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Abstract

This paper deals with the normalized acoustic radiation impedance of an elastically supported annular plate in
axisymmetric vibrations. Cauchy’s theorem about residues and the stationary phase method have been used to
approximate the corresponding integrals. As a result, elementary asymptotic formulas valid for axisymmetric boundary
configurations of clamped, guided, simply supported and free annular plates as well as for all the intermediate boundary
configurations have been obtained.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Thin flat annular plate idealization is often used for analysis of numerous real-life vibrating systems such as
setting centrifuges, pipe-reducing elements in petroleum industry, transport, electro-acoustic devices, sound
probes, microphones, etc. In most cases, the plates are excited mechanically and acoustically and become
sound sources. The acoustic radiation impedance is an important acoustic measure to describe such sources. It
is difficult or impossible to find exact analytical solutions for this quantity. Therefore, approximate solutions
have been presented only in a few cases [1-8].

The main aim of this study is to present high-frequency asymptotic formulas of radiation impedance of an
elastically supported annular plate valid for all axisymmetric boundary conditions in full recognition of real-
life conditions. Annular plates are seldom clamped, guided, simply supported or free. Often, the plate edge
satisfies some intermediate boundary conditions.

2. Governing equations

A flat thin elastically supported annular plate is embedded into a flat rigid infinite baffle (cf., Fig. 1). The
plate vibrations as well as the radiated acoustic waves are time harmonic and axisymmetric. Low fluid loading
has been assumed. Material damping has been assumed to be small enough to be neglected. The mode shape
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Fig. 1. Acoustic system containing an elastically supported annular plate embedded into a flat infinite baffle.

for the axisymmetric problem is [9,10]
Wa(r) = Ap[Jolkur) + Byl o(knr) — Cp Y o(knr) — Dy Ko(kpr)], ()

where r € [a, b] is the radial variable, a, b are the internal and external radii, J,(-), 1,,(-), Y,.(-), K,(-) are the nth
order Bessel, modified Bessel, Neumann, McDonald functions, k:: = wﬁgh/DE, w, 1s the eigenfrequency,
Dp = Eh3/12(1 —v?) is the bending stiffness, o, &, E, v are the plate density, thickness, Young modulus and
Poisson ratio, respectively, and n is the number of nodal circles while the number of nodal diameters is
assumed to be zero. The axisymmetric boundary conditions are [10]:

d
mew=manw , (2a)
r=pu
K, Lwm =-p d—2+3i W) (2b)
gy " — E\ar Trar) Y r—

where Vf = dz/dr2 +(1/ryd/dr, pe{a, b}, and Ky,Ky are boundary stiffness values associated with
deflections and rotations of the plate edges, respectively. It is useful to define the following vector:
K= (KI,K2,K3,K4) where Kl = KWaa3/DE, K2 = KWbb3/DE, K3 = Kl//aa/DE> K4 = wab/DE. Eq. (1) is a
solution to the homogeneous equation of motion (k,*V# — 1) W,(r) = 0 where V* = V>V?2. Inserting Eq. (1)
into Egs. (2) gives four algebraic equations. Three of them are linearly independent. Solving them produces
three constants:

C, = N(l)/D(l) — N(2)/D(2)’

By = 50 Qp{(qppy — DIN(2) — CoR(s2n)] + 24, Ko(54) Go(52n) + 29, K1 (570) G1(57n)}
= 70 Qul(quly = DIN(4n) = CuR(A)] + 2q,K0(2) Go(Zn) + 2P, K1 (7) G1 (2n)},

D, = sk, Qb{(qbpb - 1)[5(3/111) -G, T(S/ln)] + 2‘]b10(S/1n)G0(Sln) - 2prI(S)~n)G1(S)~n)}
= j-n Qa{(qapa - 1) [S(/ln) - Cn T(;Ln)] + 2%;10(/111)(;0(;%) - zpall(/ln)Gl(/ln)}v
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where

N = 50, [(1 = gypy) S(sn) — 2a3To(57)To(572) + 29T 1 ()] 1 (57)]
— (1 = 4,p) SCa) = 24, 0G) o) + 2,1 Go) 1G],

