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Abstract

This paper presents a means of evaluating singular integrals in the Helmholtz boundary integral equation and its normal

and tangential derivatives in two dimensions. The subtraction–addition technique is applied to the singular integral

equations to convert the singular integrals to either ordinary integrals with bounded integrands or modified singular

integrals, including hypersingular integrals, with exact integration values. This regularization is performed before any

discretization. The modified integral equations can be calculated by directly applying standard quadrature rules over the

entire integration domain. Numerical computations involve evaluating the acoustic field associated with a radiating inverse

elliptic cylinder. The velocity potential is obtained by applying the Burton–Miller method, which linearly combines the

Helmholtz boundary integral equation with its normal derivative, to treat the fictitious characteristic frequencies. Further

substituting the velocity potential into the regularized tangential derivative yields the surface tangential velocity.

Comparing the numerical results with the analytical solutions verifies the effectiveness of the presented approach.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The Helmholtz boundary integral equation has been extensively adopted for several decades for treating the
exterior acoustic radiation and scattering by obstacles. Ciskowski and Brebbia [1] discussed this usage in
detail. The main problem with this lies in the existence of nonunique solutions at the characteristic frequencies
of the associated interior Dirichlet problem. Moreover, the characteristic frequencies of an arbitrarily shaped
object are generally not known a priori, except when the associated interior problem has been solved.
Nonuniqueness does not have any physical significance, and is a purely mathematical problem that arises from
the breakdown of the boundary integral representation at the characteristic frequencies. Two major methods,
appropriate for practical applications, have been applied to overcome this difficulty.

Schenck [2] proposed a combined Helmholtz integral equation formulation (CHIEF) that added some
interior integral relationships to the surface Helmholtz integral equation. The subsequent overdetermined
system of equations may then be solved by applying a least-squares technique. This method perhaps is the
most widely used in engineering applications. However, selecting the optimum number and suitable positions
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.10.023

2742019.

ess: yha111@mail.ncku.edu.tw.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.10.023
mailto:yha111@mail.ncku.edu.tw


ARTICLE IN PRESS
S.A. Yang / Journal of Sound and Vibration 301 (2007) 864–877 865
of the interior points may become difficult as the wave frequency increases. This fact has motivated the
proposition of numerous variants [3–6] effectively to treat interior points.

Burton and Miller [7] linearly combined the Helmholtz integral equation with its normal derivative to
circumvent the nonuniqueness problem. This method possesses a more rigorous mathematical background
than CHIEF. However, the normal derivative of the Helmholtz integral equation contains a hypersingular
integral that involves a double normal derivative of the free-space Green’s function. Most of the
Burton–Miller-type approaches developed subsequently thus emphasize improving the numerical efficiency
of the evaluation of the hypersingular integrals.

Much research has been conducted to describe hypersingular integrals in terms of Hadamard’s finite part
[8]. Based on Hadamard’s finite-part interpretation, Chien et al. [9] employed some identities in the integral
equation related to an interior Laplace problem to reduce the order of the kernel singularity. Liu and Rizzo
[10] derived a weakly singular form of the hypersingular integral equations by subtracting a two-term Taylor
series from the density function. Certain integral identities of static Green’s function were used to assess the
added-back terms. Ergin et al. [11] proposed the combination of a Burton–Miller-type time domain with a
field integral equation for transient scattering from closed rigid bodies. Yang [12,13] expressed the unknown
surface functions as a truncated Fourier–Chebyshev or –Legendre series. Some weakly singular integrals and
the hypersingular integral were analytically evaluated based on the properties of Legendre functions. Harris
and Chen [14] developed a high-order Galerkin method in terms of the singularity subtraction approach to
reduce the hypersingular operator to a weakly singular one. In Ref. [14], the numerical procedures included
two particular iterative solvers—the conjugate gradient normal method and the generalized minimal residual
method. Gray et al. [15] employed the multiple polar coordinate transformations and analytic integration to
evaluate directly Galerkin hypersingular integrals without recourse to Hadamard’s finite part. Yan et al. [16]
considered the normal derivative of solid angles on the surface. Sladek and Sladek [17] surveyed singular
integral methods for both Galerkin and collocation formulations.

