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Abstract

The frequency range over which a linear passive vibration isolator is effective, is often limited by the mount stiffness

required to support a static load. This can be improved upon by employing nonlinear mounts incorporating negative

stiffness elements configured in such a way that the dynamic stiffness is much less than the static stiffness. Such nonlinear

mounts are used widely in practice, but rigorous analysis, and hence a clear understanding of their behaviour is not readily

available in the literature. In this paper, a simple system comprising a vertical spring acting in parallel with two oblique

springs is studied. It is shown that there is a unique relationship between the geometry and the stiffness of the springs that

yields a system with zero dynamic stiffness at the static equilibrium position. The dynamic stiffness increases

monotonically with displacement either side of the equilibrium position, and this is least severe when the oblique springs

are inclined at an angle between approximately 481 and 571. Finally, it is shown that the force–displacement characteristic

of the system can be approximated by a cubic equation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Isolation of undesirable vibrations is a problem that affects many engineering structures. In the ideal case of
a mass m supported by a linear stiffness k on a rigid foundation, isolation does not occur until a frequency offfiffiffiffiffiffiffiffiffiffiffiffi

2k=m
p

. It is evident that a smaller stiffness results in a wider frequency range of isolation. However, a smaller
stiffness results in a larger static displacement of the mass, and this trade-off between isolation and static
displacement is well known [1,2]. To overcome this limitation nonlinear springs have been used to obtain a
high static stiffness and hence a small static displacement, and a small dynamic stiffness, which results in a low
natural frequency [3,4]. By careful choice of system parameters it is possible to achieve an isolator with zero
dynamic stiffness, a so-called quasi-zero-stiffness (QZS) mechanism [5,6]. Applications of QZS mechanisms
range from space research (e.g. to simulate zero gravity, [7]) to isolation of high-precision machinery [8].
Systems with quasi-zero-stiffness characteristic are of interest also in other fields, for example in geodynamics
[9–11]. The precision of instruments such as seismographs or gravimeters requires very long periods of
oscillation.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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QZS mechanisms are generally achieved by combining a negative stiffness element with a positive stiffness
element. A number of configurations have been proposed, many of which use nonlinearities such as spring
orientation or buckling to create the negative stiffness effect [3,4]. Perhaps the simplest of these is shown in its
unloaded condition in Fig. 1. When it is loaded with a suitably sized mass, the springs compress such that the
oblique springs, ko are in the horizontal position and the static load is taken by the vertical spring, kv. This is
the static equilibrium position, and it is the motion about this position that is of primary interest. When the
system of springs is used in this way, the oblique springs act as a negative stiffness in the vertical direction
counteracting the positive stiffness of the vertical spring. A typical force–deflection curve for the system in
Fig. 1 is shown in Fig. 2, where the changing stiffness as a function of displacement can be seen. For the
particular case shown in Fig. 2 the geometry and stiffness are chosen such that at the static equilibrium
position, xe, the dynamic stiffness is zero. The penalty for this, however, is that the system becomes stiffer than
the vertical spring alone for large excursions from this position.
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Fig. 1. Schematic representation of the simplest system which can exhibit quasi-zero stiffness.

Fig. 2. Typical force–displacement characteristic of the isolator shown in Fig. 1.
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In this paper, this trade-off between achieving a low dynamic stiffness for small excursions and acceptable
stiffness for large excursions is investigated. An optimum relationship between the ratio of the oblique spring
stiffness and the vertical spring stiffness is sought, as is an optimum angle for the oblique springs.

