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Abstract

Smoothed finite element method (SFEM) was recently proposed by the authors to improve the accuracy and

convergence rate of the existing standard four-node isoparametric finite element method (FEM) by 2� 2 quadrature in the

static analysis. In this work, it is further extended to the free and forced analysis of two-dimensional (2D) dynamic

problems. It is found that SFEM achieves more accurate results and higher convergence rates as compared with the

corresponding finite elements in solving dynamic problems without increasing the computational cost. As only shape

function itself is involved in computing the field gradients and no coordinate transformation is required, the method is very

easy to implement. Nonlinear elastic forced vibration problem is also examined by using smoothed deformation gradients

on each cell.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Smoothed finite element method (SFEM) was recently presented by Liu et al. [1] by incorporation of the
strain smoothing operation with the existing finite element techniques. The SFEM shows some superior
features over the original FEM. Due to the introduced strain projection technique only shape function itself is
involved in the calculation of field gradients and no coordinate transformation is necessary. Correspondingly,
the shape of element in SFEM can be of arbitrary shape. Numerical results in their work have demonstrated
that SFEM gives more accurate results in both primary variables and derivative ones and their convergence
rates have also been improved to some extent. Most importantly, these good features are acquired without
increasing the number of field nodes and computational cost as compared with the 4-node isoparametric finite
elements. The numerical procedure is comparably even simpler and more straightforward.

Later on they proved that SFEM is an energy-consistent method [2] and its upper and lower bound solution
can be obtained by adjusting the number of smoothing cells (SC) by which an element is subdivided for stable
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.10.035

ing author. Singapore-MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore.

4796; fax: +65 6775 2920.

ess: smadky@nus.edu.sg (K.Y. Dai).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.10.035
mailto:smadky@nus.edu.sg


ARTICLE IN PRESS
K.Y. Dai, G.R. Liu / Journal of Sound and Vibration 301 (2007) 803–820804
integration of energy. In particular if an entire element is used as one SC, an upper bound solution can be
acquired that corresponds to that of the finite element equilibrium model. On the contrary, with the increase of
the number of SC the solution approaches its lower bound solution, which can be obtained using the
displacement-compatible finite element model. In the process of increasing the SC the SFEM solution will
transform monotonically from the upper to the lower bound.

In this work, the SFEM is further extended to the free and forced vibration analysis of 2D problems. Four-
node quadrilateral elements are used and each is subdivided into four SC in the calculation of stiffness matrix.
Similar type of finite elements (isoparametric elements by 2� 2 quadrature and quintessential bending/
incompressible (QBI), elements) is also employed in the analysis and the accuracies of the two methods are
compared. In the forced vibration analysis, both explicit and implicit time integration schemes are used.
Geometrical nonlinearity is considered in the explicit nonlinear analysis. Total Lagrange formulation and
central difference procedure are adopted. Deformation gradients are smoothed on the level of SC in the initial
configuration. Several numerical examples are analyzed to demonstrate the accuracy, stability and
effectiveness of the SFEM.
2. Discrete governing equations

Consider a deformable body occupying domain O in motion, subjected to body forces b, external applied
tractions t on boundary Gt and displacement boundary conditions u ¼ ū on Gu. It undergoes arbitrary virtual
displacements dd, which accordingly give rise to compatible virtual strains de and internal displacements du. If
the inertial and damping forces are also considered in the dynamic equilibrium equations, the principle of
virtual work requires that Z

O
deTrdO�

Z
O
duT½b� r€u� c_u�dO�

Z
Gt

duTtdG ¼ 0. (1)

By means of the spatial discretization procedure in the FEM, the virtual displacements and strains within
any element can be written as

duh ¼
X

I

NIddI ; uh ¼
X

I

NIdI , (2)

deh ¼
X

I

BIddI ; eh ¼
X

I

BIdI , (3)

where dI ¼ ½uI vI �
T is the nodal displacement vector, and B is the standard displacement gradient matrix. In

2D linear elastic problems it is given as

BI ¼ rSNI ðxÞ ¼

NI 0x 0

0 NI 0y

NI 0y NI 0x

2
64

3
75. (4)

And the stress is obtained by generalized Hooke’s law as rh ¼ D eh.
The energy assembly process givesZ

