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Abstract

Vibration absorbers have been widely used to suppress undesirable vibrations in machining operations, with a particular

emphasis on avoiding chatter. However, it is well known that for vibration absorbers to function effectively their stiffness

and damping must be accurately tuned based upon the natural frequency of the vibrating structure. For general vibration

problems, suitable tuning strategies were developed by Den Hartog and Brock over 50 years ago. However, the special

nature of the chatter stability problem means that this classical tuning methodology is no longer optimal. Consequently,

vibration absorbers for chatter mitigation have generally been tuned using ad hoc methods, or numerical or graphical

approaches. The present article introduces a new analytical solution to this problem, and demonstrates its performance

using time domain milling simulations. A 40–50% improvement in the critical limiting depth of cut is observed, compared

to the classically tuned vibration absorber.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The productivity of many machining operations is fundamentally limited by the onset of regenerative
chatter, which occurs when vibration between the cutting tool and workpiece modulate the cutting force,
leading to a self-excited vibration. This form of instability causes an unacceptable surface finish, along with
excessive tool wear or breakage, thereby limiting the metal removal rate that can be achieved.

It is widely known that the chatter stability of machining processes can be improved by the addition of
tuned vibration absorbers to the structure. For example, Tobias [1] illustrated a number of practical
approaches that could be employed, with the vibration absorber fitted to various elements of the machine tool
structure. More recently, practical and optimised designs for tooling with embedded absorbers have been
developed [2], and non-traditional absorber designs have been proposed, such as those based upon impact
dampers [3] and particle dampers [4]. Active vibration absorbers [5,6] have also been proposed, since they can
be more easily tuned than passive systems and can enable higher levels of energy dissipation. This approach is
a special case of active vibration control, which has been applied to various machining chatter problems [7–9].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

b depth of cut during machining, m
blim limiting depth of cut due to chatter

stability boundary, m
f frequency ratio of absorber to main

structure, dimensionless
F0 static load, N
fopt optimal frequency ratio, dimensionless
g dimensionless frequency, dimensionless
Ks cutting coefficient, N/m2

G frequency response function, m/N
h chip thickness during machining, m
ka absorber stiffness, N/m
km main structure stiffness, N/m
ma absorber mass, kg
mm main structure mass, kg
N number of complete vibration cycles

between successive tooth passes
u orientation coefficient, dimensionless

x displacement of cutting tool, m
dst static deflection of main structure, m
e relative phase of vibration between suc-

cessive tooth passes, rad
m mass ratio of absorber to main structure,

dimensionless
t delay due to spindle rotation, s
o vibration frequency, rad s�1

oa absorber natural frequency, rad s�1

oc chatter frequency, rad s�1

om main structure natural frequency, rad s�1

z absorber damping ratio, dimensionless
zm main structure damping ratio, dimen-

sionless
zopt optimal absorber damping ratio, dimen-

sionless

Subscripts

a,b,p,n invariant or locked points
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Despite the potential advantages of fully active methods, passive tuned vibration absorbers remain a useful
device for improving the chatter stability of machining systems, due to their lower complexity and cost.

For passive, and also active, vibration absorbers the performance is dependant upon correct tuning of the
physical parameters or control gains, respectively. In the general field of vibration control, it is normally
desirable to suppress the response magnitude in the frequency domain, and this can be achieved using
Ormondroyd and Den Hartog’s classical ‘equal peaks’ method [10,11]. A corresponding approach for active
absorbers was proposed by Nishimura [12]. This method has been widely employed for a variety of problems
in applications as diverse as civil engineering and space structures.

However, the tuning requirements for improving chatter stability differ from those for other vibration
problems. To overcome this, Hahn [13,14] proposed a basic tuning strategy for boring bars, but this was based
upon Lanchester dampers rather than vibration absorbers. Tarng et al. [15] manually tuned a vibration
absorber to achieve the desired behaviour, and Liu et al. used numerical optimisation routines based upon
time-domain machining simulations [16]. To the author’s knowledge, the only published work that describes
absorber design using analytical methods is that of Rivin and Kang [2], who went on to perform a detailed and
comprehensive experimental study that demonstrated significant performance improvements using their
design procedure. The present contribution will focus on an alternative analytical solution, and in a later
section this will be compared to Rivin and Kang’s method.