Tangential derivatives of the boundary integral equations are also useful in various engineering
applications, for example, the calculation of the boundary stresses of elastostatic problems [18]. See Smirnov
[19], Jaswon and Symm [20], and Colton and Kress [21] for the mathematical foundation. Meyer et al. [22]
implicitly applied tangential operators to circumvent the hypersingularity in acoustic radiation problems.
Bonnet and Guiggiani [23] evaluated the sensitivity to tangential perturbations of the singular points
of boundary integrals that involve either weak or strong singularities. Both scalar potential and elastic
problems were examined. Amini [24] analyzed the spectral properties of the single-layer Laplacian
potential operator and its tangential derivatives on a circular boundary. This study expanded the unknown
functions as Fourier series to yield some analytical results concerning the elements of discrete operators and
their eigenvalues and eigenvectors. Jorge et al. [25] derived a self-regular formulation strategy in terms of
Green’s identity and its gradient form for Laplace’s equation. Martı́nez-Castro and Gallego [26] derived an
error estimator based on the tangential boundary integral equation residuals for Laplace and Helmholtz
equations.

In the light of the above developments, this study converts the 2D Helmholtz boundary integral equation
and its normal and tangential derivatives into a singularity-free form, facilitating numerical implementation.
The rest of this study is organized as follows. Section 2 introduces the basic boundary integral equations.
Section 3 describes the regularization method which does not require any approximations of the surface
functions, such as a truncated Fourier–Chebyshev or –Legendre series adopted in Refs. [12,13], so as to
provide wider applications. Section 4 numerically elucidates the effectiveness and accuracy of the proposed
method for a pulsating inverse elliptic cylinder. Section 5 draws conclusions.

2. Basic equations

The exterior acoustic radiation problem in an unbounded ideal homogeneous medium is specified by the
following wave equation:

r2fðr; tÞ ¼
1

c2
q2fðr; tÞ

qt2
, (1)
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where r2 denotes the Laplacian operator in two dimensions, f denotes the velocity potential that is twice
continuously differentiable at point r and time t, and c represents the speed of sound in the medium at the
equilibrium state. The velocity potential f is related to the velocity u:

u ¼ rf. (2)

For steady-state excitation with a time factor exp(�iot), Eq. (1) reduces to the Helmholtz wave equation

ðr2 þ k2
Þf ¼ 0, (3)

where i ¼
ffiffiffiffiffiffiffi
�1
p

denotes the imaginary unit, o denotes the angular frequency, and k ¼ o/c represents the
wavenumber. The velocity potential f fulfills the Neumann boundary condition on a sufficiently smooth body
surface qB,

qf
qnr

¼ f ðrÞ, (4)

where q/qnr denotes differentiation along the outward normal direction at rAqB and f(r) represents a specified
function. The velocity potential f should also meet the Sommerfeld radiation conditions at infinity

f ¼ Oðr�1=2Þ;
qf
qr
� ikf ¼ Oðr�1=2Þ (5)

as r-N. The solution to the above boundary-value problem exists and is unique, as described in detail
elsewhere [21].

According to the integral equation method, the Helmholtz integral relation takes the following form:

�fðpÞ ¼
Z
qB

fðqÞ
qGkðp; qÞ

qnq

dSðqÞ �

Z
qB

Gkðp; qÞ
qf
qnq

dSðqÞ, (6)

where f(q) is Hölder continuous, fðqÞ 2 C0;l, 0olo1, extending over a simple closed Liapunov boundary qB,
and

� ¼

1; p exterior to qB;

1=2; p on qB;

0; p interior to qB:

8><
>: (7)

The free-space Green’s function Gk in the 2D Helmholtz equation can be expressed as

Gkðp; qÞ ¼
i

4
H
ð1Þ
0 ðkRÞ, (8)

where H
ð1Þ
0 ðkRÞ denotes the Hankel function of the first kind and of order zero, and R represents the distance

between the field point p(x, y) and the source point q(x, Z). The first integral in Eq. (6) is regular and the second
integral contains a weak logarithmic singularity when pAqB and q-p.