DY = SO [(1 = qppp) T(s2n) — 2q, No(sAn)Lo(52n) + 2pp N 1(5Ax)11(570)]
- Qa [(1 - qapa) T(;“n) - 2QaN0()~n)IO(;Ln) + 2paNl(/1n)Il(/1n)]’

N® =50, [(1 — q,pp) N(52n) — 2q, T o(2) Ko(52) — 2P T 1(52) K 1 (52,)]
= O, [(1 = qup) N(in) — 24, 0(2n)Ko(2n) — 2P, 1(Z) K1 (Zn)],

D@ =50, [(1 — qupp) R(s7n) — 2q, No(570)Ko(57n) — 20y N1(70) K 1(57)]
= 0, [(1 = 4,2,) R(An) = 2¢,No(2n)Ko(4n) — 2p,N1(Zn) K1 (Zn)],

§= b/aa ln = kna is the eigenvalue, Qa = 1/(1 + qapa)’ Qb = 1/(1 + qbpb): Pu= (K3 -1+ V)/)Vna Py =
(Ka = 14+ V)/shn q= K1 /700 4y = Ka/(s0)’s S(s7) = Ji(s)o(s2) + Jo(sH1(57). T(s7) = Y1(sHo(s7)+
Yo(sA)I1(sA), N(si) = J1(sA)Ko(sh) — Jo(sD)K1(sA), R(sA) = Y 1(sA)Ko(s4) — Yo(sA)K (s4), and Gy(sd) =
Jo(sA)— CpYo(s4), Gi(sA) = Ji(s4) — G Y 1(s4).

The fourth constant A, has been determined using the orthogonality condition f Wz(r)r dr=d*(s* - 1)/2

[11]:

A2 = 1

b
. W {2/ [Jolknr) + By lo(k,r) — C, Yo(kyr) — DnKo(k,,r)]zr dr}

=3 (s HGH(5In) + Go(s2n) + [2G(s2) — Go(s2n)]* — [2H (54m) + Gi(57)]

+ (4 / ) [G1(s4,)G(s4,) + Go(sA)H (s2,)]}
—{Gi () + G(An) + [2G(2) — Go()) — 2H(Oow) + G1 (2]
+ (4/2)[G1()G(2) + Go(H )Y,

where G(4y) = 0,[p,G1(4n) + Gol)le Glsn) = O4lpyG1(s) + Go(s2a)], and H(Ay) = 0,[4,Go() — Gi (A
H(s22) = Oplas Go(sn) — Gi(s)]-

The frequency equation takes the form NV/p1 = N@/D®)

The normalized radiation impedance related to axisymmetric mode (0, ) has been formulated in its Hankel
representation [3,12]

G = 0, — iy, = 46%2 / V20 19X 3)

where 0,,y, are the normalized acoustic radiation resistance and reactance, respectively, i=+—1, y=
\/l—x2 for x<1 and y=ivx?2—1 for x>1, xeR, 6,=k,/k, k is the acoustic wavenumber,
¢ = 25°G3(s2,) A2 /(s> — 1), and

p

Vo) =2 () | U,

1 W (r)
Joltkrx)rdr = == + ,
a sGo(shn )/ olfer) DR o (e o 2

n

4)

‘/jl,n(x) = 5nas,n J()(SﬁX) - le(SﬁX) - dn [511al,n JO(ﬁx) - XJ](ﬂX)],

%,n(x) = 0, [0u(qp — asn) Jo(sBx) + X(1 + ppasu) J1(spx)]
- dn {Qa[én(qa - al,n)JO(ﬁx) + x(l +paa1,n)-]l(ﬁx)]}s
asn = G1(sAn)/ Go(shy), dy = Go(2n)/3Go(sAy), B = ka.
Integrating in Eq. (3) has been performed along the real axis. Cauchy’s principal value computed within the

limits of (0, 1) represents radiation resistance, whereas Cauchy’s principal value computed within the limits of
(1, 00) represents radiation reactance.
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3. Asymptotic formulas

