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Abstract

Studies are made on the nonlinear vibrations of Piezo-laminated rectangular thin plates with induced strain actuation by

following Kirchoff’s hypothesis and using strain-displacement relations of von Kármán type. The von Kármán’s large

deflection equations for generally laminated elastic plates are derived in terms of stress function and transverse deflection

function. A deflection function satisfying the geometric boundary conditions is assumed and a stress function is then

obtained after solving the compatibility equation. The modified Galerkin’s method is applied to the governing nonlinear

partial differential equation to obtain the nonlinear ordinary differential equation of motion (modal equation). This is of

Duffing’s type. Analytical expressions for the constants in the modal equation are provided to use for any lay-up sequence.

Procedure for exact integration of the modal equation is described. Numerical results of simply supported rectangular

plates with immovable edges are presented.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Applications of smart structure technologies to aerospace and other systems are expanding rapidly. Major
barriers are: actuator stroke, reliable database of smart material characteristics, non-availability of robust
distributed parameter control strategies and reliable mathematical modelling and analysis of smart systems.
Among the various smart effects encountered (viz., piezoelectric, electrostriction, magnetostriction, electro-
magneto rheological effects and shape memory effects), this paper examines the piezoelectric effect in
nonlinear vibrations of thin laminated rectangular plates.

Advanced research is directed towards smart material actuators and sensors [1–3] and piezoelectric,
modelling of beams with induced strain actuation [4–10], modelling of plates with induced strain actuation
[11–13]. What distinguishes induced strain actuators from conventional hydraulic and electrical actuators and
makes them especially attractive for smart structures is their ability to change their dimensions and properties
without utilizing any moving parts [14]. These actuator materials contract and expand just like the muscles in
the human body. When integrated into a structure (either through embedded or through surface-bonding),
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a and b length and width of the plate
A, B, Dmatrices of membrane, coupling, and

flexural stiffness of the plate
f(z) restoring force function
h thickness of plate in z direction
hi thickness of ith lamina
hp thickness of piezoelectric layer
I(z) potential energy function
M moment resultants
ML actuator moments
N stress resultants
NL actuator forces
Q matrix of reduced stiffness coefficients
Q̄ transformed reduced stiffness matrix

t time
u, v and w displacements in x, y and z directions
Wmn(t) time dependent amplitude
e total strain
e0 reference plane strain (i.e., strain at

z ¼ 0)
z amplitude to thickness ratio
zS specified amplitude to thickness ratio
j curvature changes
K actuation strains
ri density of ith lamina
r stress
j Airy’s stress function
dfa applied electrical potential difference
o nonlinear frequency
oL linear frequency
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they apply localized strains and directly influence the extensional and bending responses of the structural
elements. Because of the absence of mechanical parts they can be easily integrated into the base structure.
Integration within the structure ensures an overall force equilibrium between the forcing actuator and the
deforming structure, thus precluding any rigid body forces and torques. Using the pin-force model, it was
deduced that induced strain actuators, like piezoelectric materials, when bonded to the surface of a structure
generate a set of forces, which are concentrated close to the edges of the actuator [15,16]. Therefore, their
action is often represented by line moments or forces applied along the periphery of the actuator. This
representation simplifies analysis because the structure does not have to be discretized (to represent the non-
uniform structural properties in the regions of the patches) and global structural equations can be solved with
the actuator forces appearing as discretely applied external forces.

One of the basic elements of adaptive structures is a thin composite plate with surface-induced or embedded
sheet actuators. With tailored laminated plate, induced strain actuation can control its extension, bending and
twisting. Plates with distributed induced strain actuators can be used: to control pointing of precision
instruments in space; to control structural noise; and to change aerodynamic shape for vibration reduction
[17], flutter suppression and gust alleviation. Although the pin-force model does not correctly predict the
actuator/substrate response for thin structures, it is invaluable in understanding the physics of induced strain
actuation. Classical laminated plate theories have been developed to predict flexural response of laminated
plates with surface-bonded or embedded induced strain actuators utilizing the advanced models based on
assumed strain field [18,19]. Thakkar and Ganguli [20–22] have examined moderate deflections for smart
beams and linear applied actuation strain. The effects of actuation strain nonlinearity at high voltages are
studied in reference [23].

Two types of nonlinearities are most commonly encountered in plate problems. The geometric nonlinearity
arises due to large deformation and material nonlinearity is used to deal with nonlinear material having
stress–strain behaviour that is not linear. Librescu [24] and Chia [25,26] provides a wealth of information on a
variety of geometrically nonlinear static and dynamic problems of plates. The reviews of Bert [27] and
Sathyamoorthy [28] largely deal with the advances made in the analytical methods for solutions of plate
problems. For nonlinear free vibration analysis of thin laminated anisotropic plates, the governing equations
consists of a system of nonlinear partial differential equations of eighth order in terms of three displacement
components (u, v and w) or in terms of the transverse deflection w and force j. Generally, two methods have
been employed in obtaining approximate solutions to such nonlinear problems. These methods are based on
the assumptions that the plate deflection is separable in space and time. In the first method, the displacement
modes are assumed and the nonlinear partial differential equations are reduced to ordinary differential
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equations in time. The law of minimum potential energy states that, of all displacement functions satisfying
the boundary conditions, those that satisfy equilibrium conditions give minimum potential energy. There is no
guarantee that the assumed displacement modes that satisfy the geometrical boundary conditions will satisfy
the equilibrium conditions. Hence, the minimum potential energy obtained by using these displacement modes
is not the true minimum [29]. The accuracy of the solution depends on the selection of the displacement modes.
The second approach assumes that the deflection time function is sinusoidal when the plate is executing simple
harmonic oscillations [30,31].