O
ddTBTrdO�

Z
O
ddTNT½b� r€u� c_u�dO�

Z
Gt

ddTNTtdG ¼ 0. (5)

Since the expressions hold for any arbitrary virtual displacements dd, one getsZ
O
BTrdO�

Z
O
NT½b� r€u� c_u�dO�

Z
Gt

NTtdG ¼ 0. (6)

Then the discrete governing equation can be written as

f int � fext þ fI þ fD ¼ 0 (7)
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or

M€dþ C_dþ f int ¼ fext, (8)

where d is the vector of general nodal displacements and

f int ¼

Z
O
BTrdO, (9)

fext ¼

Z
O
NTbdOþ

Z
Gt

NTtdG, (10)

M ¼

Z
O
NTqNdO, (11)

C ¼

Z
O
NTcNdO. (12)

In SFEM, the smoothed strain is obtained using the following strain smoothing operation, which is very
similar to the mean dilatation procedure used to deal with the incompressibility in nonlinear mechanics [3,4]

~eh ¼

Z
OC

ehðxÞFðxÞdO, (13)

where eh ¼ rSu
h is the strain obtained from the displacement compatibility condition as given in Eq. (3). OC is

the domain of a smoothing cell on which the smoothing operation is performed. The smoothed operation was
recently used in weak-form meshless method based on nodal integration [5,6]. Depending on the stability
analysis [1], OC may be an entire element or part of an element as shown in Fig. 1. F is a smoothing function
and defined as

Fðx� xCÞ ¼
1=AC x 2 OC ;

0 xeOC ;

(
(14)

where AC ¼
R
OC

dO, the area of smoothing cell. The element area is the summation of its SC, Ae ¼
PSC

C AC

with SC being the number of the cells that an element is subdivided.
Substituting F and uh into Eq. (13) one can get the smoothed gradients of displacement

~ehðxCÞ ¼

Z
GC

nðxÞuhðxÞFðx� xCÞdG ¼
1

AC

Z
GC

nðxÞuhðxÞdG, (15)

where GC is the boundary of the smoothing cell and n is the matrix of outward unit normal. Note that the
choice of constant F degenerates the volume integration into contour integration around the boundaries of the
8
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SC=1

8(1/2, 0, 0, 1/2)

5(1/2, 1/2, 0, 0)

6(0, 1/2, 1/2, 0)

7(0, 0, 1/2, 1/2)

4(0, 0, 0, 1.0)

3(0, 0, 1.0, 0)

2(0, 1.0, 0, 0)1(1.0, 0, 0, 0)
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SC=4

a b

Fig. 1. Subdivision of smoothing cells and the values of shape functions.



ARTICLE IN PRESS
K.Y. Dai, G.R. Liu / Journal of Sound and Vibration 301 (2007) 803–820806
smoothing cell in Eq. (13). Particularly in 2D linear elasticity problems the smoothed strain in discrete form
can be described as

~ehðxCÞ ¼
Xn

I

~BI ðxCÞdI , (16)

where n is the number of element nodes. ~BI is the smoothed strain matrix as

~BI ðxCÞ ¼

~bI1ðxCÞ 0

0 ~bI2ðxCÞ

~bI2ðxCÞ
~bI1ðxCÞ

2
64

3
75. (17)

If one Gaussian point is used for line integration along each segment of the edge Gi
C of OC, Eq. (17) can be

transformed to its algebraic form

~bIkðxCÞ ¼
XM
i¼1

1

ACi

NI ðx
GP
i Þn

C
iklC

i ðk ¼ 1; 2Þ, (18)

where xi
GP is the midpoint (Gaussian point) of boundary segment of Gi

C, whose length and outward unit
normal are denoted as li

C and ni
C, respectively.

Now the internal nodal force in SFEM is expressed as

f intC ¼

Z
OC

~B
T
~rdO. (19)

The smoothed stress ~r is obtained in the same way from the ~eh as in FEM, which is constant over a
smoothing cell. In particular, for linear elastic problems, ~r ¼ D~eh is calculated on the level of smoothing cell.
The summation of those corresponding to each of the SC in an element leads to the element internal force
vector.

