:

1� 105 N=mpksp3� 106 N=m;

1:5� 106 N=mpktp2� 106 N=m;

0pcsp3� 105 N s=m;

s2Zsp0:2:

(13)

The last constraint is used to restrict the suspension deflection.
Clearly, the above optimization is a nonlinear programming problem. The classical approach to

optimization in this setting is to use a derivative-based approach. Examples are Newton–Raphson and
conjugate gradient techniques. The scheme of these algorithms is (1) holding one solution at a time; (2) looking
locally to see what direction to move in (via the gradient of the function at the current solution); and (3)
selecting the new current solution after deciding how far to move along that path. For problems where the
objective function is not differentiate or multiple local optima exist, genetic algorithms offer advantages over
the classical optimization algorithms [24]. In Fig. 2, the necessary components of a genetic algorithm are
shown.
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Fig. 2. Schematic diagram of a genetic algorithm.

L. Sun et al. / Journal of Sound and Vibration 301 (2007) 18–27 23
To solve an optimization problem using genetic algorithms, the problem needs to be represented in the
framework used by genetic algorithms [50,24]. An initial population of solutions is created by using random
samples. The population is then coded into chromosomes, a binary representation of a solution (consisting of
the components of the decision variables known as genes in the genetic algorithm). The whole population of
chromosomes represents a generation. An evaluation function rates solutions in terms of their fitness. Here,
fitness is a numerical value describing the probability for a solution (genome) to survive and reproduce (i.e.,
genome copies itself into the next generation). Only a portion of the population (survivors or solutions with
higher fitness values) is selected for creating a new population (offspring production). This new population is
created by using a crossover operator.

Crossover is a procedure for exchanging pieces of choromosome data with one another. It includes single-
point crossover: sniping both strings at the same location and interchange the pieces, and multiple-point
crossover, involving recombination of the strings at several locations. Crossover allows genes that generate
good fitness to be preserved and enlarged in a new generation of the population. Mutation is a genetic
operator and it randomly flips the bits of an offspring’s genotype. This is equivalent to perturbing the mated
(i.e., after crossover operation) population stochastically. Mutation prevents the population from
homogenizing in a particular set of genes such that any gene in a generation has a certain probability
(determined by the mutation rate) of being mutated in future generations. The crossover rate and mutation
rate are the proportion of the chromosomes involved in crossover or mutation with respect to the whole
population. The new population is being mixed up to bring some new information into this set of genes, and
this needs to happen in a well-balanced way. Once the new generation is created, the aforementioned steps are
repeated until some convergence criteria are satisfied, such as running time or fitness.

To implement the genetic algorithm for the optimum suspension design problem formulated above, we set
the required precision to be zeroth decimal place for each design variable. The domain of variable ks, has
length 2,900,000. The precision requirement implies that the range ½100,000; 3,000,000� needs to be divided into
at least 2,900,000 equal size ranges. This means that 22 bits are required for the first part of the gene:
221 ¼ 2,097,152o2,900,000o222 ¼ 4,194,304. The domain of variable cs has length 300,000. The precision
requirement implies that the range [0; 300,000] should be divided into at least 300,000 equal size ranges. Hence,
19 bits are required as the third part of the gene: 218 ¼ 262,144o300,000o219 ¼ 524,288. Similarly, 18 bits



ARTICLE IN PRESS
L. Sun et al. / Journal of Sound and Vibration 301 (2007) 18–2724
should be assigned to kt. Hence, the total length of a gene is 22þ 18þ 19 ¼ 59 bits, consisting of the first 22
bits of the gene code for ks, the second 18 bits for kt and the last 19 bits for cs. This 59 bits number represents a
chromosome which contains a solution to the problem consisting of 3 decision variables. For instance, if the
19 bits for coding cs are 0010001001011010000, they represent cs ¼ 0þ decimal ð00100010010110100002Þ�
Fig. 3. Sensitivity analysis of probabilities of mutation and crossover: (a) total generation 50, population 50; (b) total generation 100,

population 50; (c) total generation 50, population 50; (d) total generation 100, population 50; (e) total generation 50, population 100; (f)

total generation 100, population 100; (g) total generation 50, population 100; and (h) total generation 100, population 100. - � - Cross rate