This paper provides an approximate analytical solution for the nonlinear vibration analysis of piezo-
laminated thin rectangular plates by following Kirchoff’s hypothesis and using the strain–displacement
relations of von Kármán type. A linear model is considered for induced strain in the piezoelectric layer
applicable to low fields. The boundary conditions of the plate are simply supported along all the four
immovable edges. The von Kármán’s large deflection equations for arbitrarily laminated piezo-elastic plates
are derived in terms of stress functions and transverse deflection function. The formulation of the theory is
based on the fundamental assumption that strains and square of the rotations are small compared to unity. As
is well known, the von Kármán plate theory predicts deflections and stresses in a thin plate with reasonable
accuracy for deflection having the order of the plate thickness. Thus, the plate theory, which is restricted to
small strains but moderately large rotations, is termed as the moderately large deflection theory. A deflection
function satisfying boundary conditions is assumed and a stress function is then obtained. Galerkin’s method
is applied to the governing nonlinear partial differential equations to study the nonlinear vibration
characteristics of piezo-laminated thin rectangular plates.
2. Formulation

2.1. System Equations

One of the basic elements of adaptive structures is a thin composite plate with surface-induced or embedded
sheet actuators.

A thin rectangular plate of length a in the x direction, width b in the y direction and thickness h, in the z

direction is considered (Fig. 1). The z-axis is directed normal to the reference plane (z ¼ 0). The thickness of
the plate is assumed small in comparison with its smallest lateral dimension (i.e., h5a or h5b). Further it is
constructed of an arbitrary number of anisotropic layers, arrangement and thickness. u, v and w are
displacements in x, y and z directions, respectively, at the reference plane. The governing equations are based
on von Kármán’s elastic thin plate theory assumptions. Three additional assumptions are added. First, there is
no slip between the adjacent layers of the laminated plate. Second, rotary inertia and transverse shear effects
are neglected. Third, kinematics relations, (qu/qx)2 and (qv/qy)2are neglected as compared with (qw/qx)2 and
(qw/qy)2 terms.

Stress resultants and moments provide a simple means of dealing with laminated behaviour. For a generic
coupled laminated plate with surface bonded or embedded induced-strain actuators (piezoceramic sheets)
placed at arbitrary locations in z direction, the total strain is expressed using the Kirchoff’s hypothesis of
classical thin plates as

e ¼ e0 þ zj. (1)

In view of von Kármán-type geometric nonlinearity, the matrix of strains e0 in the reference plane (z ¼ 0) is

e0 ¼

�0x
�0y

�0xy

8>><
>>:

9>>=
>>; ¼

qu
qx
þ 1

2
qw
qx

� �2
qv
qy
þ 1

2
qw
qy

� �2
qu
qy
þ qv

qx
þ qw

qx
qw
qy

8>>>><
>>>>:

9>>>>=
>>>>;
. (2)
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Fig. 1. (a) Overall dimensions of a rectangular plate; (b) the detail at ‘A’ of (a). A typical smart laminated plate with top and bottom faces

with PZT-5A and glass-epoxy as in between layers; and (c) the actuator/sensor layer of the smart plate. The electric field is realized by

maintaining a potential difference between the electroded surfaces of the piezoelectric layer.
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Assuming small slopes as well as the Kirchoff’s hypothesis, the matrix of curvature changes j is

j ¼

kx

ky

kxy

8><
>:

9>=
>; ¼ �

q2w
qx2

q2w
qy2

2 q2w
qxqy

8>>><
>>>:

9>>>=
>>>;
: (3)

The constitutive relation for any ply of a laminated plate is

r ¼ Q̄ðe� KÞ, (4)

where components in the stress matrix, r ¼ {sx, sy, sxy}
T and the actuation strain matrix, K ¼ {Lx, Ly, Lxy}

T.
A linear model for induced strain in the piezoelectric layer is utilized in Eq. (4), which is a reason-
able approximation at low voltage applicable to low fields. Regarding the modelling of induced strain
actuation, proper care is taken while using the constitutive equations for piezoelectric materials, which
are ‘‘poling-direction’’ dependent. Referring to Fig. 1, the planar isotropy of poled ceramics is expres-
sed by their piezoelectric strain constants, such that d31 ¼ d32. The applied static electric field within the
piezoelectric actuator is assumed to be constant as the thickness of this layer is relatively small. When
an electrical potential difference is introduced across the thickness of the piezoelectric layer (actuator layer), it
is strained in its plane. For PZT-5A the in-plane free strain components Lx and Ly developed in the kth
actuator layer, having a charge constant d31 and thickness hp, when an electrical potential difference dfa is
applied, are

Lx ¼ Ly ¼
d31dfa

hp

and Lxy ¼ 0.