3. Numerical implementation

3.1. Stability condition

In this work four-node quadrilateral element is employed for domain discretization. In the single-element
eigenvalue analysis we performed, it is found that spurious zero-energy mode appears and one smoothing cell
(SC ¼ 1) is equivalent to three independent strain relations (ns ¼ 3). If the element is fixed by three constraints
(rigid-body movements) the problem is still singular as nsonu ¼ 4� 2�3 ¼ 5, where nu is the number of the
displacement freedoms. It is easy to verify that the stiffness matrix obtained using one SC in SFEM is identical
to that of 4-node finite element with one-point quadrature. Therefore, the same eigenvalues are obtained using
FEM (Q1) and SFEM (SC ¼ 1) as long as they employ the same mass matrix. If the element is subdivided into
four quadrilateral SC (SC ¼ 4) using four midpoints on each side of an element, as shown in Fig. 1(b), we have
ns ¼ 4� 3 ¼ 124nu and now the integration is stable and thus solvable. Further increase of SC also yields a
stable integration but the computational cost is also increased accordingly and the accuracy may not be better,
as shown in the following examples. Therefore if not specified otherwise, we always use four quadrilateral cells
(SC ¼ 4) for a four-node element in this work. Generally, to ensure stability condition, a necessary
requirement should be satisfied, i.e., ns4nu. The issue on how to determine a suitable number of SC for more
general cases such as a polygonal element, has been detailed by Dai et al. [7].

3.2. Shape function construction and standard patch test

In the SFEM only shape functions are needed to calculate the smoothed strains at some discrete points of an
element and no shape function derivatives are involved. Hence it is very convenient to construction SFEM
shape functions. Many approaches are suggested in literature [1]. In this work, a very simple way is
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Fig. 2. The 4� 4 element meshes for standard patch test.

K.Y. Dai, G.R. Liu / Journal of Sound and Vibration 301 (2007) 803–820 807
recommended as shown in Fig. 1(b). The shape function values at the midpoint on a side of element are
calculated on the average using two related nodes and midpoints on the cell edges can be obtained in a similar
way. It is noticed that shape functions constructed in this way maintain the good properties in FEM, such as
Delta function property, partition of unity, linear consistency, linear geometric compatibility and positivity
within an element. Note that due to the Delta property of its shape functions, boundary conditions can be
implemented in the same way as in FEM.

To verify these properties, a standard patch test is carried out for a patch made up of 4� 4 element meshes
as shown in Fig. 2. All the boundary nodes of the patch are constrained using constant/linear displacement
patterns in two directions. It is found that all the inner nodes follow exactly (to machine precision) the same
constant/linear displacement patterns we imposed on boundary nodes. This phenomenon can be easily
explained from the specially devised shape functions that have linear geometric compatibility. Furthermore,
the points on edges of each cell also maintain this property. Unfortunately, due to the adoption of the
smoothed operation of displacement gradients, the interior points inside any cell will violate this condition,
which makes the method variationally incompatible. Instead the operation makes these points inside a cell
have a constant strains and stresses and thus satisfy the equilibrium equations. So the smoothing operation is
also called ‘‘an equilibrator’’ by Liu et al. [2].

3.3. Mass matrix

In the four-node elements of SFEM, as each of them is subdivided into four cells for integration and their
areas are also involved in the determination of displacement gradients, it is very natural and convenient to use
lumped mass matrix in dynamic analysis, which is given as

Me ¼ diagfm1 m1 m2 m2 m3 m3 m4 m4g, (20)

where mi ¼ rtACi ði ¼ 1; . . . ; 4Þ is the mass of ith cell corresponding to local node i, and r and t are the mass
density and the thickness of the cell, respectively. The diagonal form of lumped mass matrix shows superiority
over the consistent mass matrix in data recording and algebraic equation solving, especially in the explicit
dynamic analysis. Its advantages will be shown in the following examples.

4. Free vibration analysis

If no damping or forcing terms exists in Eq. (8), after introducing the smoothed versions of strain and stress,
it reduces to

M €dþ ~Kd ¼ 0, (21)
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where the smoothed stiffness matrix is given as

~KIJ ¼
X

C

Z
OC

~B
T

I D
~BJ dO, (22)

where C is the number of SC that an element is subdivided.
A general solution of such an equation can be written as d ¼ d̄ expðiotÞ. Then on its substitution into Eq.