Analytical solutions for milling and turning chatter (e.g. Refs. [17–19]) have demonstrated that the critical
limiting depth of cut is inversely proportional to the most negative real value of the orientated transfer
function. Consequently, an optimally tuned vibration absorber will seek to replace this ‘trough’ in the real part
of the orientated transfer function with two troughs of equal depth. The question that arises, then, is whether
the optimal absorber for chatter can be tuned using analytical approaches, rather than trial and error or
numerical methods. Furthermore, it is of interest to compare the analytical result with the classical method
developed by Den Hartog [11] and the work of Rivin and Kang [2]. These issues will be tackled by the present
article.

The new analytical method is relevant to a wide range of machining chatter problems. For turning and
boring operations, passive vibration absorbers (as used in references [2,15,16]) could be tuned using this
technique. Alternatively, the controller gains in an active absorber (such as that used by Pratt and Nayfeh [6])
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could be chosen using the analytical method. For milling operations, there are a number of possible positions
where an absorber could be added, such as the spindle housing [20] or machine tool column [7]. In some
special cases, the workpiece itself could cause chatter, and so it may be advantageous to attach an absorber to
the workpiece during the machining process [4]. The present article will consider this workpiece chatter
scenario in a numerical example, but it should be pointed out that this is just one possible application of the
analytical method.

The manuscript is organised as follows. First, the relevant machine-tool chatter theory is briefly
summarised. A vibration absorber tuning solution for the case of chatter is then developed and the results
compared to the Den Hartog solution. These results are then compared to the analytical/numerical solution of
Rivin and Kang [2]. The main assumptions of the analytical result are then explored by performing a
numerical optimisation, and then by simulating the performance of the absorber in a milling scenario.
Following a discussion of the results, some conclusions are drawn.

It should be noted that the aim here is not to implement vibration absorbers during machining, since this
has been widely reported elsewhere (e.g. Ref. [2]). Furthermore, the contribution does not claim to be the first
to provide a solution to the optimisation problem. It does however provide a new analytical solution, which is
considerably more elegant (and easy to apply) than other numerical or graphical approaches, and can be
compared directly to the classical Den Hartog approach.

2. Theory

To begin, it is worthwhile summarising the theory of regenerative chatter, which motivates the need for an
alternative tuning procedure. Regenerative chatter is most commonly explained (e.g. Refs. [21,22]) with
reference to the simplified scenario of turning, depicted in Fig. 1. Here, a flexible cutting tool is removing
material from the workpiece, with a chip thickness h and depth of cut (normal to the plane of the diagram) b.
The motion of the tool means that the chip thickness h is a function of the present displacement, x, and the
displacement during its previous pass over the workpiece, x(t�t) where t is the time delay due to the spindle
rotation. Assuming that the cutting force is proportional to the cross-sectional area of the chip, then the
system can be represented by the block diagram in Fig. 1b. The orientation coefficient u maps the cutting force
F to the direction of the tool transfer function G(jo) and the subsequent motion x. Instability of the feedback
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Fig. 1. Schematic representation of turning: (a) surface generation and chip thickness, (b) block diagram.
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loop causes the self-excited vibration known as chatter. The stability can be found using the Nyquist criterion:

KsblimuGðjoÞð1� e�jotÞ ¼ �1. (1)

Here, blim is the limiting depth of cut, i.e. the value of b beyond which the system becomes unstable.
Following some algebra (see, for example, Refs. [21,22]), the stability condition can be written as

blim ¼ �1=ð2Ks Re½uGðocÞ�Þ, (2)

where oc is the frequency of vibration at the boundary of stability, and is referred to as the chatter frequency.
The integer number N of oscillations between each tooth pass, and the phase e of the oscillations, are given by

N þ �=ð2pÞ ¼ oct, (3)

which can be used to determine the relation between spindle speed 1/t and chatter frequency o.
Plotting the spindle speed against blim for different values of N gives the so-called stability lobe diagram. To

demonstrate why special optimal absorber tuning is required for this problem, a simplified arbitrary single-
degree-of-freedom (dof) problem can be considered. If a vibration absorber is added to the structure then the
resulting 2dof system can be tuned with Den Hartog’s method to give two peaks of equal magnitude in the
magnitude-frequency response function (FRF). This is shown schematically in Fig. 2a. However, from Eq. (2)
it is the real part of the response (Fig. 2b) that dictates the chatter stability (Fig. 2c). To maximise the depth of
cut at which the system becomes unstable requires the real part of the FRF to have two troughs of equal
magnitude, as demonstrated in Fig. 2.