Matrix Q̄ is the transformed reduced stiffness of the plate and Q̄K represents an equivalent stress due to
actuation. By substituting the assumed deformation into the stress–strain equations and integrating through
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the thickness of the plate for net forces and moments, one obtains

N

M

� �
¼

A B

B D

� 	
e0

j

( )
�

NL

ML

( )
. (5)

The components in the matrices of the stress and moment resultants, viz., N ¼ {Nx, Ny, Nxy}
T and

M ¼ {Mx, My, Mxy}
T are defined as

ðNk;MkÞ ¼

Z h=2

�h=2
ð1; zÞsk dz ðk ¼ x; y;xyÞ. (6)

Nx, Ny, Nxy are membrane forces per unit length, Mx, My, Mxy are the bending and twisting moments per unit
length. The element Aij, Bij and Dij (i, j ¼ 1, 2, 6) in the 3� 3 symmetric matrices of A, B, and D in Eq. (5) are
defined as

ðAij ;Bij ;DijÞ ¼

Z h=2

�h=2
ð1; z; z2ÞQij dz ði; j ¼ 1; 2; 6Þ. (7)

The element Aij, Bij, and Dij, are, respectively, the membrane, coupling and flexural stiffness quantities of the
plate. Qij are the reduced stiffness coefficients. For symmetric anisotropic laminates, the material coupling
does not occur between transverse bending and in-plane stretching, viz., Bij ¼ 0, whereas in the case of non-
symmetric laminated plates Bij6¼0 [24,25].

The components in the matrices of the actuator forces and moments, viz., NL ¼ {NLx, NLy, NLxy}
T and

ML ¼ {MLx, MLy, MLxy}
T are defined as

NLk;MLkð Þ ¼

Z h=2

�h=2
ð1; zÞQ̄Ldz, (8)

where

Q̄L ¼ sLk ¼

sLx

sLy

sLxy

8><
>:

9>=
>; k ¼ x; y; xyð Þ.

Nonlinear equations of motion of generally laminated plates are

qNx

qx
þ

qNxy

qy
¼ 0, (9)

qNxy

qx
þ

qNy

qy
¼ 0, (10)

q2Mx

qx2
þ 2

q2Mxy

qxqy
þ

q2My

qy2
þNx

q2w
qx2
þ 2Nxy

q2w
qxqy

þNy

q2w

qy2
¼
Xn

i¼1

rihi

q2w
qt2

, (11)

where ri and hi are the density and thickness of the ith layer and n is the number of layers in the plate.
The partially inverted form of constitutive equations (5) is written as

e0

MþMK

( )
¼

A� B�

�ðB�ÞT D�

" #
NþNL

j

� �
, (12)

where, A*
¼ A�1, B*

¼ �A�1B, and D*
¼ D+B B*.

The Airy stress function j, which satisfies Eqs. (9) and (10) is defined by

Nx ¼
q2j
qy2

, (13)
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Ny ¼
q2j
qx2

, (14)

Nxy ¼ �
q2j
qxqy

. (15)

The compatibility equation is derived from relation (2) as

q2�0x
qy2
þ

q2�0y
qx2
�

q2�0xy

qxqy
¼

q2w
qxqy


 �2

�
q2w
qx2

q2w
qy2

. (16)

Using Eqs. (12)–(15) in Eqs. (11) and (16), one obtainsX
rihi

q2w
qt2
þ L1ðwÞ þ L3ðjÞ � Lðj;wÞ ¼ 0; (17)

L2ðjÞ � L3ðwÞ �
q2w

qxqy


 �2

þ
q2w

qx2

q2w

q2y
¼ 0; (18)

where the differential operators are

L1 ¼ D�11
q4

qx4
þ 4D�16

q4

qx3qy
þ 2ðD�12 þ 2D�66Þ

q4

qx2qy2
þ 4D�26

q4

qxqy3
þD�22

q4

qy4
,

L2 ¼ A�22
q4

qx4
� 2A�26

q4

qx3qy
þ ð2A�12 þ A�66Þ

q4

qx2qy2
� 2A�16

q4

qxqy3
þ A�11

q4

qy4
,

L3 ¼ B�21
q4

qx4
þ ð2B�26 � B�61Þ

q4

qx3qy
þ ðB�11 þ 2B�22 � 2B�66Þ

q4

qx2qy2
þ ð2B�16 � B�62Þ

q4

qxqy3
þ B�12

q4

qy4
,

Lðj;wÞ ¼
q2j
qy2

q2w
qx2
þ

q2j
qx2

q2w

qy2
� 2

q2j
qxqy

q2w
qxqy

.

Therefore, Eqs. (17) and (18) are two coupled governing equations of arbitrarily piezo-laminated thin plates.

2.2. Solution approach

The large amplitude vibrations of simply supported generic coupled laminated rectangular plate with
surface bonded or embedded induced strain actuators are examined here by applying the Galerkin’s method.