Taking the normal derivative of Eq. (6) when pAqB leads to

1

2

qf
qnp

¼ fðqÞ
q2Gkðp; qÞ

qnpqnq

dSðqÞ �

Z
qB

qGkðp; qÞ

qnp

qf
qnq

dSðqÞ, (9)

where the first integral is interpreted as a Hadamard finite-part integral. The existence of Eq. (9) necessitates

the continuity requirement f 2 C1;l [27]. Hypersingular integrals are unbounded; however, retaining only the
finite parts enables the hypersingular integral equations to be used to solve various physical problems [17]. A

unique behavior of hypersingular integrals is of particular concern; for example, the integral ðxþ 1Þ�2dx ¼

�1=2 contains a negative finite part although the integrand is always positive in the integration domain.
The tangential derivative of Eq. (6) when pAqB can be written as

1

2

qf
qtp

¼

Z
qB

fðqÞ
q2Gkðp; qÞ

qtpqnq

dSðqÞ �

Z
qB

qGkðp; qÞ

qtp

qf
qnq

dSðqÞ, (10)
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where q/qtp denotes differentiation along the unit tangential vector s(p). The first integral in Eq. (10) is regular
and the second contains a strong singularity. Eq. (10) is not an integral equation because f(q) is obtained from
Eq. (6) or a linear combination of Eqs. (6) and (9), and qf/qnq is obtained from boundary condition (4). The
singularity behavior of hypersingular and strongly singular boundary integral representations of potential
gradient is discussed elsewhere [28,29].

The relaxation of the standard smoothness requirements is described elsewhere [30]. The weaker continuity
conditions facilitate numerical calculations in practical applications. Notably, regularization methods
markedly affect the numerical accuracy and efficiency. The following section introduces a method of treating
singularities in Eqs. (6), (9) and (10).

3. Regularization

This section elucidates a regularization method for converting singular integrals into a form that allows the
direct application of standard quadrature without recourse to another specific treatment. The regularization is
implemented globally, rather than locally along each element as in conventional boundary element methods,
so the regularization is implemented before boundary surfaces are discretized.

The boundary surface qB is assumed to be able to be described by the following vector function:

rðaÞ ¼ xðaÞi þ yðaÞj; �1pap1, (11)

where a denotes a parameter, and i and j are unit vectors that are parallel to the positive x and y axes,
respectively. Accordingly, Eq. (6) for pAqB can be rewritten in the following parametric form:

fðbÞ
2
¼

Z 1

�1

fðaÞ
qGkða; bÞ

qna
� Gkða; bÞ

qf
qna

� �
dS

da
da; b 2 ½�1; 1�, (12)

where

dS

da
¼

dr

da
dr

da

� �1=2

¼
dx

da

� �2

þ
dy

da

� �2
" #1=2

� ðx0
2
ðaÞ þ y0

2
ðaÞÞ1=2. (13)

Applying the subtraction–addition technique to Eq. (12), we have

fðbÞ
2
¼

Z 1

�1

fðaÞ
qGk

qna

dS

da
da�

Z 1

�1

Gk

qf
qna

dS

da
� G

qf
qnb

dS

db

� �
da

þ
1

2p
qf
qnb

dS

db

Z 1

�1

ln R� ln
dS

db
ja� bj

� �� �
daþ

1

p
qf
qnb

dS

db
ln
dS

db

þ
1

2p
qf
qnb

dS

db

Z 1

�1

ln ja� bjda, ð14Þ

where the free-space Green’s function G in the 2D Laplace equation can be expressed as

G ¼ �
ln R

2p
. (15)

Applying Taylor’s formula for small ja�bj yields

lim
a!b

qGk

qna
¼ lim

a!b

qG

qna
¼ �

kðbÞ
4p

, (16)

lim
a!b
ðGk � GÞ ¼ �

1

2p
gþ ln

k

2

� �
þ

i

4
, (17)

lim
a!b

R �
dS

db
ja� bj, (18)
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where k(b) denotes the boundary curvature at point b:

kðbÞ ¼
x0ðbÞy00ðbÞ � x00ðbÞy0ðbÞ

ðx02ðbÞ þ y02ðbÞÞ3=2
(19)

and g represents Euler’s constant [31]:

g ¼ lim
n!1

Xn

m¼1

1

m
� ln n

 !
¼ 0:577215 . . . . (20)