It is possible to perform numerical computations using Eq. (3). However, this study focuses on its
analytical calculation to obtain an elementary asymptotic formula. The closed contour integral tech-
nique and the stationary phase method have been used for this purpose [6,7]. First, Eq. (3) has been
expressed as

Lo =45 16D + (D + 1), )
where
*© lp% (x) xdx
) _ Vi) xdx
b = /0 (x4 =4 p (6a)
(@ _ 2 / (o, (X)) xdx .
! ZJo (¥ =oh246H v
1 [® Y3, xdx
G - [ Tt AEA
Cn - 54/(; (X2 +52)2 y . (6C)

Further, Cauchy’s principal values representing radiation resistance computed within definite limits in Eq. (6)
have been substituted with residues and the corresponding infinite limits integrals (with no poles, cf., Fig. 2).
While integrating (6a) within the definite limits, the following function has been used:
Fi(z)= 5iaﬁ(s/1n)Jo(sﬁz)Hgl)(s[fz) + 227, (s[?z)H(ll)(sBz)

+ G To(B)HY (B2) + do2 Ty (B2)HY(B2)

+ Suar(sin)z [Jo(sB2)H' (sBz) + Hy (sB2)T 1 (s2)]

— oudyay )z (P2) Y (B2) + Hy (B2)T1(B2)]

— 24, [Syan(si)an (i) HG (sB2)To(B2) + 2 Hy (P21 (B2)]

+ 20,d,z [an(s2) Hy (sB2)T1(B2) + an(in) Hy (sB2)To(B2)], (7

where z = x + iy € C, x,y € R, such that Re F(x) = xﬁin(x) where H,(}) is the nth order Hankel function of the
first kind. Cauchy’s theorem provides
Fi(z)d
j{ zF(2)dz 0 ®)

cVI— 25y

where the integrand is homogeneous and regular along and inside contour C. There are two branching points:
z =1 for term +/'1 — z2 and z = 0 for the Hankel function. Furthermore, integrals computed along small arcs
vanish as their radii approach zero whereas the integral computed along the big arc also vanishes as its radius
grows infinitely. Contributions at the small arcs about the pole singularities have been expressed using
functions:

Fi(2)
97(1) = = at z = 5na 9a
VO = et oy M Ga)

zF(2)
V1= 22(z +18,)% (2% — 82)*

790 = at z =4, (9b)
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Fig. 2. Integration contour C.

and Eq. (8) has been rewritten as [7]

I xFi(x)dx B /l lﬁi,,(x) xdx
ovl—x2(x4—(32)2_ 0 (= JV1T=X2

- Re{ni % 71(2)

. d
+mi 79(2)

z=id, }

®©  xIm Fl(x)dx ][ y Re Fi(iy)dy

VIFZ 04 =) o

z=0,

+

VX2 —1

where { denotes Cauchy’s principal value. The value of Im F/(x) has been obtained from Eq. (7) by taking
Neumann function as the imaginary part of Hankel function. For purely imaginary argument iy in Eq. (7),
considering that Jo(iy) = Io(y), J1(iy) = il1(»), H(iy) = —(2i/m)Ko(), H (iy) = —=(2/m)K (), it has been
obtained that

Fi(iy) =0- 1* {82a2(sAn)o(sBY)Ko(sBy) — V2 11(sBy)K 1 (sBy)

+ 5idi 20 Io(BY)Ko(BY) — dry T (BY) K1 (By)

+ 0ua2(5/n)y Lo(sBY)K 1 (sBY) — Ko(sB1(sB)]

— 8ud2a2 )y Lo(BY)K 1 (BY) — Ko(B)I1(By)]

— 2d,, [6n (57 )an(2n) Ko(sBy)o(By) — ¥ K1 (sPY)I1(By)]

— 28,dy [an(57:)Ko(sBT1(BY) — an(2) K1 (P o(BY)]}. (11)

Thus, it has been deduced that Re F(iy) = 0 and that the last integral in Eq. (10) computed along the
imaginary axis is also equal to zero. So, the first integral in Eq. (10) has been expressed as the sum of residues
at z = J,,z = 1d,, and the integral computed along the real axis within the limits (1, co). Further, the following
values have been computed:

Fi(0,) =0, (12a)
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Im F/(5,) = — g5,,{1 + a2 (s2,) — d[1 + ()]}, (12b)
v
. 2,
Im F(i9,) = —= 0,(AB — 2A4b + ab), (12¢)
T
F|(id,) = 2 BS2[s(BG — AH) + bg — ah — 2sGb + 2Ah), (12d)
T

where A = a,(s4,)Ko(s2,) — K1(s4,), a = dy[a,(2,)Ko(Ay) — Ki(4)], B = an(sin)lo(s2y) + 11(shy), b=
dylan(Zn) To(Zn) + 11(Zn)], G = an(s2,)K1(s2n) — Ko(54n), g = dp[an(2n)K1(An) — Ko(An)], H = an(s2,)11(s4,)+
IO(S;“H)a h= dn [an(/ln)ll (;“n) + IO(/“n)]

Using Egs. (9) and (12a) gives
- dpg

d
e Z
= 1654/1 -6

dz

: (13a)

z=0,

d 1 d b
— 79 = |0, F\(z + (24— | Fi6,)]. 13b
R Iy ] e Y 5 | Fion (13b)
The sum of residues at the poles from Eq. (10) has been denoted as
— , , 1 2 hn 2 1 2 .,
0 = Relril 7 @)+ # () = LG Gl + @)
8044 /1— &2
1
+——————< W[S(BG — AH — 2Gb) + bg — ah + 2A4h]
892 /1 462 {
2
+12+ O 5 |(AB —24b + ab) ». (14)
149,

While integrating (6b) within the limits (0, 1) the following function has been used:
F2(2) = Q43 8,lan(s4)Fy — Gl 1 (sB2)Hy (sB2) + To(sp2)H | (s2)]

+ Span(s7n) Gulo(sB2)Hy (sB2) — Fu2 i(sp2) Y (sP2)

+ da[6,Gy Hy (sB2) + FuzH\ (B2 (B2) = SnanZndTo(B2)]}

+ Qudy 15 Sudnlan(n)f s — 91T (BHG (B2) + Jo(B2) HY (B2)]

+ d[8301)gn ToBHG (B2) = 42201 (B2)HY (B2)]

+[629,T0(B2) + /2 (BN [2H(5B2) = Suan(s2) HG (sB2)]), (15)
where F, =14 pya,(sin), f,=14+p.an(An), G,=q, — an(sk,), ¢,=q,— an(4,), so that Re F»(x)=
V1 4(X) ¥, ,,(x). The following contour integral has been formulated:

zFy(z)dz
7{c VI=22 (4 =% (22 + 82

The integration contour is identical to the former one (cf., Fig. 2). The integrand has a first-order pole at

z = 0, and a second-order pole at z = id,.. The corresponding residues have been computed using the following
functions:

— 0. (16)

F(2)
FV(z) = = at z =5, 17a
0= = (17a)
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zF(2)
V1= 22(22 = 05)(z +10,)°

F(2) = at z = id,. (17b)

Eq. (16) has been rewritten as

Ref’ XFa(x) dx _ / (Y, () xdx
T2 (4 =02+ Jo (H =2+ )V -2

d
= Re{nig"(zl)(én) + i d—%’f)(Z) }
z 2=id,

o x Im Fp(x)dx +][0 y Re Fy(iy)dy (18)
VR | G 30 TE =0 oy WA SURV/4 INEREY (RN A s

and the last integral is equal to zero as integrated along imaginary axis since

+

2
Fy(iy) =0+ i; (Ou 1 Suylan(sin)Fu — GulVI1(sBy)Ko(sBy) — Lo(sPy)Ki(sBy)]

— 5an(5An) G o(sBY)Ko(sPy) — Fuy*T1 (sBy)K1(sBy)

+ d[0nGuKo(sBy) + FryK (sBn] V11 (By) + 0nan(2n)Lo(B2)]}

+ Q{3 0ndny [an(n)f , — g, W1 (BY)Ko(BY) — To(BY)K1(By)]