Boundary conditions for simply supported rectangular plates are

w ¼ 0; Mx ¼ 0 at x ¼ 0; a, (19)

w ¼ 0; My ¼ 0 at y ¼ 0; b. (20)

The inplane boundary conditions for immovable edges areZ a

0

�x �
1

2

qw

qx


 �2
( )

y¼0;b

dx ¼ 0, (21)

Z a

0

Nxy

� 

y¼0;b

dx ¼ 0, (22)

Z b

0

�y �
1

2

qw

qy


 �2
( )

x¼0;b

dy ¼ 0, (23)

Z b

0

Nxy

� 

x¼0;a

dy ¼ 0. (24)
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The system of Eqs. (17) and (18) in terms of the transverse deflection w and stress function j, are to be
solved in conjunction with the boundary conditions (19)–(24). A deflection shape function for w satisfying the
geometric boundary conditions of the plate is assumed. A stress function j is then obtained from the
compatibility Eq. (18). Galerkin’s method is applied to the governing nonlinear partial differential equation to
yield a second-order ordinary nonlinear differential equation of motion in time variable. The details of the
solution of the problem are briefly described below.

The transverse supporting conditions given in Eqs. (19) and (20) are satisfied by assuming a deflection
functions for the laminate in the separable form corresponding to the wavenumbers m, n as

w ¼W mnðtÞ sinðamxÞ sinðbnyÞ, (25)

here,

am ¼
mp
a
; bn ¼

np
b
.

Substituting the transverse deflection, w into the Eq. (18), and solving, utilizing the in-plane boundary
conditions, the stress function j is obtained as

j ¼ j0ðx; yÞ þW mnj1ðx; yÞ þW 2
mnj2ðx; yÞ. (26)

The expressions for the functions, j0, j1 and j2 are given in Appendix A. It should be noted that for
symmetric anisotropic laminates, the bending-stretching coupling matrix B ¼ 0 and D*

¼ D in Eq. (12). For
this case j1(x,y) as defined in Appendix A vanish and Eq. (26) for Airy’s potential is independent of linear
term in Wmn.

When w and j are substituted into Eqs. (19) and (20), the force boundary conditions are not satisfied when
B* does not equal zero. In such a situation usage of the modified Galerkin’s method [32] is more appropriate.
In the case of simply supported rectangular plates assuming w̄ ¼ sin amx sin bny; the residual force and
moment have the following relation:Z a

0

Z b

0

LR j;wð Þw̄dxdyþ

Z b

0

Mx

qw̄

qx


 �
x¼0

dyþ

Z b

0

Mx

qw̄

qx


 �
x¼a

dy

þ

Z a

0

My

qw̄

qy


 �
y¼0

dxþ

Z a

0

My

qw̄

qy


 �
y¼b

dx ¼ 0, ð27Þ

where LR(j,w) is residual force.
Letting LN ðj;wÞ ¼ LRðj;wÞ þ Lðj;wÞ, Eq. (17) then becomes

Xn

i¼1

rihi

q2w
qt2
þ L1ðwÞ þ L3ðjÞ � LNðj;wÞ ¼ 0. (28)

Applying Galerkin’s method to Eq. (27), the modal equation is then obtained as

Xn

i¼1

rihi

d2W mn

dt2
þ aL þ aW mn þ bW 2

mn þ gW 3
mn ¼ 0. (29)

The constants aL, a, b, g and d in the above equation (29) are defined in Appendix B.
For symmetric anisotropic laminates, B*

¼ 0, which implies that the constant coefficient b ¼ 0 in the modal
equation (29). Hence, the quadratic term in the restoring force function of equation of motion vanish for
symmetric laminates.

Defining z ¼Wmn/h and t ¼ ot, the modal equation (29) is written in the form

o2 z
::
þo2

Lf ðzÞ ¼ 0, (30)

where the restoring force function,

f ðzÞ ¼ d0 þ zþ d1z
2
þ d2z

3, (31)
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and

oL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aPn

i¼1

rihi

vuuut
is the linear frequency of the plate, d0 ¼ (aL/ah), d1 ¼ (bh/a), d2 ¼ (gh2/a) and o is the nonlinear frequency,
and over-dot denotes differentiation with respect to t.

The initial conditions for Eq. (30) are

z ¼ zs; z
:
¼ 0 at t ¼ 0. (32)

Here zs is the ratio of the amplitude of the transverse deflection and the thickness of the plate. The restoring
force function f(z) in the equation of motion (30) is a cubic polynomial, which is of Duffing type or a
combination of quadratic and cubic terms.

Solution for the nonlinear frequency of the plate, which is a function of material properties, dimensions of
the plate and the amplitude of vibration, can be obtained by several methods such as the perturbation method
[32] the harmonic balance method [33], the hybrid Galerkin’s method [29], exact integration [34] and iterative
numerical schemes [35]. Nayfeh and Mook [36] have described some of the conventional tools for the analysis
of nonlinear oscillations, such as, averaging techniques, multiple-time scaling and harmonic balancing. In the
present study the resulting equation of motion (30) is solved through exact integration.

If d0 ¼ 0 and d1 ¼ 0, then f(z) becomes an odd function, and the magnitudes of maximum positive and
negative amplitudes in the periodic motion will be equal. In the case of mixed-parity (i.e., d0 6¼0 and d1 6¼0), f(z)
is a non-odd function and the magnitudes of maximum positive and negative amplitudes in the periodic
motion will be different. Hence, for non-odd function f(z) the behaviour of oscillations is different for the
positive and negative amplitudes. That means the frequency values for the specified maximum positive and
negative amplitudes having the same magnitude, will be different.