The aim of this contribution is to provide an analytical solution to this problem in a form similar to Den
Hartog’s classical solution.
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Fig. 2. Optimal absorber tuning: (a) response magnitude, (b) real part of the response, (c) stability lobes. Chatter tuning

(equal troughs in real part) Classical tuning (equal peaks in magnitude).
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3. Chatter stability optimisation

To develop an analytical solution Den Hartog’s method of derivation will be adapted for use on the real
part of the FRF rather than the magnitude part. As with Den Hartog, the main structure is assumed to have a
single undamped mode of vibration. From Eq. (1), it is noted that for the chatter problem the relevant transfer
function is scaled by a factor u which may be positive or negative. If u is positive, then the chatter stability is
dictated by the negative real part of the FRF and so it is desirable to increase this value. If u is negative, then
chatter stability is dictated by the most positive real part, and so it is desirable to reduce this value. In what
follows, both scenarios will be investigated.

To begin, the absorber and host structure are defined by the following non-dimensional terms:

mass ratio

static deflection

absorber natural frequency

main structure natural frequency

frequency ratio

non�dimensional excitation freqeuency

m ¼ ma=mm;

dst ¼ F 0=km;

oa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=ma;

p
om ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=mm;

p
f ¼ oa=om;

g ¼ o=om:

(4)

The main structure’s mass, stiffness, and natural frequency are denoted mm, km, and om, respectively, whilst
the equivalent terms for the absorber are assigned the subscript a. The excitation frequency is o, and F0 is the
static load on the main structure. The non-dimensional response as a function of non-dimensional frequency,
R(g), can then be presented as [23]

RðgÞ ¼
X 1

dst
¼

ðf 2
� g2 þ i2zfgÞ

ð1� g2Þðf 2
� g2Þ � mf 2g2 þ i2zfgð1� g2 � mg2Þ

, (5)

where z is the absorber damping ratio. The real part of Eq. (5) is given by

ReðRðgÞÞ ¼
ðf 2
� g2Þðð1� g2Þðf 2

� g2Þ � mf 2g2Þ þ 4z2f 2g2ð1� g2 � mg2Þ

ðð1� g2Þðf 2
� g2Þ � mf 2g2Þ

2
þ 4z2f 2g2ð1� g2 � mg2Þ

2
. (6)

In Fig. 3, this is plotted for three levels of absorber damping: z ¼ 0, z ¼N, and z ¼ 0.03, for f ¼ 1 and
m ¼ 0.01. It can be seen that there are three invariant, or ‘locked points’ [24] on the response. Closer inspection
reveals that at these locked points the z ¼ 0 or z ¼N curves have an infinite gradient and pass through zero.
Consequently, the non-dimensional frequencies of the locked points can be determined by evaluating the roots
of Eq. (6) when z ¼ 0 or z ¼N. These will be considered in turn.

The roots of Eq. (6) when z ¼ 0 are given by the solution of

ðf 2
� g2Þðð1� g2Þðf 2

� g2Þ � mf 2g2Þ ¼ 0. (7)

Defining the three roots as gi, gp, and gn, and solving (7) gives

gi ¼ f ,

g2
p ¼
ð1þ f 2

þ mf 2
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f 2

þ mf 2
Þ
2
� 4f 2

q
2

,

g2
n ¼
ð1þ f 2

þ mf 2
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f 2

þ mf 2
Þ
2
� 4f 2

q
2

. ð8Þ

Of the three roots, gi is inadmissible as a locked frequency because it does not correspond to a
location on the response with an infinite gradient. Meanwhile, gp is the locked frequency where the real
part of the response is positive, and gn is a locked frequency where the real part of the response is
negative.
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Next, this analysis is repeated for the case when z ¼N. Dividing the numerator and denominator of Eq. (6)
by z2 indicates that the zero is given by the solution of

4f 2g2ð1� g2 � mg2Þ ¼ 0. (9)

In this case the solution g ¼ 0 is inadmissible as it requires an infinite natural frequency for the main
structure. This leaves the solution defined as

ga ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ m

s
, (10)

which is shown in Fig. 3 along with gp and gn.
To recap, the three locked frequencies in Fig. 3 have been determined analytically. To obtain the optimal

response for chatter stability, it is desirable to ensure that the response at ga matches that at either gp or gn,
depending on whether the direction factor u is negative or positive, respectively. These two alternatives are
shown in Fig. 4.

