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Abstract

This paper deals with the validation of a modal projection method for the low-frequency vibroacoustic response of an

elastic structure coupled to a cavity filled with a dense compressible fluid (water).

When using a modal approach for internal vibroacoustic problems with heavy fluids, it is shown that a formulation with

internal pressure is not correct because it does not take into account the zero-frequency static solutions of the fluid.

It is better to use the internal displacement potential involving both the static displacement potential and static pressure

terms, although the static displacement potential must be evaluated very carefully. For that purpose, the proposed modal

method is validated by comparisons with experiments, a fully analytical solution and a medium-frequency numerical

approach, for the case of an elastic rectangular plate coupled to a water-filled parallelepipedic cavity.

The validation of the method is focused on the evaluation of the first resonant frequencies of the coupled system, the

vibratory response of the plate and the acoustic pressure inside the cavity for a large frequency band.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of this paper is to present a validation of a modal approach formulated in potential, by a
comparison with experiments and other approaches, for the vibroacoustic response of an elastic homogeneous
plate coupled to an acoustic water-filled cavity, within the frequency band [0, 5000Hz]. The vibroacoustic
system tested experimentally is a closed box which contains a parallelepipedic cavity, filled with water. This
cavity has five rigid walls and is closed at its sixth face by a steel elastic rectangular clamped plate. Within the
analysed band this system has modal behaviour. An analytical solution of the overall coupled system can be
constructed.

In the low-frequency (LF) domain, a classical method to solve a vibroacoustic system composed of an
elastic structure containing an internal fluid, is to use a modal approach. The method uses a variational
formulation of the coupled system, and a Ritz–Galerkin projection of the dynamics on modal bases to reduce
the size of the problem. Usually, two separated bases of modes are used: one basis of structural modes in
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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vacuo and a second basis of acoustic modes in rigid motionless cavity (rigid-walled cavity). These
two bases are extracted separately and both are truncated to a reduced number of modes. The method is
powerful because the resolution of the coupled system is only performed on a small number of degrees of
freedom, which is the number of retained modes (structural and acoustic) in the modal splitting. Several
formulations for the fluid are possible and the choice of a formulation depends on the fluids contained in
cavities.
�
 For a cavity containing a light fluid (i.e. air), the classical modal approach is based on a ðu; pÞ formulation, u
being the physical displacement vector field of the structure and p the internal pressure field within the fluid.
This standard approach is the most commonly used and it is fully summarized in Ref. [1, Chapter 8]. The
ðu; pÞ formulation leads to an unsymmetric matrix reduced system.

�
 When the cavity contains a dense slightly compressible fluid like water, the classical ðu; pÞ formulation of

Ref. [1] is not adapted since it does not take into account the zero-frequency static solutions of the fluid.
Internal coupling with heavy fluids for the LF range was studied in Refs. [2–10] for example, and in
Refs. [8,11] for the medium-frequency (MF) range.

In Ref. [6], interesting formulations for ðu; pÞ and ðu;fÞ (where f is the fluid displacement potential) were
introduced. In this paper, a new strategy for solving the unsymmetrical coupled system (coming from a
modeling by the finite element method (FEM)) was proposed. But the validation of the formulations is limited
to a one-dimensional and to a two-dimensional fluid–structure interaction problems. In Ref. [9] and more
recently in Ref. [10], a modified ðu; pÞ formulation is used and the matrix reduced system is symmetric. The
author introduces one of the ‘‘quasi static corrections’’ terms, i.e. the static pressure term to take into account
the zero-frequency stiffness effect of the fluid. The static pressure term yields an added stiffness matrix for the
reduced stiffness matrix of the structure. The mass of the fluid also adds a mass matrix to the reduced mass
matrix of the structure. Furthermore, the structural modal basis introduced in this formulation is not the basis
of eigenmodes for the structure in vacuo but the basis of the structure coupled to an incompressible fluid. This
basis is determined numerically using a finite element model. These papers are essentially theoretical and no
applications are shown for validating these approaches. In Ref. [8, Chapter XIII], the authors introduce
explicitly the term modeling the ‘‘added mass effect of the fluid’’ but it is only a theoretical approach and the
effect of a heavy fluid is not tested and validated. In Ref. [7], this effect was tested and validated on a partially
or completely water-filled vertical cylindrical shell, by using a simplest form of the added mass matrix. In this
paper, the overall internal vibroacoustic problem is not treated because the internal fluid is considered to be
incompressible and it is acting on the structure as an ‘‘apparent dynamic added mass’’. The dynamic problem
is treated by FEM and the added mass matrix introduced by the authors leads to good results for the
eigenfrequencies of the cylindrical shell filled with water. In Ref. [11], the author uses a ðu;cÞ formulation
(where c is the velocity potential) with a reduction basis constructed by narrow MF sub-bands. Only the term
of static pressure is considered and the application shown deals with a light fluid. In Refs. [2,3,5] the static
pressure term is not taken into account in the modal approach for heavy fluids.

This paper presents a ðu;fÞ formulation, using both the static displacement potential term and the static
pressure term. This formulation is useable for any fluid (dense or light). The method relies on the use of the
two modal bases: one basis for the structure in vacuo and the other for the internal acoustics of a rigid
motionless cavity. The ðu;fÞ formulation leads to a symmetric matrix reduced model, although the method
does not converge rapidly when using a classical expression of the static displacement potential. For the
particular case of a rectangular plate coupled to a parallelepipedic cavity, the convergence of the method can
be accelerated accurately if the exact analytical solution of the static displacement potential is introduced. In
that case, the static displacement potential can be split into two terms: one term represents the exact static
potential of the incompressible fluid and the second term is a particular solution (accessible for a
parallelepipedic cavity) for the ‘‘non iso-volumic modes’’. The presence of this term is necessary to drastically
improve the convergence of the modal method. This particular solution allows the method to be validated
since it can be compared directly to other approaches.