The relationship between the positive and negative amplitudes, viz. z+ and z�, can be found by equating the
potential energies in either position, i.e. from

IðzþÞ ¼ Iðz�Þ, (33)

where

IðxÞ ¼
Z x

0

f ðZÞdZ ¼ d0xþ
1

2
x2 þ

d1
3
x3 þ

d2
4
x4. (34)

Multiplying Eq. (30) by dz/dt and integrating,

1

2
o2 dz

dt


 �2

þ o2
L IðzÞ � Iðz�Þ
� 


¼ 0. (35)

The initial conditions used while integrating Eq. (30) to obtain Eq. (35) are

z ¼ z�; _z ¼ 0 at t ¼ 0. (36)

The solution curve on the z� _z plane is referred as the integral curve or the phase trajectory. In the periodic
motion of the system, the solution curve on the z� _z plane is a closed trajectory. If d0 ¼ 0 and d1 ¼ 0, f(z) is an
odd function and I(z+) is an even function. The solution curve of Eq. (35) will be symmetric on z and _z axis. If
d0 6¼0 and d1 6¼0, the solution curve of Eq. (35) will be symmetric only on the z axis.

Integrating Eq. (35) from t ¼ 0 to t ¼ p, one gets

oL

o
¼

1ffiffiffi
2
p

p

Z zþ

z�

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðz�Þ � IðzÞ

p . (37)

For a specified maximum positive amplitude-to-thickness ratio z+ the corresponding maximum negative
amplitude-to-thickness ratio z� is obtained from Eq. (33) and vice versa. By substituting z� and z+ in Eq. (37)
the nonlinear frequency o is obtained. The integrand in Eq. (37) has poles at the end of integration (i.e., at
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z ¼ z� and z+), which may adversely affect the accuracy of an integration rule. Hence, the integrand in
Eq. (37), is modified by using

z ¼ z1 þ z2 cos
1

2
pð1þ xÞ

� �
. (38)

That eliminates the singularities and yields a form

o
oL

¼
1

2

Z x¼1

x¼�1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 þ c1zþ c2z

2
p

 !�1
, (39)

where

c0 ¼ 1þ
4

3
d1z1 þ

1

2
d2ð3z

2
1 þ z22Þ; c1 ¼

2

3
d1 þ d2z1; c2 ¼

1

2
d2,

z1 ¼
1

2
ðzþ þ z�Þ; z2 ¼

1

2
ðzþ � z�Þ.

The negative amplitude-to-thickness ratio z� corresponding to the positive amplitude-to-thickness ratio z+
obtained from Eq. (33) is

z� ¼
ðs1 þ s2 � a2Þ

a3
, (40)

where

s1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ r2

pq
; q ¼ a3a1 � a2

2; r ¼
1

2
ð3a3a2a1 � a2

3a0Þ � a2
2,

a3 ¼ c2; a2 ¼
1

3

2

3
d1 þ a3zþ


 �
; a1 ¼

1

3
þ a2zþ; and a0 ¼ 3a1zþ þ 2d0.

A ten-point Gaussian rule was adopted while evaluating the integral in Eq. (39).

3. Results and discussions

3.1. Comparison with published results

As the formulation is general, comparison of results for validation are carried out with those that are
available in published literature, when piezoelectric layers and induced actuation are absent.

The results presented in Table 1 are found to be in good agreement with those of Chia and Prabhakara [37]
and Mei and Umphai [38], obtained by different numerical schemes for isotopic square plates with
wavenumbers m ¼ n ¼ 1.

The variation of frequency ratio (o/oL) with the amplitude ratio (zS) is shown in Fig. 2 for a rectangular
plate (a/b ¼ 2; b/h ¼ 100) and lay-up sequence: [01/901/901/01]. The properties used in the analysis are [39]:
Table 1

Frequency ratio (o/oL) for the specified amplitude ratio (zS) of a simply supported isotropic square plate with immovable edges (a/b ¼ 1,

b/h ¼ 100, E11/E22 ¼ 1, n12 ¼ 0.3, E11 ¼ 2.6G12)

Amplitude ratio zS Chia and Prabhakara [37] Mei and Umphai [38] Present study

0.2 1.0185 1.0182 1.0195

0.4 1.0717 1.0709 1.0757

0.6 1.1534 1.1530 1.1625

0.8 1.2566 1.2589 1.2734

1.0 1.3753 1.3826 1.4024

Coefficients in the restoring force function (31): d0 ¼ d1 ¼ 0 and d2 ¼ 0.34125.
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Fig. 2. Variation of frequency ratio (o/oL) with amplitude ratio (zS) for a rectangular laminated plate for m ¼ n ¼ 1; (a/b) ¼ 2,

(b/h) ¼ 100; stacking sequence [01/901/901/01].

Table 2

Material properties considered for glass-epoxy and PZT-5A

Property Glass-epoxy PZT-5A

Moduli

E11 143GPa 63GPa

E22 9.7GPa 63Gpa

G12 6 Gpa 24.2Gpa

Poisson’s ratio n 0.3 0.3

Density r 2000 kg/m3 7800 kg/m3

Piezoelectric charge constant d31 — �154� 10�12m/V
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E11 ¼ 40E22, G12 ¼ 0.5E22 and n12 ¼ 0.25. The constants in the equation of motion are: d0 ¼ 0, d1 ¼ 0 and
d2 ¼ 0.3536. The results obtained by Singh et al. [39] and Onkar and Yadav [40] are found to be reasonably in
good agreement with the present analysis.

