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Abstract

The calculation of the forced vibration response of a clamped beam or clamped plate often involves the calculation of

the modal (or generalized) mass. Calculation of this term for simply-supported structures is relatively easy and results in a

value that is half the mass of the structure for beams, and a quarter of the mass of the structure for plates and cylinders.

However, calculation of this term for clamped beams and clamped plates is algebraically more complicated and has led to

the presentation of several formula in research literature that appear vastly different. This paper contains a derivation of

the modal mass of a clamped beam and clamped plate and shows that several of the formula for the modal mass in the

research literature are equivalent.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The focus of this short communication is the derivation of the modal (or generalized) mass of a clamped
beam or clamped plate, that is one aspect of the derivation of the forced vibration response of a structure using
modal summation techniques. The reader should consult text books such as Soedel [1], Tse et al. [2] and Morse
and Ingard [3] for a full description of modal methods.

The calculation of the modal mass of a structure involves integration of the square of the assumed mode
shape function over the length of the structure in each of its dimension. For a one-dimensional beam, the
integration is over the length of the beam. For a plate, the integration occurs across the length and width of
the plate and for a cylinder, it occurs along the axial length and the circumference.

The equation for the assumed mode shape function depends on the boundary conditions of the structure.
The boundary condition that is most commonly described in vibration handbooks is the simply-supported
edge condition. For structures with these boundary conditions, the assumed mode shape c is a sinusoidal
function such as

cðxÞ ¼ sinðnpx=LÞ, (1)

where n ¼ 1 . . .1 is the mode number, x ¼ 0 . . .L is the position along the structure and L is the length of the
structure. The modal mass for a simply-supported beam is derived by evaluating the square of the mode shape
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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function given in Eq. (1) and is

Z L

0

cmcn dx ¼ L=2 for m ¼ n, ð2Þ

¼ 0 for man. ð3Þ

This integral involving sine functions can be found in most mathematical handbook of integrals. The modal-
mass is then rSðL=2Þ, which is half the mass of the beam, where r is the density, S is the cross-sectional area of
the beam.

Warburton [4] presented the first comprehensive set of equations describing the vibration of plates for
various boundary conditions. He described the out-of-plate deflection of plates W ðx; yÞ as the product of two
mode shape functions for beams, that is,

W ðx; yÞ ¼ X ðxÞY ðyÞ, (4)

where X ðxÞ and Y ðyÞ are appropriate mode shape functions of beams that account for the boundary
conditions along the length (x) and width (y) of the plate.

The derivation for the modal mass of a simply-supported plate utilizes these same results for a simply-
supported beam. The modal mass is then rhðLx=2ÞðLy=2Þ, which is a quarter the mass of the plate, where r is
the density, h is the thickness, Lx and Ly are the lengths of the plate in the x and y directions, respectively.

The derivation of the modal mass for a clamped–clamped beam or fully clamped plate is more complex. The
evaluation of the integral has led to various formulas presented in the research literature. The expressions all
appear different, but it is shown here that most are in fact equivalent.
2. Summary of formulas presented in the literature

Several authors have presented different formulas for the modal mass of a clamped beam or clamped plate.
The following text is a brief review of some of these formulas. Although authors have used differing
nomenclature in their respective papers, the equations presented here use consistent variables to enable
comparisons of their equations.

The mode shape functions for a clamped–clamped beam used by all authors use the roots kn of the following
equation:

cosðknÞ coshðknÞ � 1 ¼ 0. (5)

Table 1 lists the value of kn for values of the modal indice n.
Other terms that are used in this paper are L the length of the beam, and the term

DnðknÞ ¼
coshðknÞ � cosðknÞ

sinhðknÞ � sinðknÞ
, (6)

which is a factor in the expression for the mode shape function c.
Table 1

Values of k for modal indice n

n kn

1 4.7300408

2 7.8532046

3 10.9956078

4 14.1371655

5 17.2787596

6 20.4203522

n46 ð2nþ 1Þp=2
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2.1. Derivation by Young

Young [5] defined the mode shape function for a clamped–clamped beam as

cn ¼ cosh
knx

L

� �
� cos

knx

L

� �
�Dn sinh

knx

L

� �
� sin

knx

L

� �� �
, (7)

where Dn was not defined in the paper but listed as a table of values. The integral of the square of the mode
shape function was defined in the paper as [5, Eq. (8)]

Z L

0

c2
n dx ¼ L (8)

and hence the modal mass is then rSL, which is the total mass of the beam.
2.2. Derivation by Carmichael

Carmichael defined the mode shape function for a clamped–clamped beam as [6, Eq. (10)]

cn ¼ En cosh
knx

L

� �
� cos

knx

L

� �� �
� sinh

knx

L

� �
� sin

knx

L

� �� �
, (9)

where En ¼ 1=Dn. The integral of the square of the mode shape function was defined in the paper as
[6, Eq. (11)]

Z L

0

c2
n dx ¼ LE2

n (10)

and hence the modal mass is then rSLE2
n.
2.3. Derivation by Arenas

Other researchers have not explicitly defined the modal mass in their derivations, such as Sung and Jan [7,8].
The omission was noted by Arenas [9] who attempted to perform the integration of the beam mode shape
functions that resulted in the following (after manipulating [9, Eqs. (6)–(9)] so that it is in a similar format to
the other equations described here):

Z L

0

c2
n dx ¼

LAn

kn

, (11)

where

An ¼
1
4
ð1þD2

nÞ sinhð2knÞ þ sinhðknÞ½2Dn sinðknÞ � ð1�D2
nÞ cosðknÞ�

� ð1þD2
nÞ sinðknÞ coshðknÞ þ

1
2
ð1�D2

nÞ sinðknÞ cosðknÞ þ kn

� 1
2

Dn½1þ coshð2knÞ� þDncos
2ðknÞ ð12Þ

and hence the modal mass is then rSLAn=kn.
2.4. Derivation by Barboni et al.