In Section 2, the system tested experimentally is presented. This system is a rigid cylindrical box containing a
parallelepipedic cavity entirely filled with water. The cavity is defined by five rigid walls and it is closed at one
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end by a clamped elastic homogeneous plate. The vibratory response of the plate and the internal pressure
within the cavity were measured.

Section 3 is devoted to the presentation of the different methods (theoretical and numerical) used for the
problem of internal vibroacoustic response of an elastic rectangular plate coupled to a parallelepipedic cavity,
containing an acoustic fluid.
�
 The geometry of the general problem of the internal coupling between a structure and an acoustic cavity is
introduced, and the different domains which appear in the coupling are defined.

�
 The modal method using a ðu;fÞ formulation, which takes into account the presence of both the static

pressure and static displacement potential terms, is then presented in full detail. The formulation uses a
classical expression of the static displacement potential. An exact analytical solution of this potential can be
constructed for the particular case, tested experimentally.

�
 The two other solutions used for validating the modal approach for this particular case are presented

rapidly. Among these solutions, a fully analytical solution of the overall vibroacoustic problem can be
directly constructed. Its results will constitute the reference solution and it will also allow all the other
approaches to be validated.
Section 4 is concerned with the simulations performed by all the methods, presented herein. In this section,
the convergence of the modal method is studied for different parameters, and the overall comparison between
the experiments and all the approaches used is finally presented. This comparison allows us to validate the
ðu;fÞ modal approach proposed in this paper for a dense compressible fluid.

This paper is a continuation of a previous paper published in 2003 [12]. In this previous paper, a validation
with experiments of the MF numerical method of computation used herein for comparisons, was performed
on the same vibroacoustic system, studied here for validating the modal approach.
2. Description of the experimental case

A steel elastic homogeneous plate which has 170mm length, 150mm width and 4mm thickness is
clamped by its four edges to a massive box shaped from a 320mm steel cylinder (see Fig. 1). One end of the
box can be clogged by a 50mm thick plate in order to obtain a parallelepipedic cavity of 310mm height.
The cavity has five rigid walls up to a frequency of about 5000Hz, and is filled with either air or water. The
elastic plate constitutes the sixth face of the cavity and is located at the top of the box. The size of the box is
relatively small and was chosen to minimize the mass of the structure (150 kg) which made the handling of the
box easier for the test. Within the frequency band [0, 5000Hz], the overall system has a LF (modal) dynamic
behaviour.

The plate is excited by one mechanical force on a point, as shown in Fig. 2. Five points were chosen for
comparisons; two points on the structure:
�
 Excitation point of coordinates (0.051, 0.105, 0.31m) and point of coordinates (0.1385, 0.0625, 0.31m)
(called Second structural point), and three points inside the cavity:

�
 one point just under the excitation point of coordinates (0.051, 0.105, 0.31m), one point just under the plate

of coordinates (0.02, 0.02, 0.31m) (called Point 20mm� 20mm) and another point at the bottom of the
cavity of coordinates (0.02, 0.02, 0.0124m). This latter point is at the vertical of the previous point.
The measured quantities are the frequency-response-functions (FRF) jgðoÞ=F j for the structural points and
jPðoÞ=F j for the fluid points within the frequency band [0, 5000Hz]. The FRF were measured only when the
cavity was filled with water.

For the comparisons, the measured quantities are presented in Section 4 by curves in full black lines.
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Fig. 2. Description of the analysed vibroacoustic system and selection of measurement points.

Fig. 1. View of the test structure and cavity.
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3. Theoretical and numerical approaches

3.1. Geometry and notations

Two coupled domains are considered: an elastic structure with volume Os of boundaries Ss and SF , and a
bounded cavity OF containing an internal fluid. SF is the common interface between the structure and the
cavity. The structure is excited by a set of forces Fe over part Se of the boundary Ss, as shown in Fig. 3.

When this problem of coupling is composed of a rectangular plate coupled to a parallelepipedic cavity, an
analytical solution of the overall vibroacoustic system can be constructed directly. An MF numerical method
of computation was also used. These approaches are compared to a modal approach.

3.2. Modal approach using a ðu;fÞ variational formulation with appropriate static behaviour

The ðu;fÞ formulation uses the physical variables: u ¼ ðu; v;wÞ, the displacement of the structure and f, the
displacement potential of the fluid within the cavity.

3.2.1. Introduction of static pressure

A static pressure term pðoÞ, which occurs at o ¼ 0 when the internal fluid is dense and slightly compres-
sible (like water), was introduced in Ref. [4] in order to take into account the ‘‘zero-frequency stiffness
effect of the fluid’’. This term comes from the wall motion effects. It is introduced into the governing equa-
tions for structures coupled to internal heavy fluids because internal acoustic cavities are considered with
rigid faces in the coupling. The expression of the static pressure with respect to the normal displacement of
walls is

pðo ¼ 0Þ ¼ p0 ¼ �
rF c2F
VF

Z
SF

u:nF ds. (1)

rF , cF are the fluid mass density and the sound speed in the fluid, V F being the volume of OF and nF the
outgoing normal from the fluid.