(21), the frequency o can be found from

ð�o2Mþ ~KÞd̄ ¼ 0, (23)

where d̄ is the eigenvector.

4.1. Example 1: free vibration analysis of a cantilever beam

In this example, a cantilever beam is studied as shown in Fig. 3, with L ¼ 100mm, H ¼ 10mm, thickness
t ¼ 1.0mm, Young’s modulus E ¼ 2.1� 104 kgf/mm4, Poisson’s ratio v ¼ 0:3, mass density r ¼ 8.0�
10�10 kgf s2/mm4. A plane stress problem is considered. Using the Euler–Bernoulli beam theory we can get its
fundamental frequency f1 ¼ 0.08276� 104Hz as a reference. This problem has also been investigated in Ref.
[8]. Several kinds of regular meshes are used in the analysis using both SFEM and FEM. Both 4- and 8-node
isoparametric mapped finite elements are employed to examine the accuracy of numerical results and they use
2� 2 (Q4) and 3� 3 (Q9) Gaussian quadrature for integrating stiffness matrix, respectively [9,10]. A stabilized
4-node quadrilateral element with one-point quadrature was also proposed by Liu and Belytschko to achieve
high coarse-mesh accuracy and deal with incompressible materials [11–13]. The stability in space is obtained
by using a stabilization matrix that is orthogonal to all linear fields. The frame-invariant QBI element is
adopted in this work for comparison purpose.

In FEM, we first investigate the effect of the consistent and lumped mass matrix on the eigenvalues. From
the results in Table 1, we notice that their difference is almost negligible. Hence, in following free vibration
analysis we always use the consistent mass matrix in FEM. The first four frequencies of the beam are listed in
Table 2 and the first eight eigenmodes are demonstrated in Fig. 4. It is observed that SFEM converges much
faster than the 4-node Q4 finite elements especially for a very coarse mesh (10� 1 elements). For 20� 2 and
50� 5 elements, SFEM achieves nearly comparable accuracy as the corresponding 8-node Q9 finite elements
but the latter needs much more nodes and thus higher computational cost as compared with the 4-node
SFEM. The 4-node QBI element gives comparable accuracy as 8-node element for the last three meshes, which
is better than both the 4-node Q4 and smoothed elements. The accuracy using very coarse QBI mesh still
leaves a lot to be improved. It should be noted that, as the Euler–Bernoulli kinematic assumption is not
included either in FEM or in SFEM, a less stiff model is generally produced, which may be responsible for the
reason that the numerical results converge to the one that are slightly smaller than the theory solution [14].

In Table 3, 20� 5 elements are used for the same analysis with various number SC. It is observed that with
the increase of SC, the results gradually approach those of 4-node Q4 finite elements that are based on
Fig. 3. Meshes of the cantilever beam.
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Table 1

First six natural frequencies (� 104Hz) of a cantilever beam using consistent/lumped mass matrix (4-node elements)

No. of elements No. of nodes FEM (Q4) SFEM (4 SC) Reference (Nagashima [8])

Lumped mass Consistent mass Lumped mass Consistent mass

20� 2 63 0.0870 0.0872 0.0834 0.0824 0.0926

0.5199 0.5264 0.4993 0.4990 0.5484

1.2830 1.2837 1.2828 1.2834 1.2832

1.3640 1.4011 1.3141 1.3395 1.4201

2.4685 2.5816 2.3859 2.4697 2.5290

3.7477 3.8574 3.6333 3.8444 3.7350

50� 5 306 0.0830 0.0831 0.0824 0.0823 0.0844

0.4979 0.4989 0.4944 0.4943 0.5051

1.2826 1.2827 1.2825 1.2826 1.2828

1.3111 1.3168 1.3024 1.3054 1.3258

2.3816 2.3993 2.3670 2.3799 2.3993

3.6308 3.6701 3.6095 6.6421 3.6432

Table 2

First four natural frequencies (� 104Hz) of a cantilever beam using FEM/SFEM (Euler–Bernoulli beam theory: f1 ¼ 0.08276� 104Hz)

No. of elements No. of nodes SFEM (4 SC) FEM (4-node Q4) FEM (8-node Q9) FEM (4-node QBI)