Barboni et al. [10] defined the mode shape of a clamped beam as

cnðxÞ ¼ �Bnf½sinhðknx=LÞ � sinðknx=LÞ� � En½coshðknx=LÞ � cosðknx=LÞ�g (13)
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and

Bn ¼ E2
n þ

sin 2kn

4kn

ðE2
n � 1Þ �

En

kn

sin2 kn þ
sinh 2kn

4kn

ðE2
n þ 1Þ þ

ð1� E2
nÞ

kn

cos kn sinh kn

�

þ
2En

kn

sin kn sinh kn �
ðE2

n þ 1Þ

kn

sin kn cosh kn �
En

2kn

ðcoshð2knÞ � 1Þ

��1=2
. ð14Þ

The integral of the square of the mode shape function is then [10, p. 113]Z L

0

c2
n dx ¼ L, (15)

which is the same result as derived by Young. However, the additional term Bn that precedes the mode shape
function was perhaps included to normalize the mode shape function, so that the integral of the square of the
mode shape function would evaluate to L.

It is clear from the above discussion that researchers have presented several formula for the integral that
defines the modal mass of a clamped beam or clamped plate. The following section is a complete derivation of
the modal mass of a fully clamped plate, where the mode shape for a clamped beam is assumed. It is shown
through the derivation that several of the previous formula are equivalent, and that they reduce to the same
expression.

3. Derivation of the modal mass

The mode shape for a clamped beam can be defined as Eq. (7). The modal mass is calculated as

rSLn ¼ rS

Z L

0

c2
nðxÞdx. (16)

The evaluation of this integral involves several pages of algebraic manipulation. By making use of
trigonometric circular functions and grouping appropriate terms, the equation can be simplified to

Ln ¼
L

kn

f2 sinðknÞDn sinhðknÞ þ 1=2D2
n sinhðknÞ coshðknÞ þ 1=2 sinhðknÞ coshðknÞ

þ sinhðknÞ cosðknÞD
2
n � sinhðknÞ cosðknÞ � sinðknÞ coshðknÞ � sinðknÞD

2
n coshðknÞ

� 1=2 cosðknÞ sinðknÞD
2
n þ 1=2 cosðknÞ sinðknÞ �DnðcoshðknÞÞ

2
þDnðcosðknÞÞ

2
þ kng. ð17Þ

It can be shown that Eq. (14) by Barboni et al. is in fact equivalent to Eq. (17).
By shifting the L=kn to the left-hand side, the equation can be simplified further into

ðkn=LÞ � Ln ¼
1
4
ð1þD2

nÞ sinhð2knÞ þ sinhðknÞ½2Dn sinðknÞ � ð1�D2
nÞ cosðknÞ� � ð1þD2

nÞ sinðknÞ coshðknÞ

þ 1
2
ð1�D2

nÞ sinðknÞ cosðknÞ þ kn �
1
2
Dn½1þ coshð2knÞ� þDncos

2ðknÞ, ð18Þ

which is identical to the expression An by Arenas shown here in Eq. (12) (see Ref. [9, Eq. (7)]). Eq. (18) can be
further simplified by substituting Eq. (6) for Dn. After factoring the denominator, and returning the kn=L on
the left-hand side of Eq. (18) to the right-hand side, yields

Ln ¼
�L

kn½sinhðknÞ � sinðknÞ�
2
f�kn½sinhðknÞ � sinðknÞ�

2 þ coshðknÞ sinhðknÞðcosðknÞÞ
2

� cosðknÞ sinhðknÞ � sinðknÞ cosðknÞðcoshðknÞÞ
2
þ sinðknÞ coshðknÞg. ð19Þ

The crucial step here, where some authors stop their derivation, is to factor the remaining terms after
�kn½sinhðknÞ � sinðknÞ�

2 so that Eq. (19) can be written as

Ln ¼
�L

kn½sinhðknÞ � sinðknÞ�
2
f�kn½sinhðknÞ � sinðknÞ�

2

� ðcos kn cosh kn � 1Þðsin kn cosh kn � cos kn sinh knÞg. ð20Þ



ARTICLE IN PRESS
C.Q. Howard / Journal of Sound and Vibration 301 (2007) 410–414414
Noting the result in Eq. (5) where cos kn cosh kn ¼ 1 and cancelling the remaining terms, the equation can be
simplified to

Ln ¼ L. (21)

It has therefore been shown that the expressions derived by Young, Arenas, and Barboni et al. are equivalent.

4. Summary

The proof detailed here shows that the integral of the square of the mode shape function for a clamped
beam is L, which was shown by Young’s equation in Eq. (8). Carmichael’s equation in Eq. (10) has the extra
term E2

n. For values of n41, E2
n � 1 and hence whilst not precisely correct, it does numerically calculate to the

correct value. Arenas’ expression for the modal mass in equation Eq. (11) is also correct, however the term for
An could have been further simplified as shown in this paper. Similarly, Barboni’s equation in Eq. (15) was
also shown to be correct, however, the algebraic expression for Bn could have been further simplified. The
equation derived by Barboni et al. is related to Arenas’ expression as B2

n ¼ kn=An.
By using the result presented in this paper, it follows that the modal mass for a clamped beam is just the

mass of the beam, and the modal mass of a clamped plate is simply the mass of the plate.
It is hoped that the derivation presented in this paper will provide a useful reference to future researchers

attempting to find a formula for the modal mass of a clamped beam or clamped plate.
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