Eq. (16) is obtained from calculus, as in, for example, [19]. Yang [32] derived Eq. (17). Eqs. (16)–(18) clearly
demonstrate that the first three integrals of Eq. (14) are bounded. The final integral of Eq. (14) can be exactly
evaluated as follows [33]:

Z 1

�1

ln ja� bjda ¼
ð1þ bÞ lnð1þ bÞ þ ð1� bÞ lnð1� bÞ � 2; ba� 1;

2 ln 2� 2; b ¼ �1:

(
(21)

The modified equation, Eq. (14), is therefore a singularity-free boundary integral equation that yields the
unknown potential function f.

The regularization technique presented above can be used to rewrite Eq. (9) as follows:

1

2

qf
qnb
¼

Z 1

�1

fðaÞ
q2Gk

qnaqnb

dS

da
� fðbÞ

q2G

qnaqnb
þ

k2G

2

� �
dS

db

� �
da

�
fðbÞ
2p

dS

db

Z 1

�1

q2 ln R

qnaqnb
þ

1

R2

� �
da

þ
fðbÞ
2p

dS

db

Z 1

�1

1

R2
�

1

ða� bÞ2
1

ðdS=dbÞ2

"

þ
1

a� b
x0ðbÞx00ðbÞ þ y0ðbÞy00ðbÞ

ðx02ðbÞ þ y02ðbÞÞ3=2
1

dS=db

#
da

þ
fðbÞ
2p

1

dS=db
1

ða� bÞ2
da

�
fðbÞ
2p

x0ðbÞx00ðbÞ þ y0ðbÞy00ðbÞ

ðx02ðbÞ þ y02ðbÞÞ3=2

Z 1

�1

1

a� b
da

�
k2fðbÞ
4p

dS

db

Z 1

�1

ln R� ln
dS

db
ja� bj

� �� �
da�

k2fðbÞ
2p

dS

db
ln
dS

db

�
k2fðbÞ
4p

dS

db

Z 1

�1

ln ja� bjda�
Z 1

�1

qGk

qnb

qf
qna

dS

da
da, ð22Þ

where

lim
a!b

q2Gk

qnaqnb
�

q2G

qnaqnb
�

k2G

2

� �
¼

k2

4p
1

2
� ln

k

2
� g

� �
þ i

k2

8
, (23)

lim
a!b

q2 ln R

qnaqnb
þ

1

R2

� �
¼ 0, (24)
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lim
a!b

1

R2
�

1

ða� bÞ2
1

ðdS=dbÞ2
þ

1

a� b
x0ðbÞx00ðbÞ þ y0ðbÞy00ðbÞ

ðx02ðbÞ þ y02ðbÞÞ3=2
1

dS=db

" #

¼
3

4

x002ðbÞ þ y002ðbÞ

ðx02ðbÞ þ y02ðbÞÞ2
�

1

3

x0ðbÞx000ðbÞ þ y0ðbÞy000ðbÞ

ðx02ðbÞ þ y02ðbÞÞ2
� k2ðbÞ, ð25Þ

1

ða� bÞ2
da ¼ �

1

1� b
�

1

1þ b
, (26)

Z 1

�1

1

a� b
da ¼ ln

1� b
1þ b

. (27)

The last three integrals in Eq. (22) are given by Eqs. (18), (21) and (16), respectively. The derivation of
Eq. (23) has been presented elsewhere [32] and that of Eq. (25) is presented in Appendix A. Kaya and Erdogan
[34] discussed Hadamard’s finite-part integrals, and obtained Eqs. (26) and (27). The integral equation,
Eq. (22), is therefore regular, because all integrals are either bounded or explicitly determined.