2. Force–displacement characteristic of a system with two oblique springs

It is instructive to examine first the behaviour of the oblique springs alone. Consider the system in Fig. 1,
but with the vertical spring kv removed. The two linear springs each of stiffness ko hinged at points M and N,
respectively, have initial length L0. A force f is applied at point P which is a horizontal distance a from points
M and N and initially at height h0 above these points. The springs are initially at an angle y0 from the
horizontal. The vertical component of the applied force is related to the spring stiffness ko by

f ¼ 2koðL0 � LÞ sin y, (1)

where L is the length of the compressed spring, and sin y ¼ ðh0 � xÞ=L. Noting that L0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
0 þ a2

q
and

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh0 � xÞ2 þ a2

q
, Eq. (1) can be written as

f ¼ 2koðh0 � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
0 þ a2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh0 � xÞ2 þ a2

q � 1

0
B@

1
CA, (2)

which can be written in non-dimensional form as

f

koL0
¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
� x̂Þ x̂2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
x̂þ 1

h i�1=2
� 1

� �
, (3)

where x̂ ¼ x=L0 and

g ¼
a

L0
¼ cos y0 (4)

is a geometrical parameter. When g ¼ 0 the springs are initially vertical and when g ¼ 1 the springs, initially, lie
horizontally. Fig. 3 shows the non-dimensional force plotted against the non-dimensional displacement for
different values of g.

It can be seen that the system has a highly nonlinear characteristic. The turning points of the curves
represent zero stiffness but are unstable and the mechanism will ‘‘snap through’’ to a stable position if forced
Fig. 3. Force–deflection characteristic of the system in Fig. 1. When g ¼ 0 the springs are vertical and when g ¼ 1 they are horizontal.

The stiffness is negative between the maxima and the minima.
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into this region. The maximum non-dimensional force that the system can accept before it snaps through is
given by

f max

koL0
¼ 2 1� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p� �1=3� �3=2
, (5)

which occurs at

x̂max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
� g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�2=3 � 1

q
. (6)

The non-dimensional stiffness, K/ko, of this system can be calculated by differentiating the force with
respect to the displacement to give

K

ko

¼ 2 1�
g2

x̂2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
x̂þ 1

� �3=2
2
64

3
75. (7)

The stiffness is a minimum at the equilibrium position, x̂e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
, and is given by

K

ko

¼ 2 1�
1

g

	 

, (8)

which becomes increasingly negative as the angle of inclination of the springs is increased.
The system can be modified to exhibit QZS at a point of stability by adding a vertical spring of equal and

opposite (positive) stiffness, and such a system is the focus of the following section.

3. A QZS mechanism

For the system in Fig. 1, the vertical spring kv is in parallel with the vertical components of the oblique

springs. Choosing now to non-dimensionalise force f by kvL0, the resulting non-dimensional spring force f̂ is
given by

f̂ ¼ x̂þ 2að
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
� x̂Þ x̂2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
x̂þ 1

h i�1=2
� 1

� �
, (9)

where a ¼ ko=kv is the ratio of the spring stiffnesses. For large a Eq. (9) tends to Eq. (3).
The non-dimensional stiffness of the system can be found by differentiating Eq. (9) with respect to the

displacement to give

K̂ ¼ 1þ 2a 1�
g2

x̂2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
x̂þ 1

� �3=2
2
64

3
75. (10)

The non-dimensional force as a function of the non-dimensional displacement is plotted in Fig. 4 for several
values of g and when a ¼ 1. For large initial angles (such as g ¼ 0:05 and 0.4 in Fig. 4) the inclined springs
dominate the behaviour resulting in a region of negative stiffness. For small initial angles of inclination, such
as g ¼ 0:95, the vertical spring dominates such that the combined stiffness of the mechanism is always positive
and only weakly nonlinear. At a unique intermediate angle of inclination, represented by gQZS, there is a
stationary point of inflexion, which corresponds to a stable equilibrium position with zero stiffness. This
occurs at the equilibrium position x̂e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
at which the (maximum) negative stiffness from the inclined

springs is exactly balanced by the positive stiffness of the vertical spring. This is seen more clearly in Fig. 5 in
which the non-dimensional stiffness is plotted as a function of the non-dimensional displacement for the same
set of parameter values.

There is a unique relationship between the geometrical parameter g ¼ a=L0 and the spring coefficient ratio
a ¼ ko=kv that yields the desired stable QZS characteristic. If Eq. (10) is evaluated at the static equilibrium
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Fig. 5. Non-dimensional stiffness of a QZS mechanism when a ¼ 1: the solid line is representative of a stable system (always positive

stiffness) with zero stiffness at the static equilibrium position. The stiffness is very small (quasi-zero) for a small deviation from this

position.