— d,[87a,(7n)g, Lo (BYKo(BY) + /7" T1 (B K1 (BY)]

— (029, 10(BY) — /YL (BVIYK  (5BY) — Snttn(s7n)Ko(sBy)]}), (19)
which implies that Re F(iy) = 0. The following values have been obtained:

19,
Im Fa(00) = = O Py (5%) + 5] = s0ud, [Pty () + 41} (20a)

Im Fs(id,) = % 52 Q4 [A (B — b) + buy + L (vpA4 — uyB)]
+ Qu[b(a — A) — v, A + % (vaa — uab)]}, (20b)

where Up = pban(S)Ln)Il(S)hn) - quO(S/In)s Vg = dn [paan(in)ll(/ln) - qal()(;“n)]» Up = pban(‘g)‘l’l)Kl(S}%) + thO(s;Ln)’
Uy, = dn[paan()tn)Kl()tn) + anO(/ln)]a

%Fz(z) = SQ[A(H + y) — G(B+ vp) + b(G — xp) + h(—A + up)

z=i0,

+ O, [—Ah + y,) — sG(b + va) — b(g — Xxa) + h(a — ug)] 21

and x, = dulp,a,(2,)Ko(An) + 4, K1Gn)l, X = ppan(sin)Ko(sin) + q, K1(s4,), v, = dplan(Gn)lo(An) — q,d1(An)],

Vb = Ppan(s4n)lo(520) — qpl1(52n).
The values of

F(dn)

(D) 2

T3 (0n) = ——F—, (22a)
892, /1 — &2

4 700 1 0,4 F(2) 0V pygisy (22b)

dz00 -1 |5 Y50 - )

dz7 2 =i, 8o /1+5i dz 2 s, 1+ 2
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Fig. 3. Normalized acoustic radiation impedance {, = 6, — iy, for K = (20, 30, 50,40), and: (a) s = 1.2, (b) s = 2.0, (c) s = 5.0.

have been obtained from Egs. (17). The contribution of residues at the poles to integral (18) is

z=id, }

n F2(Z)

07 = Re{nu D5, + mio f@)(z)

n | Im Fz(é,,) 1

A A ,/1+5

While computing integral (6¢) within the limits (0, 1) the following function has been used:

(23)

52
1 + —"= |Im F,(id,)
z=id, 1 + 5n

F3(2) = O} {0, G2 o(sP2)HY (spz) + F2z2 T (sp2) H P (spz)
+ 04 G Fuz [Jo(sp2)HY (spz) + J1(sp2)HY (sP)]}
+ Q2 (0792 o (B HY (B2) + f 222 11 (B2) H' (B2)
+ Ouguf 2 [Jo(ﬂz)Hﬁ”(ﬁz) + (B H (B2)])
+20,04d,{029,GuHY (SB2)To(B2) + duGof nzHY (s82)J 1 (B2)
+ 0ug, FuzH\(sp2)Jo(B2) + Fuf , 22 H(sp2)J 1 (B2)} (24)



552 W.P. Rdzanek, W.J. Rdzanek | Journal of Sound and Vibration 301 (2007) 544-559

10° 10°
-6 -6
I 10 10 kg
[}
e B
- 0 0 [
§ 10 g, 10 g
5 pEI ’gu 5]
N ~ a =1
g ITheges SNLI g
< s k‘_o\}o\::u aa s ~\\: \:*° omg%na g
g ~N3 o a .. 38§65 R=
~ a
= ~NNe o o N -] x
x oSS oo o TSNS 80 o °
S IS0 SaaNes Y, 2
o TS RN
& b ~ ~_<\f\’\ \"'}3 S &
9] 6 .S D 6 2
= 107 107°° =2
= [}
2z 10° 10! 10° 10! .é
<
10° = o 10°
[ E u uu
~ < ~ ° a
X3 SRS
..4‘ ’\’\ -~ ~\\\\\
o ¥oo, ~ 2.5 93 E~
MRS TGN TFERR
PRern, SeEss
C aa n\,%,. Too gL
1076 a_ on 1076
10° 10" 10° 10!