The next step, then, is to equate (6) at g ¼ ga to (6) at g ¼ gp or g ¼ gn, and solve to find f. Unfortunately,
the mathematics become immensely protracted, and so symbolic algebra computer software is required. It
transpires that despite the lengthy intermediate equations, the optimal value for f can be expressed relatively
concisely:

f 2
opt;n ¼

mþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ m2

p
2ð1þ mÞ2

,

f 2
opt;p ¼

mþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ m2

p
2ð1þ mÞ2

. ð11Þ
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Here, the optimum frequency so that the response at ga matches that at gp is denoted fopt,p, and the optimum
frequency so that the response at ga matches that at gn is denoted fopt,n. The symbolic computations were
performed using Maple [25]. The solutions are compared to Den Hartog’s classical solution in Fig. 5a.

Having determined the optimum frequency ratio, it is now desirable to adjust the damping ratio z until the
real response at the locked points is flat. As Den Hartog pointed out [11] this can be achieved by evaluating
d(Re(R))/dg at the locked points, equating to zero, and solving to find the damping ratio. For the locked
frequency ga, this problem can be solved analytically (again with the help of symbolic computations), giving

z2opt;a;n ¼
m mþ 3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ m2

p� �
4ð1þ mÞ mþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ m2

p� �;

z2opt;a;p ¼
m mþ 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ m2

p� �
4ð1þ mÞ mþ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ m2

p� �;
(12)

where the subscript n or p denotes which frequency ratio is used from Eq. (11). Unfortunately, obtaining a flat
response at gn or gp means substituting (8) into d(Re(R))/dg, and the resulting closed form solution could not
be simplified to a useful form by the symbolic computation software. However, the solutions are shown
graphically in Fig. 5b, along with those from Eq. (12). It transpires that within the limits of machine precision
the solutions are numerically equivalent to

zopt;n;n � zopt;a;p;

zopt;p;p � zopt;a;n:
(13)
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The mean of the optimum tuning at ga and that at gp or gn is therefore the mean of Eq. (12):

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

8ð1þ mÞ

s
, (14)

which is also shown in Fig. 5b. Remarkably, the result is the same as the optimum damping ratio for a
classically tuned vibration absorber.

To summarise, the analytical formulations for optimal stiffness and damping have been derived for the case
of chatter mitigation. However, this analytical result is based upon two key assumptions: the main structure
has zero damping, and the main structure is a single-dof system. Furthermore, it is useful to compare the result
to the work of Rivin and Kang. These issues will now be addressed.
4. Comparison with Rivin and Kang’s method [2]

Rivin and Kang considered the behaviour of the system during metal cutting and represented the self-
excitation (chatter) mechanism as an effective cutting stiffness and effective cutting damping rate. They
derived the equations of motion in non-dimensional form by dividing the absorber natural frequency oa by the
‘chatter frequency’ oc (denoted o in Ref. [2]) which was a function of the effective cutting stiffness (an
empirical measurement). They showed that frequency ratio oa/oc and absorber damping ratio z influenced the
value of a performance index z0, which was determined using the Routh–Hurwitz stability criterion. An
example of their results is given in Fig. 6, for two different ratios of the absorber mass to main structure mass.
A more negative value of z0 indicates that a greater depth of cut could be achieved without chatter. It can be
seen that higher mass ratios increase the effectiveness of the absorber (as expected), and that for each
mass ratio there exists an optimum combination of frequency ratio and absorber damping ratio. Finding
this optimum absorber design requires a graphical (as in Fig. 6) or numerical optimisation approach.



ARTICLE IN PRESS

0.2 0.4 0.6 0.8 1
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ζ 0

ωa/ωc

Fig. 6. Optimisation using Rivin and Kang’s method [2]. Values of z0 above the line are stable; for a given mass ratio m, optimum values of

oa/oc and z give the lowest critical value of z0. m ¼ 0.5, z ¼ 0.05, [2, Fig. 5]; m ¼ 0.5, z ¼ 0.25; m ¼ 0.5, z ¼ 0.29

(optimum); m ¼ 0.5, z ¼ 0.4; - - - m ¼ 0.05, z ¼ 0.05; —— m ¼ 0.05, z ¼ 0.11 (optimum); - � - m ¼ 0.05, z ¼ 0.15.