Fig. 4. Force–displacement characteristic of the three spring system when a ¼ 1: the solid line is the QZS system.
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position x̂e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
and set to zero, then the value gQZS that gives quasi-zero-stiffness is

gQZS ¼
2a

2aþ 1
(11a)

for a given value of a. Equivalently, the value of a that ensures QZS behaviour for a given g is

aQZS ¼
g

2ð1� gÞ
. (11b)

Hereafter, the subscript QZS on either a or g is used to denote that the other parameter is not independent,
but has been chosen in accordance with Eq. (11) so as to achieve stable QZS.

The combinations of stiffness ratio a and geometrical parameter g that give rise to stable QZS are shown in
graphical form in Fig. 6. For small initial angles (gE1) the inclined springs need to be orders of magnitude
larger than the vertical spring. When the initial angle of inclination is a moderate 371–661, say, ð0:4ogo0:8Þ
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Fig. 6. Combinations of geometrical parameter g and stiffness ratio a that yield QZS.
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then vertical and inclined springs of similar stiffnesses can be employed, although this will result in larger static
deformations of the springs.

4. Optimisation of the QZS mechanism

Although Eqs. (11a), (11b) relate the geometrical and stiffness parameters to give a QZS system, there is an
infinite number of possible combinations of these parameters. However, the range of displacements over which
the stiffness is smaller than the vertical spring alone, for example, is very much dependent upon the
geometrical parameter. This relationship is explored further in this section.

By enforcing the QZS condition on a and g in Eq. (11), the non-dimensional stiffness given by Eq. (10) can
be written as a function of just the geometrical parameter as

K̂QZS ¼ 1þ
gQZS

ð1� gQZSÞ
1�

g2QZS

x̂2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2QZS

q
x̂þ 1

� �3=2
2
64

3
75. (12)

This is plotted in Fig. 7 for several values of gQZS. It can be seen from the figure that the stiffness is zero at

the static equilibrium position, x̂e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2QZS

q
, and the displacement range over which there is a small

stiffness depends on gQZS.
Of interest is the range of displacements about the equilibrium position for which the stiffness is less than a

prescribed stiffness K̂o, say. (Note that a value of K̂o ¼ 1 means that the stiffness of the system is equal to that
of the vertical spring.) The displacement at which the stiffness is equal to the threshold value is found by
setting K̂QZS ¼ K̂o in Eq. (12) and solving for x̂, which yields

x̂jK̂¼K̂o
¼ x̂e � d̂, (13)

where x̂e is the static equilibrium position and d̂ is the excursion, normalised by L0, from this position when
K̂ ¼ K̂o, and is given by

d̂ ¼ gQZS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� K̂oð1� gQZSÞ

" #2=3
� 1

vuut . (14)

This is plotted in Fig. 8 as a function of gQZS for various values of K̂o. It can be seen that the value of gQZS

for which d̂ is a maximum, changes depending on the value of K̂o. It is not possible to determine a closed-form
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Fig. 8. Non-dimensional displacement from the static equilibrium position as a function of gQZS.

Fig. 7. Non-dimensional stiffness for different combinations of geometrical and stiffness parameters that yield QZS.
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solution for this from Eq. (14), but it can be evaluated when K̂o51 and when K̂o ¼ 1. For the case when
K̂o51 Eq. (14) can be approximated by

d̂ � gQZS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
K̂oð1� gQZSÞ

r
, (15)

which when differentiated with respect to gQZS, and set to zero gives the optimal geometrical parameter

gopt ¼
2

3
; K̂o51. (16)