10� 1 22 (4-node ele.) 0.0861 0.1000 0.0827 0.0817

53 (8-nodes ele.) 0.5071 0.6077 0.4982 0.4824

1.2828 1.2863 1.2832 1.2526

1.3124 1.6423 1.3205 1.2826

20� 2 63 (4-node ele.) 0.0834 0.0872 0.0823 0.0822

165 (8-nodes ele.) 0.4993 0.5264 0.4940 0.4928

1.2828 1.2837 1.2827 1.2827

1.3141 1.4011 1.3020 1.2982

50� 5 306 (4-node ele.) 0.0824 0.0831 0.0822 0.0822

861 (8-node ele.) 0.4944 0.4989 0.4934 0.4934

1.2825 1.2827 1.2825 1.2825

1.3024 1.3168 1.2997 1.2998

100� 10 1111 (4-node ele.) 0.0823 0.0824 — 0.8222

0.4935 0.4947 0.4933

1.2824 1.2825 1.2824

1.3000 1.3037 1.2993
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displacement-compatible model, though the latter may not be necessarily more accurate as compared with the
analytical solutions. Such a phenomenon is also observed in the static analysis of 2D beams. We also notice
that 4-node Q1 FEM and 1-SC SFEM give exactly the same results. We have proved that as SC approaches
infinity, the generated stiffness of SFEM will become the same as the 4-node Q4 elements [2].

Irregular mesh is also employed to investigate the accuracy of the two methods. The coordinates of the
irregular mesh can be acquired in the following fashion:

x0 ¼ xþ Dxrcair,

y0 ¼ yþ Dyrcair, ð24Þ

where Dx and Dy are initial regular element sizes in x- and y-direction, respectively. rc is a computer-generated
random number between �1.0 and 1.0 and air is a prescribed irregularity factor whose value is chosen between
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Fig. 4. First eight eigenmodes of the cantilever beam by SFEM.

Table 3

First four natural frequencies (� 104Hz) of a cantilever beam using different number of SC in SFEM (4-node 20� 2 elements)

SFEM FEM (Q4)

SC ¼ 1 (FEM Q1) SC ¼ 2 SC ¼ 3 SC ¼ 4 SC ¼ 8 SC ¼ 16

0.0712 0.0746 0.0791 0.0834 0.0841 0.0861 0.0872

0.4294 0.4495 0.4752 0.4993 0.5034 0.5148 0.5264

1.1401 1.1911 1.2549 1.2828 1.2829 1.2829 1.2837

1.2819 1.2825 1.2826 1.3141 1.3242 1.3518 1.4011

Table 4

First four natural frequencies (� 104Hz) of a cantilever beam using irregular nodal distribution (50� 5 elements)

a ¼ 0 a ¼ 0.1 a ¼ 0.2 a ¼ 0.3 a ¼ 0.4

SFEM (4 SC) 0.0824 0.0825 0.0829 0.0829 0.0835

0.4944 0.4947 0.4955 0.4966 0.4988

1.2825 1.2825 1.2825 1.2825 1.2825

1.3024 1.3031 1.3051 1.3082 1.3124

FEM (4-node Q4) 0.0831 0.0831 0.0833 0.0836 0.0839

0.4989 0.4992 0.5002 0.5016 0.5041

1.2827 1.2827 1.2827 1.2827 1.2827

1.3168 1.3176 1.3202 1.3243 1.3295

FEM (4-node QBI) 0.0822 0.0823 0.0824 0.0827 0.0829

0.4934 0.4936 0.4944 0.4954 0.4976

1.2825 1.2825 1.2825 1.2825 1.2825

1.2998 1.3004 1.3024 1.3051 1.3095

K.Y. Dai, G.R. Liu / Journal of Sound and Vibration 301 (2007) 803–820810
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Fig. 5. A cantilever beam with variable cross-section and its meshes.