0 0.05 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1
0.8

0.85

0.9

0.95

1

1.05

f o
p
t

ζ o
p
t

μ μ

a b

Fig. 7. Numerical and analytical optimisation. Numerical optimisation is shown for different damping ratios of the main structure:

z ¼ 0%, 0.2%,y,1%. Rivin and Kang’s solution is also shown, which requires a similar numerical optimisation approach and has a

different definition of fopt.—— Classical tuning; - � - optimum tuning for negative real troughs; - - - optimum tuning for positive real peaks;

— numerical solutions; � � � � � Rivin and Kang [2].

N.D. Sims / Journal of Sound and Vibration 301 (2007) 592–607600



ARTICLE IN PRESS
N.D. Sims / Journal of Sound and Vibration 301 (2007) 592–607 601
Furthermore, transforming this non-dimensional result into an absorber design (i.e. stiffness and damping)
requires knowledge of the chatter frequency oc. This can only be determined by first identifying the effective
cutting stiffness from a series of experiments.

Fig. 7 shows the optimum values for frequency ratio (fopt ¼ oa/oc) and damping ratio z, using Rivin and
Kang’s method [2]. The new analytical solution is also shown and it should be noted that the frequency ratio
for this case is fopt ¼ oa/om. Despite the different definition of the frequency ratio, it is clear that the analytical
result proposed in the present contribution is fundamentally different to that of Rivin and Kang.
Consequently, the solution of Rivin and Kang does not minimise the peaks or troughs in the FRF, even
though it has been shown [2] to offer superior performance than Den Hartog’s method for machining
problems.

5. Effects of main structure damping

One advantage of Rivin and Kang’s solution, compared to the new analytical approach, is that it did not
assume that the main structure was undamped. To investigate the role of main structure damping on the
analytical approach, Eq. (5) can be readily modified to include damping, zm of the main structure. However,
optimum values for the design parameters can no longer be found in closed form, and so numerical
optimisation must be used instead. Standard optimisation routines such as the Matlab fminsearch function [26]
were found to be appropriate for this task. Three different optimisations were performed: minimise the
magnitude of the FRF; minimise the positive real part of the FRF; and maximise the negative real part of
the FRF. In each case optimal values of the variables z (absorber damping) and f (absorber frequency ratio)
were sought.

The optimisation can be repeated for a range of values of mass ratio m and main structure damping ratio zm.
The results are shown in Fig. 7. It can be seen that with no main structure damping the analytical solutions are
correct (as expected), and that as damping is added to the main structure there is only a small change in the
optimum absorber damping. However, for chatter optimisation the optimum frequency ratio is slightly more
sensitive to the damping ratio of the main structure. This suggests that in practice it might be more difficult to
accurately tune the damper, especially when the main structure is heavily damped or if its damping changes
significantly under different conditions.

6. Milling simulations

The final issue that must be tackled is how the analytical solution performs for multiple dof structures. To
investigate this issue, and to provide more insight as to how the absorber can increase chatter stability, a time-
domain simulation of a milling scenario was performed.

Time domain models of milling have been widely reported as providing an accurate reflection of the stability
of the process [27]. Furthermore, the experimental and commercial application of vibration absorbers to
milling and machining problems has been previously reported, and the aim of this contribution is not to repeat
these efforts. Consequently, a time domain numerical study will serve the purpose of investigating the
assumptions in the new analytical approach.

The numerical simulation used a time-domain formulation based upon the method of Campomanes and
Altintas [27], along with a recently described signal conditioning method [28] to analyse the chatter stability.
For comparison purposes, an analytical solution was developed using the approach described by Tlusty [17]
and implemented in commercially available software [29].

The milling scenario that was considered was based on the very flexible cantilever workpiece that is shown
schematically in Fig. 8. It is worth reiterating that this is just one possible application where optimally tuned
vibration absorbers could be used—others include boring bars, milling machine columns, and milling spindle
housings. For example, the problem of the workpiece is shown in Fig. 8, chatter is likely to be caused by the
bending vibrations of the workpiece. This vibration could be suppressed by an appropriately tuned vibration
absorber mounted on the uncut side of the workpiece as shown in Fig. 8. To specify the vibration absorber
parameters and predict the chatter stability, it is therefore desirable to measure and model the FRF at this
location. The workpiece exhibited three main modes of vibration: a bending mode at 410Hz, a torsional mode
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at 1556Hz, and then a second bending mode at 3255Hz. The first two modes were modelled using modal
analysis techniques [30], and a corresponding state-space representation extracted:
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0 0 1 0