If this is substituted into Eq. (11b) the optimum value of the stiffness ratio is aopt ¼ 1, which means that all
the springs have the same stiffness. If K̂o is set to unity in Eq. (14) and the same procedure followed, the
optimum geometrical parameter is found to be

gopt ¼
2

3

	 
3=2

; K̂o ¼ 1. (17)
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An approximate general expression that relates g and K̂o for values of 0pK̂op1 can be determined by
assuming a relationship of the form

gopt �
2

3

	 
c1K̂oþc2

. (18)

The constants c1 and c2 can be found by using Eqs. (16) and (17) for K̂o ¼ 0 and 1, respectively, to give

gopt �
2

3

	 
ðK̂o=2Þþ1

. (19)

This shows that there is only a weak relationship between the optimum geometry and the prescribed
maximum stiffness of the system in which the angle for the oblique springs ranges from about 481 to 571. The
corresponding optimum stiffness ratio aopt ranges from 1 to 0.6.

By substituting Eq. (19) into Eq. (14) an expression can be found that gives the maximum excursion from
the static equilibrium position as a function of the maximum stiffness of the system during this excursion. It is
given by

d̂ ¼
2

3

	 
ðK̂o=2Þþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� K̂o 1� 2
3

� �ðK̂o=2Þþ1
h in o2=3

� 1

vuuut . (20)

Fig. 9 shows the largest excursion from the static equilibrium position that can be achieved without the
system having stiffness larger than K̂o. The solid line is the solution calculated using Eq. (14), where the
optimum value of gQZS for a given K̂o is determined numerically. The dotted line is calculated using Eq. (20).
Note that there is very little difference between the two solutions.

If the allowable increase in stiffness due to excursions about the equilibrium position is small, i.e. K̂o51,
then Eq. (20) can be expanded to give the approximate relationship

d̂ �
2

9

ffiffiffiffiffiffiffiffiffi
2K̂o

q
; K̂o51. (21)

The analysis presented so far is based on the assumption that gQZS and aQZS are related by Eq. (11).
However, it is possible that, due to manufacturing tolerances Eq. (11) may not hold exactly. The question
is whether the behaviour of the system is very sensitive to a change in the stiffness ratio. To investigate
Fig. 9. Numerical and analytical representation of the maximum excursion from the static equilibrium position, d̂, over which the system

has a stiffness smaller than K̂0. (— numerical; - - equation (20)).
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this let there be a fractional deviation e from aQZS such that a ¼ aQZSð1� �Þ. Substituting this into Eq. (10)
gives

K̂ ¼ K̂QZS � 2�aQZS 1�
g2QZS

x̂2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2QZS

q
x̂þ 1

� �3=2
2
64

3
75, (22)

where K̂QZS is the stiffness when a ¼ aQZS and g ¼ gQZS. Since excursions about the static equilibrium position
are of interest the stiffness is evaluated at this position, where K̂QZS ¼ 0. Substituting x̂ ¼ x̂e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
into

Eq. (22) results in

K̂



x̂¼x̂e
¼ �ð��Þ. (23)

This means that the non-dimensional stiffness of the system at the static equilibrium position is of equal
magnitude but opposite sign to the fractional change in the stiffness ratio at the static equilibrium position.
Thus, for example, if the spring ratio is 1% smaller than aQZS then the dimensional stiffness of the system at
the static equilibrium position, which should be zero in optimal conditions, will be 0:01kv.

Although there are benefits to incorporating springs configured to act as a negative stiffness, there are also
some disadvantages. As shown in Fig. 3, the oblique springs only act as a negative stiffness over a certain
displacement range. Outside this range they act as a positive stiffness, adding to the stiffness of the vertical
spring. This can be seen in Fig. 5. The peak positive stiffness can be obtained by setting xbh0 such that x̂b1
and Eq. (12) becomes

K̂



xbh0
¼

1

1� gQZS

. (24)

The optimal value for gQZS lies between 2/3 and ð2=3Þ3=2 depending on the stringency with which low
stiffness is required. Thus, the cost of having a QZS mechanism is that for large excursions from the static
equilibrium position the stiffness can increase to between about two and three times that of the vertical spring.