Table 5

First four natural frequencies (� 103 rad/s) of a variable cross-section cantilever beam using FEM/SFEM

No. of elements No. of nodes SFEM (4 SC) FEM (4-node Q4) FEM (8-node Q9) FEM (4-node QBI)

10� 4 55 (4-node ele.) 0.2611 0.2651 0.2618 0.2607

149 (8-nodes ele.) 0.9156 0.9489 0.9188 0.9136

0.9513 0.9540 0.9522 0.9511

1.8296 1.9576 1.8557 1.8241

20� 10 231 (4-node ele.) 0.2617 0.2625 0.2616 0.2615

661 (8-nodes ele.) 0.9176 0.9249 0.9178 0.9167

0.9518 0.9525 0.9520 0.9518

1.8477 1.8774 1.8526 1.8455

40� 20 861 (4-node ele.) 0.2616 0.2618 — 0.2616

0.9177 0.9195 0.9175

0.9519 0.9521 0.9519

1.8512 1.8587 1.8506
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0.0 and 0.5. The bigger the value of air, the more irregular the shape of generated elements. Table 4 gives the
results using 50� 5 elements. It is seen that with the increase of air, the accuracy reduces for both methods
whereas SFEM always gives better results than Q4 FEM. The 4-node QBI solutions are comparably closer to
SFEM than to 4-node Q4 elements.

4.2. Example 2: free vibration analysis of a variable cross-section beam

A cantilever beam with variable cross-section is examined as shown in Fig. 5. The following parameters are
used: L ¼ 10; Hð0Þ ¼ 5, HðLÞ ¼ 3, t ¼ 1:0, E ¼ 3.0� 107, v ¼ 0:3, and r ¼ 1.0. The first four natural
frequencies are computed using 4-node Q4 finite elements and SFEM as given in Table 5. Similar to the first
example, SFEM gives better results than 4-node Q4 elements when using the same mesh and they are
comparable with the 4-node QBI and 8-node finite elements.
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Fig. 6. A shear wall with four openings.

Table 6

First six natural frequencies (� 104 rad/s) of a shear wall using FEM/SFEM

No. of elements No. of nodes SFEM (4 SC) FEM (4-node Q4) Reference (Brebbia et al. [15])

309 (Mesh 1) 248 2.0877 2.1103 2.079

7.1175 7.2127 7.181

7.6300 7.6427 7.644

12.0501 12.2981 11.833

15.3932 15.7662 15.947

18.4207 18.6994 18.644

474 (Mesh 2) 557 2.0597 2.0744 —

7.0598 7.1153

7.6197 7.6270

11.8278 11.9766

15.2376 15.4448

18.2748 18.4285
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4.3. Example 3: free vibration analysis of a shear wall

In this example, a shear wall with four openings (see Fig. 6) is analyzed, which has been solved using BEM
by Brebbia et al. [15]. The bottom edge is fully clamped. Plane stress case is considered with E ¼ 10,000,
v ¼ 0:2, t ¼ 1:0, and r ¼ 1:0. The first six natural frequencies are listed in Table 6. It is found that the present
solutions are in good agreement with those obtained by BEM. From the relationship between accuracy and
node number, once again we can conclude that SFEM produces better results than 4-node Q4 FEM.

4.4. Example 4: free vibration analysis of a connecting rod

A free vibration analysis of a connecting rod is performed as shown in Fig. 7. Plane stress problem is
considered with E ¼ 10GPa, v ¼ 0:3, r ¼ 7.8� 103 kg/m3. The nodes on the left inner circumference are fixed
in two directions. From the results in Table 7, it is observed that SFEM gives comparable results as compared
with 4-node Q4 finite elements.
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Fig. 7. A connecting rod and its meshes.

Table 7

First six natural frequencies (� 106 rad/s) of a connecting rod using FEM/SFEM

No. of elements No. of nodes SFEM (4 SC) FEM (4-node Q4)

353 (Mesh 1) 454 0.1573 0.1596

0.7047 0.7186

1.7269 1.7253

1.7484 1.7751

3.1807 3.2473

803 (Mesh 2) 970 0.1564 0.1563

0.7007 0.7050

1.7230 1.7218

1.7275 1.7413

3.1401 3.1733

K.Y. Dai, G.R. Liu / Journal of Sound and Vibration 301 (2007) 803–820 813
5. Implicit forced vibration analysis

With the employment of Eqs. (8) and (19), the linear elastic discrete equation in SFEM can be expressed as

M €dþ C _dþ ~Kd ¼ fext. (25)

For simplicity a constant damping matrix C is used that is assumed to be a linear combination of M and ~K,