In this way, the relationship between p and f is

p ¼ rFo
2fþ p0. (2)
3.2.2. Equations of motion in ðu;fÞ for the coupled problem

When the pressure p is replaced by a displacement potential f, the governing equations of motion for a
structure containing a fluid are:
ns

ns

Σe

Ωs

Fe

nF

ΣF

Σs

ΩF

Fig. 3. General case of a structure coupled to an internal cavity.
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�
 for the structure:

sij;jðuÞ þ o2rsui ¼ 0 in Os; ðaÞ

sijðuÞns;j ¼ F e
i on Se; ðbÞ

sijðuÞns;j ¼ pnF ;i on SF ; ðcÞ

8><
>: (3)

where rs is the structure mass density

�
 for the fluid:

Dfþ
o2

c2F
f ¼ 1

V F

R
SF

u:nF ds in OF ; ðaÞ

qf
qnF

¼ u:nF on SF ; ðbÞ

lðfÞ ¼
R
OF

fdV ¼ 0 with lð1Þa0: ðcÞ

8>>>>>><
>>>>>>:

(4)
3.2.3. Variational formulation

Eliminating p by using Eqs. (2) and (1) for p0, the ðu;fÞ variational formulation of the coupled problem
(3)–(4) can be expressed, for all test regular functions qu on Os and qf on OF , as follows:Z

Os

sijðuÞ�ij :ðquÞdV þ
rF c2F
V F

Z
SF

u:nF ds

� � Z
SF

qu:nF ds

� �

�o2

Z
Os

rsu:ðquÞdV � o2

Z
SF

rFfðquÞ:nF ds ¼

Z
Se

F e:ðquÞds; ðaÞ (5)

Z
OF

rf:rðqfÞdV �
o2

c2F

Z
OF

f:ðqfÞdV �

Z
SF

u:nF ðqfÞds ¼ 0: ðbÞ

The solution of the coupled problem (5) is constructed by projection of the displacement of the structure u and the
internal potential f on the two modal bases of the structure in vacuo and of the acoustic cavity with rigid walls.

(1) The projection of u is

u ¼
XNs

b¼1

ubjb, (6)

Ns being the number of structural eigenmodes in vacuo retained in the projection, jb the structural mode
shape and ub the structural generalized coordinate of mode b.

(2) For the projection of f, a static displacement potential f0 is introduced, such that:

f ¼ f0 þ
XNF

b¼1

fbcb, (7)

NF being the number of acoustic eigenmodes in the rigid motionless cavity retained in the projection, cb the
acoustic mode shape, fb the acoustic generalized coordinate of mode b and f0 the solution of the acoustic
problem (4) for o ¼ 0.

3.2.4. Classical expression of static displacement potential f0

One way to introduce the static displacement potential f0 is to use the expression (7.55), p. 144 of Ref. [1]
which is a modal expansion of f0 on the acoustic eigenmodes ca. In Ref. [1], f0 has the following expression:

f0 ¼
X
aX1

1

mF
a

Z
SF

rFcau:nF ds

� �
ca, (8)

where mF
a is the generalized mass of acoustic eigenmode ca (mF

a will be defined later).
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By using projection (6) of the structural displacement u and a truncature a ¼ f1; . . . ;NF g of the acoustic
modes, the following approximation of f0 can be constructed:

f0 ’
XNs

b¼1

XNF

a¼1

1

mF
a

Z
SF

rFcajb:nF ds

� �
caub. (9)

f0 is not exact because it is truncated and it depends on the number of retained modes in the projection.

3.2.5. Projection of variational formulation on modal bases

Structural eigenmodes jb, for b ¼ f1; . . . ;Nsg are orthogonal. Acoustic eigenmodes cb, for b ¼ f1; . . . ;NF g

are also orthogonal.
For the studied test case (a clamped rectangular plate coupled to a parallelepipedic cavity), the

eigenfunctions are known analytically. The structural mode shapes are taken from Ref. [13] and the acoustic
mode shapes are given in Appendix B.

When using Eq. (9) for f0, Eq. (7) for f, qu ¼ jg and qf ¼ cg as test functions, the variational formulation
(5) of coupled problems (3)–(4), projected on structural and acoustic modal bases, becomes:

ls
gm

s
gug þ

rF c2F
VF

PNs

b¼1

R
SF

jg ds
� � R

SF
jb ds

� �
ub

¼ o2 ms
gug þ

PNs

b¼1

PNF

a¼1

CbaCga

mF
a

� �
ub þ

PNF

b¼1
Cgbfb

( )
þ F g 8g ¼ f1; . . . ;Nsg; ðaÞ

lF
g m

F
g fg ¼ o2 mF

g fg þ
PNs

b¼1
Cbgub

( )
8g ¼ f1; . . . ;NF g ðbÞ

8>>>>>>>>>><
>>>>>>>>>>:

(10)

with: R

�
 ms

g ¼ Os
rsjg:jg dV , the generalized mass of structural mode jg;
�
 ls
g ¼ os

g
2, the squared eigenfrequency of structural mode jg;
�
 lF
g ¼ oF

g
2
, the squared eigenfrequency of acoustic mode cg;R R
�
 mF
g ¼ rF OF

rcg:rcg dV ¼ ðlF
g rF=c2F Þ OF

cg:cg dV ;R

�
 F g ¼ Se

F ejg ds, the generalized force of structural mode jg;R

�
 Cbg ¼ SF

rFjb:nFcg ds, the coupling term between structural mode jb and acoustic mode cg.
By introducing the following matrices and vectors:
Ms ¼ ½Ms�ab ¼ ms
adab, the generalized mass matrix of structure, size Ns �Ns;

Ks ¼ ½Ks�ab ¼ ls
am

s
adab, the generalized stiffness matrix of structure, size Ns �Ns;

MF ¼ ½MF �ab ¼ mF
a dab, the generalized mass matrix of internal fluid, size NF �NF ;

KF ¼ ½KF �ab ¼ lF
a m

F
a dab, the generalized stiffness matrix of internal fluid, size NF �NF ;

Mad ¼ ½Mad�ab ¼
PNF

g¼1

CagCbg

mF
g

, size Ns �Ns;