Normalized acoustic wavenumber, k/k,,

Fig. 4. Absolute approximation error for the radiation impedance E = Re E — i Im E for K = (20, 30, 50, 40) and: (a) s = 1.2, (b) s = 2.0,
(c) s = 5.0. Theoretical value has been plotted with lines and the estimated one with empty symbols. Key: and AAAA, (0,0) mode;
———and OOOO, (0,1) mode; ----- and OO O 0, (0,2) mode; ------ and OO OO, (0,3) mode.

such that Re F3(x) = xpg,n(x). Integrating in
]{ zF3(z)dz _
cNT=2(2+8)?

has been performed along a closed contour C’, similar to C (cf., Fig. 2). The integrand has a second-order pole
at z =10, and no singularity at z = J,,. The residue has been computed using

zF5(2)
V1=22(z+1,)°

(25)

F3(z) =

at z = id,. (26)

Eq. (25) assumes the form of

Rez[l XF3(X) dx _ /1 lpg,n(x) xdx
JovVT=x2(2+ 87 Jo (2482 V1—x2

= Re nii F3(2)
dz

z=10,

*  x Im F3(x)dx +][° y Re F3(iy)dy Q27)

1V 1(x2 4 82) V1432 (4 = 0%y
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Fig. 5. Normalized acoustic radiation impedance (, = 0, — iy, for s =2.0 and: (a) (0,0) mode, K = (20, —, 50,40); (b) (0,2) mode,
K = (20, 30, —,40); (c) (0, 1) mode, K = (20, 30, 50, —). Key: Jkfky =15 ———k/k, =3.0;——— k/k, =45, ....... ,k/ky, = 6.0.

and the last integral is equal to zero as integrated along imaginary axis since

Fi(iy) =0—i % (O3OLG2Io(sBy)Ko(sBy) — F2y*T1(sBy)K1(sBy)
+ 00 GuFny [Lo(spy)Ki1(sBy) — L1 (spy)Ko(spy)]}
+ Q2d {0792 Lo(BY)Ko(By) — £ 2y T1 (BY)K1(By)
+ Ouguf wy Lo(BYK1(BY) — T1(BY)Ko(BY)]}
+ 20,041 {579, GuKo(sBNIo(BY) — duGof .y Ko(sPVI1(BY)
+ 5ngnFuy K (sBY0(BY) — Fuf (> K1 (P11 (BY))). (28)

which implies that Re F3(iy) = 0. The following value has been obtained from Eq. (26)

2
Im 75(i6,) = 5—; {3(a—A)B — b) + Q[(va + b)(A — a) + (uy — a)(B — b)]}, (29)

where Qy(up — A) = Q,(u, — a) + 3 (a — A) and Qy(vy — A) = Q,(va + b) + (B —b).
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The following values have been used

r d
2p5, dz

F3(2)

z=10,

,k/ky, =4.5;

= sO{Qp[—(BG + AH) + 2(Bx), — Ayp) + vpxp + upy] + (b — B)(xp — G)}
+ Qa{Qa[bg + ah + 2(gva - hua) - (Uaxa + udya)] + (A - a)oja + h)}a

Im [AIT F1(19,) 4+ F2(i6,) + F3(id,)] = 0.

k/ky = 6.0.

(30)

@31

Summing up all the residues in Egs. (10), (18), (27) provides an asymptotic formula for the normalized non-
oscillating acoustic radiation resistance of an elastically supported annular plate

8

~

1

2
qn un

\/ 14 62

+

2

1 1
\/1—53_\/1+5§

(32)
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, (0,0) mode;

valid for axisymmetric acoustic waves, free of any oscillations, where u, = (1/2)[1 + a>(si,)]+