0 0 0 1
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0

0

" #
F . ð15Þ

The state-space system has two outputs (displacement and velocity at the absorber location) and one input
(applied force F). To control the first bending mode at 410Hz, a vibration absorber with mass ratio m ¼ 0.05
can be specified. The effective mass of the main structure at this location is 0.223 kg, giving a required absorber
effective mass of 0.011 kg. Three different tuning strategies can be used for the absorber: classical Den Hartog
tuning, equal real peaks, or equal real troughs (Eqs. (11) and (14)). These lead to absorber stiffnesses of 67.3,
58.2 and 79.9N/mm, respectively. The absorbers could be readily designed as small cantilever beams with
appropriate damping treatments [24]. In practice, the natural frequency of the workpiece will change if large
amounts of material are removed during machining, but for problematic finish-machining operations the
volume of material removed will be small enough that the de-tuning of the absorber can be neglected.

The predicted frequency responses for the damped workpiece are compared to the un-damped workpiece
model in Fig. 9. Here, it can be observed that the frequency response curves are not perfectly tuned, in that one
peak is slightly greater than the other. For classical tuning the difference in peaks is very small. Since this
tuning is not sensitive to the main structure damping (Fig. 7a), the de-tuning effect can be attributed to the
influence of the second mode of vibration. For the equal real peaks/troughs tuning, the main structure
damping has a stronger influence (as shown by Fig. 7a), and the second mode of vibration will also have an
effect. Nevertheless, the performance of the tuning methodology is good, in that the difference between the
real peaks or troughs is small.

To investigate the chatter stability of the workpiece, the same state space models (for damped and
undamped conditions and with different tuning methods) were implemented in the analytical and time-domain
milling simulations. The tool geometry and cutting conditions used in the simulations are given in Table 1.
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Fig. 9. Simulated workpiece response: (a) magnitude, (b) real part. - - - Equal real troughs - � - � - � Equal real peaks —— Den Hartog.

Table 1

Milling simulation parameters

Tool diameter 16mm

Number of teeth 4

Flute helix 01 (axial flutes)

Radial immersion 4mm

Feed per tooth 0.05mm

Tangential cutting stiffness 796.1N/mm2 (Al7075-T6 [20])

Radial cutting stiffness 168.8N/mm2 (Al7075-T6 [20])
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Both up-milling and down-milling scenarios were considered, since for the chosen cutting configurations up-
milling will lead to a negative orientation coefficient whereas down-milling will lead to a positive orientation
coefficient.

The numerical and analytical results for the up-milling simulation are shown in Fig. 10 for all three tuning
conditions. The discrepancy between the analytical result and the time domain simulation can be attributed to
the approximations used in determining the orientation coefficient for the analytical model. However, the
trends observed in the time domain model are very similar to those in the analytical model. Whilst the
classically tuned absorber is effective in increasing the chatter stability, it can be seen that a properly tuned
absorber can provide a 40% improvement in the critical limiting depth of cut. This serves to validate the
tuning methodology presented in this article. However, Fig. 10b illustrates how if the absorber is tuned to give
equal real troughs, rather than equal real peaks, then the response is actually worse than the classically tuned
case. Consequently, care must be taken to ensure that the sign of the orientation coefficient is taken into
consideration when tuning the absorber.
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For the down-milling simulation, the orientation coefficient is expected to be positive and so it is desirable
to tune the absorber so as to achieve equal real troughs. The chatter predictions for this case are shown in
Fig. 11 along with the undamped and classically tuned scenarios. The properly tuned vibration absorber
provides a 50% performance improvement in the critical limiting depth of cut compared to the classically
tuned absorber. The analytical prediction again suffers from an inaccurate estimation of the orientation factor
which leads to a different stability prediction compared to the time-domain model.

7. Discussion

The results presented have clearly demonstrated that the new analytical tuning approach is effective in
optimising chatter stability. However, a number of issues are worthy of further comment.