Kad ¼ ½Kad�ab ¼
rF c2F
V F

R
SF

ja ds
� � R

SF
jb ds

� �
, size Ns �Ns;

C ¼ ½C�ab ¼ Cab, the matrix of coupling, size Ns �NF ;

F ¼ fFag, the vector of generalized forces (which loads the structure), size Ns;
U ¼ fuag, the vector of unknown generalized displacement of structure, size Ns;
U ¼ ffag, the vector of unknown generalized internal potential, size NF ;
the above reduced system (10) can be put under the following symmetric matrix form:
�o2fMs þMadg þ fKs þ Kadg �o2C

�o2CT KF � o2MF

" #
U

U

� �
¼

F

0

� �
. (11)
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3.2.6. Introduction of damping matrices

If we denote by Cs the generalized damping matrix of the structure and by CF the generalized damping
matrix of internal acoustics, these matrices usually are defined by:

Cs ¼ ½Cs�ab ¼ Zso
s
a½Ms�ab,

CF ¼ ½CF �ab ¼ tF ½KF �ab,

where Zs is the mean structural damping loss factor, and coefficient tF is due to the viscosity of the internal
fluid and is defined in Ref. [8, p. 181], by

tF ¼
4

3

ZF

rF c2F
, (12)

with rF , cF defined previously and ZF the fluid dynamic viscosity.
By using the damping matrices defined above, the matrix reduced system (11) to be solved finally

becomes:

�o2fMs þMadg þ joCs . . . �o2C

þfKs þ Kadg

�o2CT KF � o2MF þ joCF

2
64

3
75 U

U

� �
¼

F

0

� �
. (13)

Matrices Ms, Ks, Cs, MF , KF and CF are all diagonal, but matrices Mad, Kad and C are full. Matrices Mad and
Kad characterize a change in the behaviour of the structure. In this formulation, mass of the structure is
modified by an added mass, and its stiffness by an added stiffness which characterize the effect on the structure
of the quasi-incompressibility of the fluid. When the fluid is light the fluid mass and stiffness effects are
insignificant, but when the fluid is dense like water these effects are not negligible.

3.2.7. Solutions of the coupled problem

The matrix reduced system (13) is the general modal problem to be solved in the LF domain for the coupling
between a structure and an internal fluid for any structure and cavity geometry. This modal system is solved
for any circular frequency o by classical matrix inversion (or matrix decomposition) of the first member. The
solution is the generalized coordinates U and U.

The computation of vectors U and U leads to the solution for the displacement of the structure u by using
the modal splitting (6) and for the internal pressure p inside the cavity by using Eq. (2), where f and p0 are
expressed as follows:

f ¼
XNF

a¼1

XNs

b¼1

Cba

mF
a

ub

 !
þ fa

( )
ca, (14)

p0 ¼ �
rF c2F
V F

XNs

b¼1

Z
SF

jb ds

� �
ub. (15)

3.2.8. Particular case
For the studied case (a rectangular plate coupled to a parallelepipedic cavity), an exact analytical solution of
f0 can be constructed. This solution accelerates the convergence of the eigenfrequencies of the coupled system
and accurately improves the vibroacoustic response of the system.

The new formulation of the reduced model is fully detailed in Appendix A.

3.3. Other solutions

3.3.1. Analytical solution of the overall system

For the tested system, an analytical solution of the overall vibroacoustic problem can be constructed
explicitly. This solution has already been fully presented in Appendix C of a previous paper [12]. The method
was adapted to the studied test case from the formulation contained in Ref. [14].
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Two simulations were performed: the first simulation with water (see Ref. [12]) and the second simulation
with air. The results obtained by this method are presented in Section 4 by curves in dashed black lines.

3.3.2. MF numerical computation

A computation using an adapted medium-frequency/finite element method was performed on the system in
order to predict the internal noise and vibration levels within the frequency band [100, 5000Hz].

This method is fully detailed in Refs. [15,16]. It is specific to MF domain and, for the proposed test case, it
was validated on measurements in Ref. [12] for a LF dynamic behaviour of the system. In this paper, the
method itself is summarized in Appendix B.

A finite element model of the overall structure was developed and two simulations were performed; the first
with water and the second with air. The results obtained by this approach are presented in Section 4 by curves
in full dark-grey lines.

4. Simulations performed

4.1. Plate mechanical parameters introduced in simulations
�
 For simulations when the cavity contains air, the plate mechanical parameters have the following values:
E ¼ 1:7� 1011 Pa, rs ¼ 7800 kg=m3 and n ¼ 0:3.

�
 For simulations with water, the parameter values are:

E ¼ 1:62� 1011 Pa, rs ¼ 7800 kg=m3 and n ¼ 0:3.

The gap of 18% with respect to the design value of 2:1� 1011 Pa of steel Young’s modulus is due to the
imperfect clamping of the plate. The change of value for E when the cavity contains water instead of air is due
to the modification of the plate dynamics after having taken on and taken down the box.

4.2. Calibration of the analytical and numerical models

The plate mechanical parameters used above allow us to calibrate the analytical and numerical models on
measurements, by comparing the first six eigenfrequencies of the plate which are given in Table 1.

As one can see in Table 1, six structural modes of the plate in vacuo are contained in the frequency band [0,
5000Hz].

4.3. Parameters introduced for acoustic cavity

The values of rF , cF and ZF introduced in the simulations are the following:
�
 rF ¼ 1000 kg=m3, cF ¼ 1500m=s and ZF ¼ 0:001 kg=ðm� sÞ when internal fluid is water.

�
 rF ¼ 1:3 kg=m3, cF ¼ 340m=s and ZF ¼ 1:7� 10�3 kg=ðm� sÞ when internal fluid is air.