(Qp /20 (4 + Pyatn(s7)] = dp (1 /) [1 + a3 (2] + (Qu/2) [y + Putty (7)1}

Integrating all the imaginary terms in Egs. (10), (18), (27) has made it necessary to use some asymptotic
expansion series in the same way as Levine and Leppington presented for a clamped circular plate in Ref. [7].
It is worth noticing that functions F,,(z) in Egs. (7), (19) and (24) have been chosen in such a way that the zero
expansion term for radiation resistance is equal to zero and the residues from the poles at ¢, and id, are the
only contribution to 0,. This expansion series has been improved by computing the oscillating contribution to
the radiation resistance from Egs. (10), (18) and (27) integrated within the limits (1, 00). The asymptotic
stationary phase method has been used giving

242

~

0, ~ —
By/mf (14 8,)

I
i

4
5 n

[(hé - h%) cos Wy + 2hohy sin ws]

{(bﬁ - b%) cos wy + 2byb; sin wy
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22
+ ————[(I1by — hob;) cos ws — (h1by + hoby) sin
i1 [(h1bg — hoby) cos ws — (h1by + hoby) sin ws]
22 .
+— \/E\/F [(h1by — hobg) cos wy — (h1by + hob1) sin 1414]},

where w; =2+ /4, wa =25+ n/4, wy=(s— D+ n/4, wa =(s+ 1)+ n/4,

ho:i{ LG +pban(szn)]} = 2O " (g~ an (50

1-9?

On |1 =82 6 1-82  oa

bo=d"{ O Layy +paan<zn>]}, bl=d,,{5"“"““")—Q“[qa—anw)]}

(33)

because there were no poles within the integration limits [6,7]. Summing up Egs. (32) and (33) gives an

elementary asymptotic formula for the normalized radiation resistance
On = 0, + 0, + OS2/,

(34)

where ((-) is the approximation error. Using some corresponding asymptotic formulas, integrating within the
limits (1,00) in Eqgs. 6, and summing up give a rough asymptotic formula for the normalized radiation

reactance which does not contain any oscillations

g | o Olp, ATCSin O, o3, arsh J,,
=B 1+ 02 28,1 =82 26,(1 + 03|

with the same denotations as given after Eq. (33) and
o = (1= 5)7 {1 + Gran(sh) + sdy[1 + ()]}
+ 20,{[1 + ppan(s)l(Qp[1 + ppan(sin)] — 1)
— [ap — an(s2)(Qplgp — an(s2n)] + an(sn))}
+ 25d, QA1 + Putnn) Q1 + Putin(in)] — 1)
— 90 — an(Z)(Qulqy — an(Z)] + an(2n))},

Oy = — (3 =4S (50y) + sdaa(2)] — (1 = 282)(1 + sd2)
+ 41 = ) {O[1 + a2(52n) + Py — qp)an(s7)]
+5d20,[1 + @) + (P — 4)an(a)]}s

3n = (3 + 402 (s2) + sdoa> ()] — (1 + 25)(1 + sd2)

+ 42 + 302 { Qpan(s2)[q), — an(s2n)] + 52 0 yan(2n)qy — an(Fn)]}

+ 45 Q1 + ppan(sin)] + sdr O (1 + paan(Zn)]}
+4(1 + 282)(O%q), — an(s7)F + 5d> QPlq, — an(Zn)T)
+ 4O + pyan(sin)] + sd> Q1 + poan(i)}.

Integrating some additional oscillating terms using the stationary phase method provides

N 2qn 54
In =
B/mB (1 + 82

[(h] — hg) sinwa + 2k /g cos w»]

{( 1— )sin wy =+ 2b1by cos wy

*m

(35)

(36a)

(36b)

(36¢)
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22 .
— \/E\/%—] [(hibg — hoby) sin ws + (h1by + hobg) cos ws]

22 .
— \/E\/—% [(hlbl — hobg) sin wy + (h1by + hoby) cos W4]}_ (37)

Also, it considerably improves the computation accuracy giving an asymptotic formula for the normalized
acoustic axisymmetric radiation reactance [6,7]

In = Tn+ n 4 OSB3, (38)

with the same order of approximation error as in Eq. (34).