Finally, the singularity-free form of Eq. (10) can be written as

1

2

qf
qtb
¼

Z 1

�1

fðaÞ
q2Gk

qtbqna

dS

da
da�

Z 1

�1

qGk

qtb

qf
qna
�

1

2p
1

a� b
1

dS=da
qf
qnb

� �
dS

da
da

�
1

2p
qf
qnb

Z 1

�1

1

a� b
da, ð28Þ

where

lim
a!b

q2Gk

qtbqna
¼

kðbÞ
4p

x0ðbÞx00ðbÞ þ y0ðbÞy00ðbÞ

ðx02ðbÞ þ y02ðbÞÞ3=2
�

1

12p
x0ðbÞy000ðbÞ � x000ðbÞy0ðbÞ

ðx02ðbÞ þ y02ðbÞÞ2
, (29)

lim
a!b

qGk

qtb
�

1

2p
1

a� b
1

dS=da

� �
¼ �

1

4p
x0ðbÞx00ðbÞ þ y0ðbÞy00ðbÞ

ðx02ðbÞ þ y02ðbÞÞ3=2
(30)

and the final integral is obtained from Eq. (27). Eqs. (29) and (30) are derived in Appendix A.
The regularized equations (14), (22) and (28) can be computed by directly applying the standard quadrature.

The Burton–Miller method linearly combines Eqs. (14) and (22), yielding the unique surface function f.
Further substituting f and the boundary condition qf/qn into Eq. (28) yields the surface tangential velocity
qf/qt.
4. Illustrative problems

Consider a pulsating inverse elliptic cylinder with minor axis a and major axis b (Fig. 1). The inverse elliptic-
cylinder coordinates (Z, y) are related to rectangular Cartesian coordinates (x, y) by the following
transformation:

x ¼
c cosh Z cos y

cosh2 Z� sin2 y
; y ¼

c sinh Z sin y

cosh2 Z� sin2 y
, (31)

where c ¼ a cosh Z, ZX0 and 0pyp2p. The radiation problem was simulated by placing a point source of
unit strength, fs ¼ iH

ð1Þ
0 ðkRÞ=4, at the center of the cylinder. Such a radiator was selected to determine

accurately the limiting values, such as those given by Eqs. (16), (17), (23), (25), (29) and (30) in Section 3. The
60-point trapezoidal rule was applied along the y axis. The subsequent system of linear algebraic equations
was solved using the LU decomposition method. Notably, the nodal, integration and collocation points that
are conventionally used in boundary element methods all imply the same thing when the proposed singularity-
free integral equations are implemented.
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Fig. 1. Amplitude of surface field f for a pulsating inverse elliptic cylinder of a:b ¼ 1:2 with the normalized wavenumber ka ¼ 1.

—, the analytical solution; J, the Helmholtz integral equation (14); n, Eq. (14)+i/ka�Eq. (22); &, Chien’s method. The 60-point

trapezoidal rule was applied along the y-axis.

0
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1E-5

�

1E+1

1E+0

1E-1

1E-2

1E-3

1E-4

1 2 3

θ, radians

Fig. 2. Relative error e of computed amplitude of surface field f in Fig. 1. Other definitions are given in Fig. 1.
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Fig. 1 displays the surface function f on a 1:2 inverse elliptic cylinder for the normalized wavenumber
ka ¼ 1. According to Fig. 1, the numerical results from Eq. (14) and the composite equation, Eq. (14)+
i/ka�Eq. (22), correlate well with the analytical solution. Fig. 2 plots the relative error e, defined as
j(computed result—analytical solution)/maximum of analytical solutionj, and the maximum e in Eq. (14) is
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0.3

0.4
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θ, radians

Fig. 3. Amplitude of surface function f for a pulsating inverse elliptic cylinder of a:b ¼ 1:2 with the normalized characteristic

wavenumber ka ¼ 4.5. —, the analytical solution; J, the Helmholtz integral equation (14); n, Eq. (14)+i/ka�Eq. (22); &, Chien’s

method. The 60-point trapezoidal rule was applied along the y-axis.
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around 2� 10�4 while that in the composite equation is around 10�2. The great accuracy verifies the
effectiveness of Eqs. (14) and (22). Notably, the order of the singularity of the Helmholtz boundary integral is
O(lnR), and that of its normal derivative is O(R�2). This fact explains why the numerical result obtained using
Eq. (14) is more accurate than that obtained using the composite equation. Restated, although regularization
facilitates the evaluation of singular integrals, the original singularity characteristic is retained.