4.4. Damping values introduced in simulations

The mean structural damping factor Zs introduced for the structure was taken at a constant value of 0.8%
over the whole frequency band [0, 5000Hz]. This value represents the averaged value of modal dampings
measured for each mode during a LF identification of the first modes of the plate fixed to the box.

The acoustic coefficient tF is calculated by Eq. (12) from the value of the internal fluid dynamic
viscosity ZF .

4.5. Structural modal basis introduced

Simulations with the modal approach were performed using the first 22 structural modes of the plate in
vacuo. Their mode shapes and eigenfrequencies are analytical and are given by Warburton in Ref. [13].
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Table 1

First eigenfrequencies of the plate

Plate coupled to air (or in vacuo) Plate coupled to water

Measured frequency (Hz) Analytical frequency (Hz) Measured frequency (Hz) Analytical frequency (Hz)

Mode 1 1293. 1286. 1129. 1154.

Mode 2 2424. 2426. 1654. 1641.

Mode 3 2804. 2825. 1952. 1952.

Mode 4 3866. 3884. 2687. 2686.

Mode 5 4224. 4259. 2908. 2877.

Mode 6 NI 5184. 3386. 3422.

J.-M. David, M. Menelle / Journal of Sound and Vibration 301 (2007) 739–759748
4.6. Results when using the classical ðu; pÞ formulation

4.6.1. Acoustic modal basis introduced for air

For the modal simulations, 196 analytical acoustic mode shapes and associated frequencies were used, and
they are given in Appendix B. The fundamental acoustic frequency is 548.4Hz and the frequency band [0,
5000Hz] contains about 150 acoustic modes.

4.6.2. Acoustic modal basis introduced for water

For the modal simulations, 49 analytical acoustic modes and associated frequencies were used. The
fundamental acoustic frequency is 2419.4.Hz and the frequency band [0, 5000Hz] contains only four acoustic
modes.

4.6.3. Comparison of ðu; pÞ results with other approaches

We give herein the comparisons of the acoustic results for an air and a water-filled cavity, obtained when
using the classical ðu; pÞ formulation for the modal approach. This formulation is the standard formulation
commonly used for light fluids and coming from Ref. [1, Chapter 8].

In Fig. 4 for an air-filled cavity, we have added (for comparison) the results coming from the modal
simulation using the ðu;fÞ formulation we have presented. One can see that all the methods agree with each
other and there is no noticeable difference between the ðu; pÞ and the ðu;fÞ formulations for the internal
pressure.

One can also see that the acoustic response within the cavity is controlled by about 150 internal modes
contained in the analysed frequency band. This acoustic behaviour is perfectly well-restored by all the
methods. Finally, these results show a weak coupling between the plate and the cavity.

In Fig. 5 for a water-filled cavity, one can see that the acoustic response within the cavity is controlled by
modified structural modes; this characterizes a strong coupling between the plate and the cavity.

The analytical and MF numerical methods agree well with experiments, although the internal acoustic
behaviour is not well simulated by the modal approach when using the classical ðu; pÞ formulation.

From this we can deduce that the modal method using a ðu; pÞ formulation is not the correct approach for
dense slightly compressible fluids like water. A more appropriate formulation is a ðu;fÞ formulation which is
also relevant for light fluids as one can see on the results of Fig. 4, for the case of coupling with air.

4.7. Results for water when using ðu;fÞ formulation

4.7.1. Convergence of eigenfrequencies of the coupled system

4.7.1.1. Influence of expression used for static potential. Table 2 gives the value of the first six
eigenfrequencies of the ‘‘plate coupled to a water-filled cavity’’ system, with respect to the number of
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acoustic modes introduced in the coupled system, and to the expression used for the static displacement
potential f0.

Fig. 6 shows the convergence of these frequencies (toward measured and analytical frequencies) in a graphic
form. We have calculated the relative frequency difference between the six computed frequencies and the
measured and analytical frequencies (which are given in Table 1), with respect to the variation of the number
of acoustic modes.
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The four curves represent the arithmetic average of the errors (in percent), calculated for each of the six
frequencies.
�
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The two curves in grey represent the mean relative error of the frequencies, when the classical expression (9)
is used for f0.

�
 The two curves in black represent the mean relative error of the frequencies, when the exact solution
ðf0

0 þ f1
0Þ is used for f0.

As one can see in Table 2 and from Fig. 6, the convergence of the eigenfrequencies of the coupled system
contained in the frequency band [0, 5000Hz] is very slow when using the classical expression of the static
displacement potential f0. This convergence has not yet been obtained for 1500 acoustic modes. For this
number of modes, the residual error on the computed eigenfrequencies compared to the analytical and
measured frequencies is about 2:4%, although this error decreases when the number of acoustic modes
increases. Introduction of the exact solution ðf0

0 þ f1
0Þ for the static displacement potential obviously improves

the convergence of the eigenfrequencies. The convergence is obtained rapidly with a small number of acoustic
modes (10–15 modes) and the residual error is about 0:22%.
4.7.1.2. Influence of f1
0 term. Table 3 shows the influence of f1

0 term in the exact solution of the static
potential on the convergence of the first six eigenfrequencies of the ‘‘plate coupled to a water-filled cavity’’
system, with respect to the number of acoustic modes introduced in the coupled system.

As it can be observed in Table 3 where f1
0 term is not used, the convergence of the first six eigenfrequencies

of the coupled system is obtained for iso-volumic modes only; modes where one of the two wavenumbers m or
n is odd ðm ¼ 3 or n ¼ 3Þ. For these modes, the term

R
S
jb ds, contained in Mad matrix (defined by Eq. (A.9))

and Kad matrix, is perfectly equal to zero. Therefore, f1
0 term has no influence on these modes.