4. Numerical analysis

A number of curves have been plotted for the normalized acoustic radiation impedance of an elastically
supported annular plate with fixed coordinates of vector K using Egs. (34) and (38) and shown in Fig. 3.
The lower values of the plate geometric parameter s imply a greater number of oscillations per ka unit (cf.,
Fig. 3(a)). The values of the normalized radiation resistance and reactance tend to unity and zero, respectively,
for k/k,> 10 and successive axisymmetric mode numbers n. However, they assume values much different from
unity and zero for k/k, € (1...10) where they must be computed numerically using, e.g. the asymptotic
formulas presented herein. It can be noted that the radiation impedance tends to its limiting values much faster
for the zero axisymmetric mode than for the higher ones for k/k, >2.

The absolute approximation error in Egs. (34) and (38) has been presented in Fig. 4. The numerical value of
the absolute error has been estimated as

E =107 — 041 = ilx; — 24l (39)

where 0y, x; have been computed using Eq. (3), and 0,4, y 4, have been computed using Egs. (34) and (38). Fig. 4
shows that the estimated error value does not considerably exceed its theoretical measure 53[F3/ % within a wide
range of wave parameter ka. This means that the approximation error can be well estimated by its theoretical
value within the mentioned ka range.

The normalized radiation impedance has also been presented as a function of the normalized boundary
stiffness in Figs. 5-7 using Eqs. (34) and (38). In Fig. 5, the boundary stiffness values K are fixed except for one
of them varying within the range of 1071° ... 10°. The biggest influence of the boundary stiffness values on the
radiation impedance can be noticed for K3 € (10°...10") (cf., Fig. 5(b)). A small influence can also be noticed
for K> >20 and for K4 <?20.

In Fig. 6, two values of the boundary stiffness vary between 10~! and 10 while the remaining two are fixed.
A big influence of the change in both values on the radiation impedance appears within their range of
10°...10" since one of them is K3 (cf., Figs. 6(a) and (c)). The influence of a simultaneous change in the two
boundary stiffness values K, and K3 has been shown in Fig. 6(c). The curves in Figs. 5(b) and 6(c) are nearly
identical with the exception of the range of K3, K3>50 where K, considerably influences the radiation
impedance. The influence of K} and K4 on the radiation impedance (Fig. 6(b)) is not much different than that
of K4 shown in Fig. 5(c).

The curves presented in Figs. 5 and 6 have been prepared for a fixed axisymmetric vibration mode (0,n) = n
and s = 2.0, whereas the ones presented in Fig. 7 have been prepared for a fixed value of k/k, = 1.5 and for
some lower modenumbers n = 0, 1,2, 3. It can be noticed that the values assumed by the normalized radiation
resistance and reactance tend to zero for n = 0 and K4>0.5 as well as for n =0, 1, K3>5, k/k, = 1.5 and
s = 2.0. A big influence of the boundary stiffness value K3 on the radiation impedance occurs within the range
of K5 e (10°...10").

Fig. 8 presents the radiation resistance and reactance plotted as functions of s for a fixed modenumber n = 1
and for some sample values of k/k, (cf., Fig. 8(a)) as well as for a fixed value of k/k, = 1.5 parameter and for
some sample values of modenumber 7 (cf., Fig. 8(b)). It is worth noticing that the radiation resistance and
reactance values oscillate with a change in parameter s and that the oscillation amplitude decreases for higher
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k/ki=15....... (a) (0,1) mode, k/k; = 3.0, (b) (0,3) mode, k/k; = 1.5.

modenumbers. Moreover, it can be noted that the radiation impedance values tend to zero for the fixed value
of k/k, = 1.5 and for s> 1.5 for n = 0 (cf., solid lines in Fig. 8(b)).

5. Concluding remarks

The integral formulas for the normalized acoustic radiation impedance of an axisymmetric mode of
an annular plate in its Hankel form have been analyzed theoretically. The residues at poles have been
computed and the corresponding integrals within infinite limits have been computed analytically using the
stationary phase method. As a result, asymptotic formulas have been obtained, valid for k/k,>1. The
presented formulas have been expressed in their elementary form. The estimated approximation error value
does not considerably exceed its theoretical measure for high frequencies. The asymptotic axisymmetric
formulas presented herein are valid for any homogeneous axisymmetric boundary configurations of a thin

annular plate.
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