Another Burton–Miller-type method developed by Chien et al. [9] was adopted to compare the accuracy and
efficiency. Chien et al. applied certain identities in the interior Laplace problem to reduce the order of the
hypersingularity. The singularity-free form of Chien’s formulation, in Ref. [32], was calculated herein, using
numerical procedures that are similar to those of the proposed method. The corresponding numerical
implementation necessitates evaluating two more surface functions—the source distribution that equalizes the
potential of the boundary surfaces and the normal derivative of the velocity potential in the interior Laplace
problem. Figs. 1 and 2 indicate that both Burton–Miller-type methods have roughly the same accuracy. The
proposed method, however, is slightly more accurate than Chien’s method, because the hypersingular integrals
in the proposed method are directly evaluated, whereas those in Chien’s method are indirectly evaluated.
Notably, the computational time of the proposed method is approximately 20% less than that of Chien’s
method, which requires two more matrices to be computed, as stated earlier. The proposed method’s efficiency
is expected to be higher for larger-scale problems because more computational time is required to evaluate
matrices.

Fig. 3 plots the surface function f for the normalized characteristic wavenumber ka ¼ 4.5. In this case, the
Helmholtz integral Eq. (14) alone cannot yield surface function. In this figure, the results obtained using
the composite equation, Eq. (14)+i/ka�Eq. (22), closely correspond to the analytical solution. Fig. 4 displays
the relative error of Fig. 3. Figs. 3 and 4 also plot numerical results obtained using Chien’s method. These
figures, again, reveal that the proposed method is more accurate than Chien’s method.

Finally, substituting the calculated surface function f into Eq. (28) yields the surface tangential velocity
qf/qt. Fig. 5 plots numerical results at both ka ¼ 1 and 4.5. Fig. 6 displays the relative errors. Fig. 6
demonstrates that doubling the number of integration points substantially increases the accuracy. Comparing
the numerical results with the analytical solutions verifies the effectiveness of Eq. (28).
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Fig. 4. Relative error e of computed amplitude of surface field f in Fig. 3. Other definitions are given in Fig. 3.
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Fig. 5. Amplitude of surface field qf/qt for a pulsating inverse elliptic cylinder of a:b ¼ 1:2. ka ¼ 1: —, the analytical solution; tangential

derivative equation (28), J 60 integration points, n, 120 integration points. ka ¼ 4.5: - - -, the analytical solution; tangential derivative

equation (28), K, 60 integration points, m, 120 integration points.
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5. Conclusions

The foregoing illustrative examples demonstrate the implementation of the proposed singularity-free
equations. The pressure and velocity fields are evaluated without any problem of nonuniqueness. A comparison
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Fig. 6. Relative error e of computed amplitude of surface field qf/qt in Fig. 5. Other definitions are given in Fig. 5.

S.A. Yang / Journal of Sound and Vibration 301 (2007) 864–877 873
with Chien’s method [9] confirms the accuracy and efficiency of the proposed method. The surface variables of
an ideal fluid prescribe the outer boundary conditions when the boundary layers of a viscous fluid are considered
[35]. The presented formulation is applicable for the acoustical (k40) and potential flow (k ¼ 0) problems.

This study develops a global method: the regularization is performed before any discretization. The local
method, or the standard boundary element method, usually requires, for example, a polar coordinate
transformation on each element, and then evaluates the transformed integrals by applying standard
quadrature. The global method is generally more accurate and efficient than the local method. See, for
example Ref. [36] for a more detailed discussion.

This study converts the Helmholtz integral equation and its normal and tangential derivatives into a form
that contains either singular integrals with analytical integration values, or regular integrals with smooth
integrands, which can be explicitly determined when the integration point coincides with the field point. This
approach is extremely attractive because it allows the integration rules to be applied directly to evaluate the
integrals in the integral equations. The singularity-free form of the tangential derivative is probably the first
one to appear in the literature.

The two-dimensional (2D) formulation is applicable for three-dimensional (3D) axisymmetric bodies [37]
and slender bodies using the strip theory [38]. Extending to other 3D acoustical problems is conceptually
straightforward; however, the implementation may be technically difficult [39]. Combining the modified
integral equations with the boundary element methods warrants attention to enable the method to be applied
to practical problems.