The modes, where m and n are even ðmX2 and nX2Þ, are the ‘‘non iso-volumic modes’’, for which the termR
S
jb ds is different from zero.
ble 2

nvergence of eigenfrequencies of ‘‘plate coupled to a water-filled cavity’’ system

mber of acoustic modes Computed frequencies (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

fÞ formulation using classical static potential f0

5 1298. 2032. 2601. 3138. 3784. 4087.

10 1298. 1953. 2328. 3138. 3527. 4087.

20 1248. 1912. 2279. 2992. 3379. 3909.

50 1218. 1820. 2187. 2895. 3290. 3808.

00 1200. 1763. 2108. 2843. 3159. 3719.

00 1187. 1730. 2066. 2799. 3076. 3611.

00 1177. 1701. 2028. 2769. 3011. 3550.

00 1172. 1688. 2011. 2754. 2979. 3521.

00 1170. 1683. 2005. 2747. 2965. 3507.

fÞ formulation using exact static potential ðf0
0 þ f1

0Þ

5 1155. 1650. 1976. 2716. 2920. 3457.

10 1155. 1647. 1961. 2715. 2899. 3456.

20 1154. 1646. 1959. 2709. 2890. 3439.

50 1154. 1645. 1958. 2705. 2887. 3432.

00 1154. 1644. 1957. 2704. 2884. 3429.

00 1154. 1644. 1956. 2704. 2883. 3427.

00 1154. 1644. 1956. 2703. 2883. 3426.

00 1154. 1644. 1956. 2703. 2883. 3426.

00 1154. 1644. 1956. 2703. 2883. 3426.
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to –– measured frequencies and - - - - analytical frequencies (b) Exact static potential ðf0
0 þ f1

0Þ: average of first six frequencies compared

to –– measured frequencies and - - - - analytical frequencies.

Table 3

Values of first six eigenfrequencies of ‘‘plate coupled to a water-filled cavity’’ system

ðu;fÞ formulation using only incompressible potential f0
0 (without f1

0Þ

Number of acoustic modes Computed frequencies (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Wavenumbers ðm; nÞ ð2; 2Þ ð3; 2Þ ð2; 3Þ ð3; 3Þ ð4; 2Þ ð2; 4Þ

5 1465. 1650. 1976. 2775. 2920. 3702.

10 1465. 1647. 1961. 2775. 2900. 3702.

20 1464. 1646. 1960. 2766. 2890. 3688.

50 1462. 1645. 1958. 2762. 2887. 3669.

100 1462. 1645. 1956. 2760. 2885. 3665.

200 1462. 1644. 1956. 2759. 2883. 3662.

500 1462. 1644. 1956. 2759. 2883. 3661.

1000 1462. 1644. 1956. 2758. 2883. 3660.

1500 1462. 1644. 1956. 2758. 2883. 3660.
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Therefore, one can see the very great importance of the complementary term f1
0 on the obtention of the

convergence of the ‘wet’ eigenfrequencies coming from the ‘‘non iso-volumic modes’’.

4.7.1.3. Influence of number of structural modes introduced. Table 4 shows the convergence of the first six
eigenfrequencies of the ‘‘plate coupled to a water-filled cavity’’ system, with respect to the number of acoustic
modes introduced in the coupled system and also with respect to the number of structural modes in vacuo
used.
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As it can be seen in Table 4, there is ‘no influence’ of the number of structural modes in vacuo on the
convergence of these eigenfrequencies; even though this number is large (i.e. 100 modes). The convergence of
the ‘wet’ eigenfrequencies only depends on the number of acoustic modes introduced in the system.

4.7.2. Comparisons for ðu;fÞ formulation with respect to the choice of the static displacement potential and to the

number of acoustic modes

In this section, we will see the influence of the choice of the static displacement potential expression, and the
number of acoustic modes introduced in the modal simulations on the vibroacoustic response trends of the
coupled system. The results presented below are obtained by three simulations using the modal approach
whose varying parameters are:
(1)
Tab

Con

and

ðu;f

NF

5

5

5

10

10

10

10

20

20

20

50

50

50

100

100

100

100

200

200

200

500

500

500

1000

1000

1000

1000

1500

1500

1500
Use of the classical term f0 and 49 acoustic modes: curves of results are plotted in dotted grey lines (case 1).

(2)
 Use of the classical term f0 and 1500 acoustic modes: curves of results are plotted in dashed grey lines

(case 2).
le 4

vergence of eigenfrequencies of ‘‘plate coupled to a water-filled cavity’’ system with respect to the number Ns of used structural modes

the number NF of used acoustic modes

Þ formulation using classical static potential f0

Computed frequencies (Hz)

Ns Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

25 1298. 2032. 2601. 3138. 3784. 4087.

36 1298. 2031. 2601. 3138. 3784. 4087.

49 1298. 2031. 2601. 3137. 3784. 4087.

25 1298. 1953. 2328. 3138. 3527. 4087.

36 1298. 1953. 2328. 3138. 3527. 4087.

49 1298. 1953. 2328. 3137. 3527. 4087.

100 1298. 1952. 2328. 3137. 3527. 4087.

25 1248. 1912. 2279. 2992. 3379. 3909.

36 1248. 1911. 2279. 2992. 3377. 3909.

49 1248. 1911. 2279. 2990. 3377. 3909.

25 1218. 1820. 2187. 2895. 3290. 3808.

36 1218. 1819. 2186. 2895. 3289. 3808.

49 1218. 1819. 2186. 2895. 3289. 3808.

25 1200. 1763. 2108. 2843. 3159. 3719.

36 1200. 1762. 2106. 2843. 3157. 3719.

49 1200. 1762. 2106. 2841. 3157. 3719.

100 1200. 1762. 2106. 2841. 3157. 3719.

25 1187. 1730. 2066. 2799. 3076. 3611.

36 1187. 1730. 2065. 2799. 3075. 3611.