3.2. Nonlinear frequency

This paper examines the nonlinear free vibration of simply supported piezo-laminated rectangular thin
plates with moderately large deflection. Numerical results for simply supported plates with immovable edges
are presented for wavenumbers m ¼ n ¼ 1. Fig. 1 shows the configuration of the plate considered for the
present analysis. The piezoelectric layer can be surface bonded or embedded in one of the layers. The top and
bottom layers are composed of PZT-5A. Glass-epoxy laminate is sandwiched between them. Table 2 gives the
material properties for glass-epoxy and PZT-5A considered in the present numerical experiment. Piezoelectric
materials have the advantage of being used as actuator as well as sensors. The top layer is considered as
actuator and the bottom layer acts as the sensor/actuator. The feedback voltage for correcting the error in the
required response through the actuator layer is realized by the sensor/actuator layer. The actuation voltage,
strains the top layer. This alters the nonlinear vibration behaviour of the laminate. On application of strains of
opposite magnitude in the bottom layer, one gets the same response as that of strain-free laminate. It should
be noted that the applied strains are within the rated capacity of the PZT-5A. The strength of PZT-5A is
75.9MPa, the rated stress is 20.7MPa. Various cases of lamina sequence are considered for a six-layered plate.
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Table 3

Coefficients in the restoring force function (31) of equation of motion (30) and linear frequencies for symmetric and anti-symmetric lay-up

sequence of a square plate with applied electric potential difference

Applied electric potential difference dja (Volts) Stacking sequence

[PZT-5A/01/01/01/01/PZT-5A]

Stacking sequence

[PZT-5A/01/01/901/901/PZT-5A]

d0 ¼ d1 ¼ 0 d0 ¼ d1 ¼ 0

d2 oL(Hz) d2 oL(Hz)

Direction of applied electric field is same as poling direction of PZT-5A crystal

0.0 1.38 749.4 1.43 735.6

400.0 1.42 737.2 1.48 723.1

533.5 1.47 724.8 1.53 710.5

800.0 1.52 712.2 1.59 697.6

1067.0 1.58 699.4 1.65 684.5

Direction of applied electric field is opposite to poling direction of PZT-5A crystal

�0.0 1.38 749.43 1.43 735.6

�400.0 1.33 761.4 1.39 747.8

�533.5 1.29 773.2 1.34 759.8

�800.0 1.25 784.9 1.30 771.7

�1067.0 1.22 796.3 1.26 783.3

Dimensions of the plate: a ¼ 100mm, b ¼ 100mm, h ¼ 2.2mm, (aspect ratio, a/b ¼ 1).

Wave numbers: m ¼ n ¼ 1.

Table 4

Coefficients in the restoring force function (31) of equation of motion (30) and linear frequencies for symmetric and anti-symmetric lay-up

sequence of a rectangular plate with applied electric potential difference

Applied electric potential difference dja (Volts) Stacking sequence

[PZT-5A/01/01/01/01/PZT-5A]

Stacking sequence

[PZT-5A/01/01/901/901/PZT-5A]

d0 ¼ d1 ¼ 0 d0 ¼ 0

d2 oL(Hz) d1 d2 oL(Hz)

Direction of applied electric field is same as poling direction of PZT-5A crystal

0.0 1.11 451.2 0.0101 1.81 464.1

400.0 1.18 438.5 0.0107 1.91 451.8

533.5 1.25 425.4 0.0113 2.03 439.0

800.0 1.34 411.8 0.0120 2.16 425.9

1067.0 1.43 397.9 0.0128 2.30 412.4

Direction of applied electric field is opposite to poling direction of PZT-5A crystal

�0.0 1.11 451.2 0.0101 1.81 464.1

�400.0 1.05 463.6 0.0096 1.73 476.2

�533.5 1.00 475.6 0.0092 1.64 487.9

�800.0 1.36 487.4 0.0088 1.57 499.4

�1067.0 1.40 498.9 0.0084 1.50 510.6

Dimensions of the plate: a ¼ 200mm, b ¼ 100mm, h ¼ 2.2mm (aspect ratio, a/b ¼ 2).

Wave numbers: m ¼ n ¼ 1.

K. Jayakumar et al. / Journal of Sound and Vibration 301 (2007) 846–863856
For each of this case 0%, 25%, 50%, 75% and 100% rated strains are applied at the top layer. This is achieved
by applying appropriate actuation voltage on the electrodes of the piezoelectric layer.