In summary, we outline the main features of the approach below:
(1)
 No series or other approximations are required in the process of regularization. This implies the accuracy
of the numerical results.
(2)
 The formulation is expressed in a form without any types of singularities, including weak singularity. This
implies the completeness of the regularization.
(3)
 The formulation can be calculated by directly applying quadrature rules over the entire integration
domain. Other specific techniques, such as the logarithmic Gaussian quadrature, are not required. This
implies the easiness of the numerical implementation.
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(4)
 The formulation allows the use of the boundary-element-free method when the boundary surface can be
mathematically or numerically described, as the illustrative examples show. The convenient incorporation
with other numerical methods implies the universality of the formulation.
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Appendix A

A.1. Derivation of Eq. (25)

Let points p(x(b), y(b)) and q(x(a), y(a)) be on a sufficiently smooth boundary surface qB. Applying Taylor’s
formula leads to

xðaÞ ¼ xðbÞ þ x0ðbÞða� bÞ þ x00ðbÞ
ða� bÞ2

2!
þ x000ðbÞ

ða� bÞ3

3!
þ . . . , (A.1)

yðaÞ ¼ yðbÞ þ y0ðbÞða� bÞ þ y00ðbÞ
ða� bÞ2

2!
þ y000ðbÞ

ða� bÞ3

3!
þ . . . . (A.2)

The distance R between points p and q is

R2 ¼ ½xðaÞ � xðbÞ�2 þ ½yðaÞ � yðbÞ�2. (A.3)

Substituting Eqs. (A.1) and (A.2) into Eq. (A.3) leads to

R2 ¼ ða� bÞ2½x02ðbÞ þ y0
2
ðbÞ� þ ða� bÞ3½x0ðbÞx00ðbÞ þ y0ðbÞy00ðbÞ�

þ ða� bÞ4
x002ðbÞ þ y002ðbÞ

4
þ

x0ðbÞx000ðbÞ þ y0ðbÞy000ðbÞ
3

" #

þ ða� bÞ5
x00ðbÞx000ðbÞ þ y00ðbÞy000ðbÞ

6
þ . . . . ðA:4Þ

Furthermore, from Eq. (A.4), we have

1

R2
¼

1

ða� bÞ2ðx02 þ y02Þ

�
1

1þ ða� bÞðx0x00 þ y0y00Þ=ðx02 þ y02Þ þ ða� bÞ2ðð1=4Þðx002 þ y002Þ=ðx02 þ y02Þ þ ð1=3Þðx0x000 þ y0y000Þ=ðx02 þ y02Þ þ . . .

¼
1

ða� bÞ2ðx02 þ y02Þ
1� ða� bÞ

x0x00 þ y0y00

x02 þ y02

(

þða� bÞ2 �
1

4

x002 þ y002

x02 þ y02
�

1

3

x0x000 þ y0y000

x02 þ y02
þ
ðx0x00 þ y0y00Þ2

ðx02 þ y02Þ2

" #
þ . . .

)

¼
1

ða� bÞ2
1

ðx02 þ y02Þ
�

1

ða� bÞ
x0x00 þ y0y00

ðx02 þ y02Þ2

�
1

4

x002 þ y002

ðx02 þ y02Þ2
�

1

3

x0x000 þ y0y000

ðx02 þ y02Þ2
þ
ðx0x00 þ y0y00Þ2

ðx02 þ y02Þ3
þOðja� bjÞ. ðA:5Þ
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According to Eq. (A.5), we obtain

lim
a!b

1

R2
�

1

ða� bÞ2
1

ðdS=dbÞ2
þ

1

a� b
x0x00 þ y0y00

ðx02 þ y02Þ3=2
1

dS=db

" #

¼
3

4

x002 þ y002

ðx02 þ y02Þ2
�

1

3

x0x000 þ y0y000

ðx02 þ y02Þ2
� k2, ðA:6Þ

where

dS

db
¼ ðx0

2
þ y0

2
Þ
1=2 (A.7)

and k is the boundary curvature that can be written as

k ¼
x0y00 � x00y0

ðx02 þ y02Þ3=2
. (A.8)