49 1187. 1730. 2065. 2798. 3075. 3611.

25 1177. 1701. 2028. 2769. 3011. 3550.

36 1177. 1701. 2028. 2769. 3010. 3550.

49 1177. 1701. 2028. 2767. 3010. 3550.

25 1172. 1688. 2011. 2754. 2979. 3521.

36 1172. 1688. 2011. 2754. 2978. 3521.

49 1172. 1688. 2011. 2753. 2978. 3520.

100 1172. 1688. 2011. 2752. 2978. 3520.

25 1170. 1683. 2005. 2747. 2965. 3507.

36 1170. 1682. 2004. 2747. 2964. 3507.

49 1170. 1682. 2004. 2745. 2964. 3507.
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(3)
Fig.

of a

class

ðf0
0 þ
Use of the exact solution ðf0
0 þ f1

0Þ and 49 acoustic modes: curves of results are plotted in mixed grey

dash– dotted lines (case 3).
All these results are only compared to the analytical solution.
Figs. 7 and 8 show the comparison of the internal pressure within the cavity for two points. Convergence in

form and in evaluation of resonant frequencies is perfectly obtained for case 3. Convergence in form is also
obtained for case 2 and only for evaluation of the first resonant frequency. The values of other resonant
frequencies are not yet obtained for 1500 acoustic modes. For case 1, neither convergence in form nor
convergence in values of resonant frequencies are obtained, therefore case 1 will be eliminated in the following
comparisons. The number of acoustic modes introduced for this case is too small to ensure a correct
convergence of the modal approach.

4.7.3. Overall comparisons with other approaches

This section is dedicated to the overall comparisons on the vibroacoustic response of the coupled system
between experiments and the different approaches used. The three other selected points where measurements
of the FRF were performed are included in these comparisons, and results coming from case 1 are eliminated.
Figs. 9–11 show the comparisons.

One can see in Figs. 9–11 the perfect agreement with measurements (and with both analytical approach and
MF numerical computation) of the ðu;fÞ modal method, when it uses the exact solution ðf0

0 þ f1
0Þ of the static

displacement potential with a small number of acoustic modes (only 49 modes).
These comparisons show the great importance of getting a very precise computation of the static

displacement potential if we want to obtain perfect convergence of the modal method for dense slightly
compressible internal fluids.

5. Conclusion

A validation on measurements and by comparison with other approaches (analytical and numerical) of a
modal approach using a ðu;fÞ formulation has been performed for a vibroacoustic system composed of an
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0Þ and 49 acoustic modes.
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elastic rectangular plate coupled to a water-filled parallelepipedic cavity. The frequency band [0, 5000Hz] has
been analysed. Within this band, the studied vibroacoustic system has modal behaviour. Therefore, a modal
approach is well-adapted to deal with it. For this system, the application of the modal approach is essentially
analytical (eigenmodes, eigenfrequencies, algebraic integrals and quadratures), which avoids numerical
approximations and which makes the validation very interesting from a qualitative point of view. The most
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Fig. 11. Comparison of acoustic pressure levels inside fluid for point under the structural point 20mm� 20mm in the bottom of box.

–– Measurement, - - - - Analytical approach, –– MF computation, - - - ðu;fÞ formulation using classical f0 and 1500 acoustic

modes, 2 � 2 ðu;fÞ formulation using ðf0
0 þ f1

0Þ and 49 acoustic modes.
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interesting part of the modal method is that it relies on the use of two decoupled modal bases: a structural
basis for the structure in vacuo and an acoustic basis for the rigid-walled cavity. Extraction of these two modal
bases is essential for complex systems because they can be obtained separately and it is relatively easy to do it
with a standard finite element code dedicated to dynamics and internal acoustics.

We have shown first that the standard ðu; pÞ and proposed ðu;fÞ formulations are equivalent for light fluids.
But a ðu;fÞ formulation using both static pressure and static displacement potential terms is however
necessary to deal with dense slightly compressible fluids, such as liquids. Construction of the classical static
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displacement potential term f0 is possible for complex vibroacoustic systems, but as we have shown (in this
study), the convergence toward the correct resonant frequencies of the coupled system is very slow and
requires the introduction of a large number of acoustic modes.

Finally, we have shown that, for the studied test case, the use of the exact expression of the static
displacement potential obviously accelerates the convergence of the method. In that case, a small number of
acoustic modes is needed. But this particular solution for the static displacement potential is specific to this test
case and it cannot be generalized to other systems.

As a consequence of this study, the introduction of the static displacement potential in a ðu;fÞ formulation,
calculated in a very precise manner (analytically or by adequate finite element procedures, . . .), is of prime
importance for the convergence of a modal method for a complex internal vibroacoustic system when cavity
contains a liquid.

Otherwise, in order to improve the convergence of the method without constructing the classical term of the
static displacement potential, some possible options are to use directly the ‘wet’ structural eigenfrequencies
and the ‘wet’ structural modes of the ‘‘structure coupled with an incompressible fluid’’.
�
 A first way is to introduce into the matrix reduced system an empirical expression of the ‘‘fluid added mass
matrix’’, such as the one used in Ref. [7].

�
 A second possibility is to use integral methods for ‘‘structures coupled to external unbounded fluids’’, such

as the method developed in Ref. [17], which directly provides a correct evaluation of the ‘wet’ structural
eigenfrequencies from the data of the ‘dry’ eigenfrequencies and from the construction (by the method) of
the ‘‘equivalent fluid added mass matrix’’. But this latter approach is relatively expensive in its use.