C ¼ aMþ b ~K, (26)

where a and b are the Rayleigh damping coefficients.
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Many methods can be used to advance the second-order time-dependent problems with respect to time, such
as Newmark method, Crank–Nicholson method, etc. [16]. In this work, Wilson method is used as briefly
discussed below [17]. When the state at t ¼ t0 (d0; _d0; €d0) is known, we aim to find the new state t1 ¼ t0+Dt

(d1; _d1; €d1) by first linearly extrapolating to a hypothetical state t2 ¼ t0+yDt (d2; _d2; €d2), where 1.4pyp2. The
following formulations are necessary:

6

y2Dt2
þ

3a
yDt

� �
Mþ
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2
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� �
, ð27Þ

€d2 ¼
6

y2Dt2
ðd2 � d0Þ �

6

yDt
_d0 � 2€d0, (28)

€d1 ¼ €d0 þ
1

y
ð€d2 � €d0Þ, (29)

_d1 ¼ _d0 þ
Dt

2
ð€d1 þ €d0Þ, (30)

d1 ¼ d0 þ Dt_d0 þ
Dt2

3
€d0 þ

Dt2

6
€d1. (31)
5.1. Example 5: implicit forced vibration analysis of a cantilever beam

A benchmark cantilever beam is investigated using the Wilson method. It is subjected to a tip harmonic
loading f(t) ¼ cosoft in y-direction. Plane strain problem is considered with numerical parameters as L ¼ 4:0,
H ¼ 1:0, t ¼ 1:0, E ¼ 1:0, v ¼ 0:3, r ¼ 1:0, a ¼ 0:005, b ¼ 0:272, of ¼ 0:05, y ¼ 1:4. The domain is
represented with 10� 2 elements. In FEM both 4-node Q4 and 8-node Q9 elements are used for comparison.
The time step Dt ¼ 1:57 is used for time integration. From the dynamic responses in Fig. 8 it is seen that both
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Fig. 8. Comparison of transient responses of a cantilever beam by 4-node Q4 FEM/SFEM.
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Fig. 10. Transient responses of the spherical shell subjected to a harmonic loading.
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methods give nearly identical vibration frequency but the amplitude of SFEM seems closer to that of the 8-
node finite elements as compared to the 4-node finite elements.

5.2. Example 6: implicit forced vibration analysis of a spherical shell

As shown in Fig. 9, a spherical shell is studied that subjected to a concentrated loading at its apex. In total,
30� 3 asymmetric elements are used with numerical parameters given as R ¼ 12, t ¼ 0:1, f ¼ 10:91, y ¼ 1:4,
E ¼ 1:0, v ¼ 0:3, r ¼ 1:0. The loading is first in the harmonic form f(t) ¼ cosoft and its dynamic responses are
demonstrated in Fig. 10 with of ¼ 0:01 and 0.05, respectively, and time step Dt ¼ 5. No damping effect is
included. Then a constant step load f ðtÞ ¼ 1 is added at apex since t ¼ 0. It is seen from Fig. 11 that with the
elapse of time the deflection at apex tends to be a constant value. With the inclusion of damping (a ¼ 0:005,
b ¼ 0:272), the response is damped out more quickly.

6. Explicit nonlinear forced vibration analysis

Total Lagrange formulation is used when geometrical nonlinear behavior is considered. The initial position
of a material point in a body is given by X in a fixed reference configuration and the total displacement at time
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Fig. 11. Transient responses of the spherical shell subjected to a constant step loading: (a) without damping; (b) with damping.
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tn is denoted as un then the current deformed configuration is described by

xn ¼ Xþ un. (32)

The current deformation is measured by the deformation gradient matrix relative to X given by

Fn ¼
qxn

qX
. (33)

In the reference configuration the Green strain may be expressed as

En ¼
1

2
ðFT

nFn � IÞ. (34)

Accordingly the strain–displacement matrix consists of two parts, the linear and nonlinear parts:

B ¼ BL þ BNL, (35)
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whose Ith component is given below for 2D problems

BI ðdnÞ ¼

F11
qNI

qX 1
F21

qNI

qX 1

F12
qNI

qX 2
F22

qNI

qX 2

F 12
qNI
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þ F 11

qNI

qX 2
F 22

qNI

qX 1
þ F 21

qNI

qX 2

2
66666664

3
77777775
. (36)