A.2. Derivation of Eqs. (29) and (30)

The free-space Green’s function Gk of the 2D Helmholtz equation can be expressed as

Gk ¼
i

4
H
ð1Þ
0 ðkRÞ ¼ �

1

4
Y 0ðkRÞ þ

i

4
J0ðkRÞ, (A.9)

where Y0 is the Bessel function of the second kind

Y 0ðkRÞ ¼
2

p
ln

kR

2

� �
þ g

� �
J0ðkRÞ þ

2

p
1

ð1!Þ2
1

4
ðkRÞ2 � 1þ

1

2

� ��
1

ð2!Þ2
1

42
ðkRÞ4

þ 1þ
1

2
þ

1

3

� �
1

ð3!Þ2
1

43
ðkRÞ6 � . . .

�
ðA:10Þ

and J0 is the Bessel function of the first kind

J0ðkRÞ ¼ 1�
1

ð1!Þ2
1

4
ðkRÞ2 þ

1

ð2!Þ2
1

42
ðkRÞ4 �

1

ð3!Þ2
1

43
ðkRÞ6 þ . . . . (A.11)

The tangential derivatives of Y0 and J0 with respect to b can be written as

qY 0ðkRÞ

qtb
¼

2

p
1

R

qR

qtb
J0ðkRÞ þ

2

p
ln

kR

2

� �
þ g

� �
qJ0ðkRÞ

qtb
þ . . .

¼ �
2

p
1

ða� bÞðx02 þ y02Þ1=2
þ

1

p
x0x00 þ y0y00

ðx02 þ y02Þ3=2
þOðRÞ, ðA:12Þ

qJ0ðkRÞ

qtb
¼ �

1

2
k2R

qR

qtb
þ � � � ¼ OðRÞ, (A.13)

where

qR

qtb
¼ �

R

ða� bÞðx02 þ x02Þ1=2
þOðRÞ. (A.14)

Thus, we obtain

lim
a!b

qGk

qtb
¼ lim

a!b
�
1

4

qY 0ðkRÞ

qtb
þ

i

4

qJ0ðkRÞ

qtb

� �

�
1

2p
1

ða� bÞ
1

ðx02 þ y02Þ1=2
�

1

4p
x0x00 þ y0y00

ðx02 þ y02Þ3=2
. ðA:15Þ
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The normal derivatives of Y0 and J0 with respect to a can be written as

qY 0ðkRÞ

qna
¼

2

p
1

R

qR

qna
J0ðkRÞ þ

2

p
ln

kR

2

� �
þ g

� �
�

k2

2
R
qR

qna
þ

k4

16
R3 qR

qna
þ . . .

� �

þ
k2

p
R
qR

qna
þ . . . , ðA:16Þ

qJ0ðkRÞ

qna
¼ �

1

2
k2R

qR

qna
þ

1

16
k4R3 qR

qna
þ . . . . (A.17)

The tangential derivatives of Eqs. (A.16) and (A.17) with respect to b can be written as

q2Y 0ðkRÞ

qtbqna
¼ �

2

p
1

R2

qR

qtb

qR

qna
J0ðkRÞ þ

2

p
1

R

q2R
qtbqna

J0ðkRÞ þ � � �

¼ �
k
p

x0x00 þ y0y00

ðx02 þ y02Þ3=2
þ

1

3p
x0y000 � x000y0

ðx02 þ y02Þ2
þOðRÞ, ðA:18Þ

q2J0ðkRÞ

qtbqna
¼ �

k2

2

qR

qtb

qR

qna
�

k2

2
R

q2R
qtbqna

þ � � � ¼ OðRÞ, (A.19)

where

q2R
qtbqna

¼ �
k
2

R

ða� bÞðx02 þ y02Þ1=2
þOðRÞ. (A.20)

From Eqs. (A.18) to (A.20), we obtain

lim
a!b

q2Gk

qtbqna
¼ lim

a!b
�
1

4

q2Y 0ðkRÞ

qtbqna
þ

i

4

q2J0ðkRÞ
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� �

¼
k
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�

1

12p
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