¼ 5%: -&- Cross rate ¼ 15%. -n-Cross rate ¼ 25%. -�- Cross rate ¼ 35%. -�- Cross rate ¼ 45%. -�- Cross rate ¼ 55%.
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Fig. 4. Average values of 100 populations at each generation.
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300,000=ð219 � 1Þ ¼ 0þ 70; 352� 300,000/524,287 � 40,256. The fitness of a chromosome as a candidate
solution is a function of these genes and is obtained by evaluating the objective function.

To minimize the objective function using a genetic algorithm, the 59 bits in all chromosomes are initialized
randomly. During the evaluation phase each chromosome is decoded and the parameter value calculated for
the objective function. Some chromosomes are better in terms of reducing the value of objective function than
others, and these are then given more opportunities (large weights) to be involved in producing the next
generation. The individual solution in the new generation is either the same as some solution in present
generation or produced by crossover or mutation. Crossover is done by exchanging the same segment of two
chromosomes, say, the last 10 bits, while mutation is done by changing a bit in a chromosome from 0 to 1 or
from 1 to 0 [3,24,50]. After the new generation is obtained, the previous steps are repeated until convergence
criterion is met. In general, lower values of the objective function will be achieved through iteration of
generations. The best chromosome corresponds to the minimum objective function.

To choose appropriate probabilities of mutation and crossover, four scenarios are created that corresponds
to different combinations of the number of generation (50 and 100) and the population size (50 and 100).
Specifically, for the preliminary study, the number of generation and the population size are fixed and only the
mutation rate and crossover rate (CR in Fig. 3) are allowed to change. The average values of the last
generation and the optimization values from the simulation are plotted in Fig. 3. The average value of the last
generation oscillates as the mutation rate changes, which is less informative than the minimum value. From
these two figures it can be seen that 1% may be a reasonable choice for the mutation rate since there is good
convergence to the minimum value of the objective function for a variety of crossover rate. Also, a population
size of 100 and a 25% crossover rate seem to yield robust performance in terms of minimizing the objective
function.

As a result of the preliminary analysis, 1%, 25% and 100 are chosen as the appropriate mutation rate,
crossover rate and population size, respectively, and the only changeable quantity for this problem is the
number of generations, which will be determined by using the convergence criterion during the iteration. In
Fig. 4 is shown the average value of the objective function at each generation. In the figure, the results of three
simulation runs are plotted. The convergence is evaluated using the average value of the population. The
design variables corresponding to the optimum value of the objective function are ks ¼ 622,180N=m; kt ¼

1,705,449N=m and cs ¼ 26,582N s=m, respectively.

5. Conclusions

In this paper genetic algorithms are demonstrated to be an effective searching algorithm for optimum design
of passive vehicle suspension systems. The vehicle model used in the optimization is a quarter-truck model, a
simplification of a real truck. Three design variables were considered in this study: the suspension spring
constant, the suspension damping and the tire stiffness. Instead of using ride quality as the performance
measure of suspension systems, in this paper the dynamic load generated by vehicle–pavement interaction is
used as the objective function to be minimized. The optimum suspension design problem treated here is a
constrained nonlinear optimization with three decision variables (design parameters), which can also be solved
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using classic gradient-based searching algorithms. The constraints are the practical ranges for the suspension
parameters and the restriction of the suspension deflection. It is found from the sensitivity analysis that the
appropriate mutation rate, crossover rate, and population size are 1%, 25% and 100, respectively. The
optimum design parameters for the suspension systems were found to be: ks ¼ 622,180N=m, kt ¼

1,705,449N=m and cs ¼ 26,582N s=m. When a more realistic truck model is adopted in the optimum
suspension design, the number of design parameters will be more than three, and there may exist multiple local
extrema. In this situation, there will be difficulties using the traditional optimization methods while genetic
algorithms will still be an effective approach.
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