5. Approximation to the stiffness of the QZS isolator

The relationship between force and displacement given in Eq. (9) and shown graphically in Fig. 2 is similar
to that of a cubic function. It would considerably simplify subsequent dynamic analysis of the QZS system if
its stiffness could be described by a polynomial. A simplified cubic expression of the force is therefore sought
and the error in the approximation quantified.

Using a Taylor series expansion, the force can be expressed as a power series of order N [12]

f ðyÞ ¼ f ðy0Þ þ
XN

n¼1

f n
ðy0Þ

n!
ðy� y0Þ

n, (25)

where y0 is the point at which the function is expanded and f n denotes the nth derivative of f. Since the
displacement of the system about the static equilibrium position is of interest, the power series for the force is
expanded about this point. By expanding Eq. (9) using Eq. (25) and substituting for ŷ ¼ x̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
an

approximate expression for the force is found to be

f̂ ðŷÞ �
a
g3

ŷ3
þ 1� 2a

ð1� gÞ
g

� �
ŷþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
, (26)

which consists of a cubic term, a linear term and a constant term. An approximate expression for the stiffness
can be obtained by differentiating Eq. (26) to give

K̂ � 3
a
g3

ŷ2
þ 1� 2a

ð1� gÞ
g

� �
. (27)
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Fig. 10. Force–displacement characteristic of the QZS mechanism when g ¼ 2=3 and a ¼ 1. (— exact expression; - - - third-order

expansion; - � - fifth-order expansion; .... seventh-order expansion).

Fig. 11. Stiffness of the QZS mechanism as a function of deflection when g ¼ 2=3 and a ¼ 1. (— exact expression; - - - third-order

expansion; - � - fifth-order expansion; .... seventh-order expansion).
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If g and a are chosen according to Eq. (11), the linear term in Eq. (26) disappears. Moreover, if the force is

transformed by F̂ ¼ f̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2QZS

q
to remove the constant term, then Eq. (26) can be written as

F̂ ðŷÞ ¼
1

2g2QZSð1� gQZSÞ
ŷ3, (28)

which is plotted in Fig. 10. Also shown in the same figure are the curves corresponding to the approximation
to the force if the fifth- and seventh-order terms in the series are included. Differentiating Eq. (28) gives the
approximate stiffness of the QZS system to be

K̂QZS �
3

2

1

g2QZSð1� gQZSÞ
ŷ2, (29)

which is shown in Fig. 11, again compared with higher-order expansions.
The error between the approximate stiffness and the actual stiffness increases as the displacement from the

static equilibrium position increases. This can be quantified at the maximum excursion when the stiffness
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Fig. 12. Error in the approximation for the stiffness evaluated at the maximum excursion from the static equilibrium position such that

the stiffness is smaller than K̂0.
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equals K̂o by the following:

errorð%Þ ¼ 1�
K̂approximate

K̂actual












� 100, (30)

where K̂approximate is given by Eq. (29) and K̂exact is given by Eq. (12), both evaluated at the maximum excursion
for the corresponding K̂o. The percentage error is plotted in Fig. 12. It can be seen that the error is relatively
small if the threshold stiffness K̂o and hence the excursion from the static equilibrium position are small, but is
significant as the threshold stiffness becomes comparable to that of the vertical spring ðK̂o�1Þ.

6. Conclusions

The static characteristics of a quasi-zero stiffness mechanism have been investigated. The main feature of
such a mechanism is the use of a negative stiffness element to achieve a low stiffness without having a large
static deflection. A simple system consisting of three springs has been studied, and the optimum relationship
between the geometry and the relative stiffnesses of the springs has been investigated. It has been found that to
achieve a large excursion from the static equilibrium position such that the stiffness of the system does not
exceed a prescribed value, there is an optimum geometry and a corresponding optimum relationship between
the stiffnesses. It has also been found that for the spring configuration studied the oblique springs have to be
inclined at an angle between approximately 481 and 571. An approximate polynomial expression for the
stiffness of the system has also been determined and the errors in this expression compared to the exact
expression have been quantified.
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