Appendix A. Formulation of the reduced modal system for a rectangular plate coupled to a parallelepipedic

cavity

A.1. Analytical expression of the static displacement potential

For a rectangular plate coupled to a parallelepipedic cavity, the static displacement potential f0 can be split
into two terms, such that:

f0 ¼ f0
0 þ f1

0, (A.1)

where f0
0 represents the potential of incompressible fluid, for which an exact analytical expression can be

constructed explicitly, and f1
0 is a complementary solution for the ‘‘non iso-volumic modes’’.

The two functions f1
0 and f0

0 are the solutions of the following acoustic problem:

Df1
0 ¼

1

V F

R
S
u:nF ds Df0

0 ¼ 0 in OF ;

qf1
0

qn
¼

qf0
0

qn
¼

1

S

R
S
u:nF ds on plate area S;

qf1
0

qn
¼

qf0
0

qn
¼ 0 on rigid faces ðSF � SÞ;

lðf1
0Þ ¼ lðf0

0Þ ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

(A.2)

A.2. Expression of the complementary solution f1
0

f1
0, satisfying Eqs. (A.2) and projected on the structural modal basis: jb, for b ¼ f1; . . . ;Nsg, has a very

simple polynomial solution:

f1
0ðzÞ ¼

1

2VF

z2 �
L2

z

3

� �XNs

b¼1

Z
S

jb ds

� �
ub, (A.3)

where z is the axis of the cavity normal to the plate (see Fig. 2).
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A.3. Exact expression of the incompressible potential f0
0

The incompressible potential f0
0, solution of Eqs. (A.2) for a parallelepipedic cavity whose geometry and

orientation of axes are defined in Fig. 2, takes the form:

f0
0ðx; y; zÞ ¼

X
ðp;qÞað0;0Þ

Fpq cosðkpxÞ cosðkqyÞ cosh z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q� �
. (A.4)

The solution, projected on the structural modal basis: jb, for b ¼ f1; . . . ;Nsg, is

f0
0ðx; y; zÞ ¼

XNs

b¼1

f0
0;bðx; y; zÞub, (A.5)

where

f0
0;bðx; y; zÞ ¼

X
ðp;qÞað0;0Þ

Fpq;b cosðkpxÞ cosðkqyÞ cosh z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q� �
, (A.6)

and

Fpq;b ¼

R
S
jb cosðkpxÞ cosðkqyÞds

Lp
xLq

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q
sinh Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q� � ,

kp ¼
pp
Lx

; kq ¼
qp
Ly

,

Lp
x ¼

Lx if p ¼ 0

Lx

2
if pa0

8<
: ; Lq

y ¼

Ly if q ¼ 0

Ly

2
if qa0

8<
: .

The final expression of f0
0ðx; y; zÞ is then:

f0
0ðx; y; zÞ ¼

XNs

b¼1

ub

X
ðp;qÞað0;0Þ

R
S
jb cosðkpxÞ cosðkqyÞds

Lp
xLq

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q
sinh Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q� �
� cosðkpxÞ cosðkqyÞ cosh z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q� �
. ðA:7Þ

A.4. New expression of the variational formulation projected on modal bases

When using qu ¼ jg and qf ¼ cg as test functions and solution (A.1) of f0, the variational formulation (5)
of the coupled problem (3)–(4), projected on structural and acoustic modal bases is:

ls
gm

s
gug þ

rF c2F
VF

PNs

b¼1

R
S
jg ds

	 
 R
S
jb ds

	 

ub

¼ o2ms
gug þ o2

PNs

b¼1
rF

Lz

3S

R
S
jg ds

	 
 R
S
jb ds

	 

þ Vbg

� �
ub

þo2
PNF

b¼1
Cgbfb þ F g 8g ¼ f1; . . . ;Nsg; ðaÞ

lF
g m

F
g fg ¼ o2 mF

g fg þ
PNs

b¼1
Cbgub

( )
8g ¼ f1; . . . ;NF g: ðbÞ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(A.8)
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For the problem (A.8) above, the matrix reduced system to be solved is the initial linear system (13) in which
the added mass matrix Mad of size Ns �Ns is now defined by the following expression:

Mad ¼ ½Mad�ab ¼ rF

Lz

3S

Z
S

ja ds

� � Z
S

jb ds

� �
þ Vab

� �
, (A.9)

where

V ab ¼
X

ðp;qÞað0;0Þ

Z
S

ja cosðkpxÞ cosðkqyÞds�

Z
S

jb cosðkpxÞ cosðkqyÞds

�
coth Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q� �
Lp

xLq
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
q

q . ðA:10Þ
A.5. New solutions of the coupled problem

Problem (A.8) is the particular variational formulation of the coupling between an elastic rectangular plate
and a parallelepipedic cavity containing an internal fluid. From the computation of vectors U and U of the
matrix reduced system (13), the final solutions of u and p are given by Eq. (6) and Eq. (2) where f is expressed
as follows:

f ¼ f0
0 þ f1

0 þ
XNF

a¼1

faca, (A.11)

with: f1
0 given by Eq. (A.3) and f0

0 by Eq. (A.7).

Appendix B. Analytical eigenforms and eigenfrequencies of a rigid-walled parallelepipedic cavity

B.1. Mode shapes

Acoustic eigenmodes can be expressed as
cpqrðx; y; zÞ ¼ cpðxÞ � cqðyÞ � crðzÞ 8 fp; q; rgX0 or as:

cpqrðx; y; zÞ ¼ cos
pp
Lx

x

� �
� cos

qp
Ly

y

� �
� cos

rp
Lz

z

� �
. (B.1)
B.2. Eigenfrequencies

Acoustic eigenfrequencies are defined by

f pqr ¼
cF

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

L2
x

þ
q2

L2
y

þ
r2

L2
z

s
(in Hz). (B.2)

ðp; q; rÞ are the wavenumbers and Lx;Ly and Lz the dimensions of the cavity in the directions x; y; z.
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