The nonlinear free vibrations of rectangular thin plates having different aspect ratios are studied for
specified amplitude to thickness ratio. The thickness of the PZT-5A layer considered is 0.5mm and glass-
epoxy layer is 0.3mm.
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Table 5

Coefficients in the restoring force function (31) of equation of motion (30) and linear frequencies for symmetric and anti-symmetric lay-up

sequence of a rectangular plate with applied electric potential difference

Applied electric potential difference dja (Volts) Stacking sequence

[PZT-5A/01/01/01/01/PZT-5A]

Stacking sequence

[PZT-5A/01/01/901/901/PZT-5A]

d0 ¼ d1 ¼ 0 d0 ¼ 0

d2 oL(Hz) d1 d2 oL(Hz)

Direction of applied electric field is same as poling direction of PZT-5A crystal

0.0 2.24 497.4 0.0101 1.82 464.1

400.0 2.35 485.9 0.0107 1.92 451.8

533.5 2.47 474.1 0.0113 2.03 439.0

800.0 2.60 462.0 0.0120 2.16 425.9

1067.0 2.74 449.5 0.0128 2.30 412.4

Direction of applied electric field is opposite to poling direction of PZT-5A crystal

�0.0 2.24 497.4 0.0101 1.82 464.1

�400.0 2.14 508.6 0.0096 1.73 476.2

�533.5 2.05 519.7 0.0092 1.64 487.9

�800.0 1.97 530.4 0.0088 1.57 499.4

�1067.0 1.89 541.0 0.0084 1.50 510.6

Dimensions of the plate: a ¼ 100mm, b ¼ 200mm, h ¼ 2.2mm (aspect ratio, a/b ¼ 1/2).

Wave numbers: m ¼ n ¼ 1.

Fig. 3. Variation of the nonlinear frequency as a function of amplitude ratio for different actuation electric potential difference. Stacking

sequence [PZT-5A/0o/0o/0o/0o/ PZT-5A] a ¼ 100mm, b ¼ 100mm, h ¼ 2.2mm, (a/b ¼ 1) for m ¼ n ¼ 1.
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The coefficients in the restoring force function (31) of the equation of motion (30) for stacking sequence
[PZT-5A/0o/0o/0o/0o/PZT-5A] and [PZT-5A/0o/0o/90o/90o/PZT-5A] are presented in Table 3. Studies are
carried out to examine the effect of applied electric field along the poling direction and opposite to it, on the
nonlinear free vibrations of the smart plate. In the present study, the poling direction is in z-direction (along
the thickness of the plate). When the applied electric field is along the poling direction the linear frequency
decreases with increase in dja. For the applied electric field opposite to the poling direction the linear
frequency increases with the increase in the magnitude of dja. It is possible to enhance or bring down the
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Fig. 4. Variation of the nonlinear frequency as a function of amplitude ratio for different actuation electric potential difference. Stacking

sequence [PZT-5A/0o/0o/90o/90o/ PZT-5A]. a ¼ 100mm, b ¼ 100mm, h ¼ 2.2mm, (a/b ¼ 1) for m ¼ n ¼ 1.

Fig. 5. Variation of the nonlinear frequency as a function of amplitude ratio for different actuation electric potential difference. Stacking

sequence [PZT-5A/0o/0o/0o/0o/ PZT-5A]. a ¼ 200mm, b ¼ 100mm, h ¼ 2.2mm, (a/b ¼ 2) for m ¼ n ¼ 1.
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natural frequency by changing the direction of the applied electric field with respect to the poling direction. It
can be seen from Table 3 that for symmetric square laminates the linear frequency for various electric
potentials are larger than that of unsymmetrical stacking sequence. For rectangular unsymmetrical laminates
having the aspect ratio (a/b ¼ 2) the linear frequencies in Table 4 for various electric potential differences are
larger than for the symmetric laminates. The trend in Table 5 is reversed in case of rectangular laminates
having the aspect ratio (a/b ¼ 1/2). The increase or decrease in the natural frequency is due to the change in
the laminate stiffness governed by the lay-up sequence, aspect ratio and the direction of applied electric field.

Figs. 2–8 show the variation of nonlinear frequency o with amplitude ratio zS for different plate
configurations and actuation electric potential difference. Fig. 2 is for composite plate with layup sequence
[0o/90o/90o/0] for aspect ratio 2. Fig. 3 presents data for stacking sequence [PZT-5A/0o/0o/0o/0o/PZT-5A],
aspect ratio 1 with the applied electric field along and against the poling direction. Fig. 4 depicts the
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Fig. 6. Variation of the nonlinear frequency as a function of amplitude ratio for different actuation electric potential difference. Stacking

sequence [PZT-5A/0o/0o/90o/90o/ PZT-5A]. a ¼ 200mm, b ¼ 100mm, h ¼ 2.2mm, (a/b ¼ 2) for m ¼ n ¼ 1.

Fig. 7. Variation of the nonlinear frequency as a function of amplitude ratio for different actuation electric potential difference. Stacking

sequence [PZT-5A/0o/0o/0o/0o/ PZT-5A]. a ¼ 100mm, b ¼ 200mm, h ¼ 2.2mm, (a/b ¼ 1/2) for m ¼ n ¼ 1.
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corresponding behaviour for stacking sequence [PZT-5A/0o/0o/90o/90o/PZT-5A]. Figs. 5 and 6 present the
natural frequencies for the two layups with aspect ratio 2 and Figs. 7 and 8 for aspect ratio 1

2
. When the applied

electric potential difference is specified, the frequency increases with the amplitude, this indicates hardening
effect. The rate of change in o increases with increase in zS for a specified applied electric potential difference
dja. The applied electric potential difference on the actuator has the effect to alter the overall stiffness of the
lamina sequence. Thus, for specified amplitude ratio the nonlinear frequency increases or decreases depending
on the direction of the applied electric field with respect to the poling direction.