The new tuning procedure is applicable to vibration absorbers in a wide variety of machining applications,
such as boring bars, milling tool spindles, machine tool columns, or the flexible workpiece scenario that was
considered in the present study. At this stage, it is useful to briefly mention some of the issues associated with
this flexible workpiece scenario. Since material is removed from the workpiece during machining, its natural
frequency will constantly change. This may make it difficult to use a vibration absorber, unless it can be
adaptively tuned e.g. by using an active vibration absorber. However, during the more problematical finishing
cuts, very little material is removed and so the absorber parameters could be constant. As the tool moves
around the workpiece, different modes of vibration could cause chatter which would again raise the need for
an adaptively tuned absorber. Different absorber designs would also be needed for different workpiece
configurations, and the absorber location would have to be chosen such that it did not interfere with the
cutting process. However, these shortfalls are all specific to the problem of absorbers mounted on the
workpiece, and the contribution of this work is equally relevant to other machining applications which do not
encounter such problems.
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It is worth reiterating that the novelty of this contribution lies in the straightforward analytical solution to
optimally tuning the vibration absorber for chatter stability. Similar results could obviously be obtained using
graphical or numerical optimisation of the design parameters [16], or by manually adjusting the absorber to
achieve the desired behaviour. The work presented here provides an attractive alternative that would
substantially reduce the design, prototype, and testing effort required. Furthermore, the approach may be
applicable to other vibration problems and the comparison that can be drawn with the classical Den Hartog
method may be of interest to the wider vibration community.

One of the consequences of optimally tuning the absorber is that the shape of the stability lobe changes
substantially. Whilst the critical limiting depth of cut is raised, the stable ‘pockets’ within the lobe are lost. For
example, in Fig. 11 it can be seen that for the classically tuned absorber it would be possible to machine at up
to 3mm depth under certain spindle speeds, whereas the optimally tuned absorber provides a maximum stable
depth of only 1.5mm, throughout the spindle speed range. This is a direct consequence of the ‘flattening’ of
the negative real part of the orientated transfer function. For turning operations, this effect is inconsequential
as the chatter stability is dominated by the critical limiting depth of cut [17]. In contrast, for milling operations
it can be desirable to machine in the stable lobe, in which case optimally tuning the absorber will not be
helpful. In practice, however, vibration absorbers are likely to be used in scenarios where one wishes to raise
the critical depth of cut above the desired cutting depth, so that any spindle speed can be selected. For this
problem, the new analytical tuning strategy is well suited as it offers a 40–50% improvement compared to
classical tuning.

The main complication that arises when optimally tuning the absorber is that the sign of the orientation
factor for the damped mode dictates the absorber natural frequency. Consequently, the absorber stiffness
must be changed if the cutting conditions are such that the sign of the orientation factor changes. However,
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this same problem would arise if the damper tuning was optimised numerically or experimentally, rather that
analytically, and the analytical solution that is now available means that retuning the damper would be more
straightforward.

Before drawing conclusions, it is worth emphasising again that although the present study has focussed
purely on the analytical aspects of vibration absorber tuning, the practical implementation of the absorber is
no different to that for devices tuned by other means. For example, application in boring could follow Pratt
and Nayfeh [6], whilst application in turning could follow Tarng et al. [15]. The only difference would be that
the tuning algorithm of the absorber would be optimised from a chatter perspective, thus leading to improved
chatter stability.

8. Conclusions

This article has described a new analytical solution to tuning vibration absorbers from a regenerative chatter
perspective. The theoretical approach is identical to that originally proposed by Ormondroyd [10], Den
Hartog [11], and Brock [31], except that the real part of the response function is considered rather than its
magnitude. The specific conclusions are as follows:
1.
 Closed-form analytical expressions are derived for optimally tuning the absorber frequency and damping to
achieve desirable behaviour in either the positive real part or the negative real part of the FRF. As with Den
Hartog’s original approach, two optimal damping values emerge for each case and the average of these
provides a useful damping value.
2.
 A non-dimensional numerical study has served to demonstrate that the optimum absorber natural
frequency is slightly sensitive to the damping of the main structure, unlike Den Hartog’s classical method.
3.
 The performance of the analytical approach has been demonstrated by analytical and time-domain
simulations of the milling of a flexible workpiece. A 40–50% performance improvement was observed
compared to Den Hartog’s classical optimisation approach. It is noted that the approach is not specifically
aimed at milling workpiece problems but is equally applicable to turning, boring, or milling machine
structures.
4.
 Compared to previous work on optimal absorber design, this contribution describes an analytical solution
that does not require a numerical, iterative or graphical approach.
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