In a similar way, deformation gradient in Eq. (36) needs to be smoothed in SFEM as

~FijðXCÞ ¼
1

AX
C

Z
OX

C

quh
i

qX j

þ dij

� �
dO ¼

1

AX
C

Z
OX

C

quh
i

qX j

� �
dOþ dij

¼
1

AX
C

Z
GX

C

ðuh
i njÞdGþ dij ¼ ~eijðXCÞ þ dij, ð37Þ

where AX
C ¼

R
OX

L
dO is the initial area of the smoothing cell in study and

~eijðXCÞ ¼
1

AX
C

Z
GX

C

ðuh
i njÞdG or ~eijðXCÞ ¼

X
I

~b
C

jI diI , (38)

where ~b
C

jI ¼ 1=AX
C

R
GX

C
ðNI njÞdG. Note that the outward unit normal nj is defined in initial configuration.

Once the Green strain ~En is obtained using the smoothed deformation gradient in Eq. (34), the
Piola–Kirchhoff stresses can be accordingly computed using ~rn ¼ D~en.

6.1. Example 7: explicit forced vibration analysis of a spherical shell

To clearly demonstrate the effect of geometrical nonlinearity as compared with the linear elastic analysis, we
change the material properties as well as the geometric parameters of the spherical shell in this example as
follows: R ¼ 12:1 cm in, t ¼ 0:04 cm, f ¼ 10:91, P ¼ 445N, E ¼ 68:9GPa, v ¼ 0:3. r ¼ 2.82� 103 kg/m3. A
0 1 2 3 4 5 6

x 10-4

0

1

2

3

4

5

6
x 10-3

Time

A
p
e
x
 d

e
fl
e
c
ti
o
n

SFEM (Linear elastic solu.)

SFEM (Nonlinear elastic solu.)

Fig. 12. Linear and nonlinear elastic dynamic responses of a spherical shell under concentrated loading.
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Fig. 14. Nonlinear elastic dynamic responses of a spherical shell with damping.
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central difference procedure is used to integrate the kinematics explicitly through time. As the method is
conditionally stable a very small time step is permitted that solely depends on the computational model. In this
example, Dt ¼ 10�8 s is used. Fig. 12 shows the comparison of dynamic responses between linear and
nonlinear elastic solutions. It is observed that both the period and amplitude of nonlinear response are about
two times of those of linear case. In Figs. 13 and 14, dynamic relaxation is introduced with a ¼ 104 and b ¼ 0.
We notice that the response is damping out gradually and static deflection can be approximately retrieved. The
static linear deflection is located roughly at the middle part of the curves whereas the static nonlinear
deflection is very close to the peak amplitude, which is agreeable with those using static nonlinear analysis of
Newton–Raphson procedure [18]. When the loading is relatively very large, the apex of the shell deforms from
the upper side to the lower (see Fig. 15) and the linear analysis cannot yield a reasonable solution.
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7. Conclusions

The newly developed SFEM is further applied to the free and forced vibration analysis of 2D problems in
this work. Compared with the conventional finite elements, the following remarks can be made:
(1)
 In the natural frequency analysis it is found that SFEM gives much more accurate results and higher
convergence rate than the corresponding 4-node Q4 finite elements. For some cases, comparable accuracy
of SFEM can be acquired as compared with that of 8-node Q9 finite element but the former uses much
smaller number of nodes and thus more computationally efficient.
(2)
 In the forced vibration analysis, vibration period using SFEM is in good accord as compared with that of
4-node Q4 finite elements but the former vibration amplitude is closer to the responses of the 8-node Q9
elements.
(3)
 Deformation gradient is smoothed on the level of SC as performed for strain. Explicit geometrical
nonlinearity is also well incorporated in dynamic analysis. Nonlinear static deformation can be achieved
by introducing dynamic relaxation.
(4)
 By comparison the numerical procedure of SFEM is very easy and straightforward to implement. Field
gradients are computed directly using the shape function itself, rather than its derivatives, which are
created in a very simple and explicit manner. All these modifications would not incur addition
computational cost. So far we did not encounter any restrictions on this method in dynamic problems.
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