Fig. 9 depicts the phase-plane trajectory for a stacking sequence [PZT-5A/0o/0o/0o/0o/PZT-5A] of the piezo-
laminated rectangular plate. For the stacking sequences under study, the phase plane trajectory, as expected, is
closed indicating the periodicity in the motion. With different actuation voltages the maximum amplitude
ratios remain same but the maximum nondimensional velocities are different.
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Fig. 8. Variation of the nonlinear frequency as a function of amplitude ratio for different actuation electric potential difference. Stacking

sequence [PZT-5A/0o/0o/90o/90o/ PZT-5A]. a ¼ 100mm, b ¼ 200mm, h ¼ 2.2mm, (a/b ¼ 1/2) for m ¼ n ¼ 1.

Fig. 9. Phase-plane diagram for lamina sequence [PZT-5A/0o/0o/0o/0o/PZT-5A] for m ¼ n ¼ 1; a ¼ 200mm, b ¼ 100mm and

h ¼ 2.2mm.
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4. Conclusions

Studies are made on the nonlinear vibration analysis of a generic coupled-laminated rectangular plate with
surface or embedded induced strain actuators. A linear model is considered for induced strain in the
piezoelectric layer applicable to low fields. The effects of various allowable actuation voltages on the nonlinear
frequencies are examined for a simply supported piezo-laminated rectangular plate having glass-epoxy
composite that is sandwiched between two piezoelectric layers. Hardening effect is observed in the nonlinear
frequency for a given actuation voltage. The proposed approach gives direct solution for a limited class of
problems. It is preferable to use continuum methods if closed-form solution methods for such a system are not
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possible. Simple continuum solution methods can provide not only a check against the numerical approaches
like finite element model, but also a means by which the effect of a parameter change on a system can be
readily gauged, which is useful in the design process. Future research is directed towards vibration problems
for smart structures involving both geometric nonlinearity and actuation strain nonlinearity at high voltages.

Appendix A

The expressions for the functions, j0,j1 and j2 in Eq. (26) are given below:

j0ðx; yÞ ¼ c1lx2 þ c2ly
2; j1ðx; yÞ ¼ c1 sin amx sin bnyþ c2 cos amx cos bny,

j2ðx; yÞ ¼ c3x
2 þ c4y

2 þ c5 cos 2amxþ c6 cos 2bny,

c1 ¼ ðc11c21 � c12c22Þ=ðc
2
11 � c2

12Þ,

c2 ¼ ðc11c22 � c12c21Þ=ðc
2
11 � c2

12Þ; c3 ¼
1

16

b2nA�11 � a2mA�21
A�11A�22 � A�12A�21


 �
,

c4 ¼
1

16

a2mA�22 � b2nA�21
A�11A�22 � A�12A�21


 �
; c5 ¼ b2n=ð32A�22a

2
mÞ,

c6 ¼ a2m=ð32A�11b
2
nÞ; c11 ¼ a4mA�22 þ a2mb

2
nð2A�12 þ A�66Þ þ b4nA�11,

c12 ¼ 2a3mbnA�26 þ 2amb
3
nA�16; c21 ¼ a4mB�21 þ a2mb

2
nðB
�
11 þ B�22 � 2B�66Þ þ b4nB�12,

c22 ¼ a3mbnðB
�
61 � 2B�26Þ þ amb

3
nðB
�
62 � 2B�16Þ; c1l ¼

1

2
NLxy

A�16A�21 � A�26A�11
A�11A�22 � A�12A�21


 �
�NLy

� �
,

c2l ¼
1

2
NLxy

A�12A�26 � A�22A�16
A�11A�22 � A�12A�21
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�NLx

� �
.

Appendix B

The constants a, aL, b, g and d in the equation of motion (29) are given below:

a ¼ c0 þ c01 þ 2a2mc2l þ 2b2nc1l; d ¼
16

mnp2
sin2

mp
2

sin2
np
2
; g ¼

1

16

a4m
A�11
þ

b4n
A�22


 �
,

c0 ¼ a4mD�11 þ 2a2mb
2
n D�12 þ 2D�66
� �

þ b4nD�22; c01 ¼
c11 c2

21 þ c2
22

� �
� 2c12c21c22

c2
11 � c2

12

,

For m and n are odd:

b ¼ �
8ambn

3ab


 �
4c1 þ

B�21
A�22
þ

B�12
A�11


 �
; aL ¼ 0.

For m is even and n is odd:

b ¼ �
2ambn

ab


 �
�B�21
A�22
þ

a2mB�11

3b2nA�11

 !
�

32

ab

am

bn

B�11c4 þ B�21c3

� �
,

aL ¼ �
16

ab

am

bn

B�11 2c2l þNLx

� �
þ B�21 2c1l þNLy

� �
þ B�61NLxy þMLx

� �
.
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For m is odd and n is even:

b ¼ �
2ambn

ab


 �
�B�12
A�11
þ

b2nB�22
3a2mA�22
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�

32

ab

bn

an

B�12c4 þ B�22c3

� �
,

aL ¼ �
16

ab

bn

am

B�12 2c2l þNLx

� �
þ B�22 2c1l þNLy

� �
þ B�62NLxy þMLy

� �
.

For m and n are even: b ¼ 0, aL ¼ 0.
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