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Abstract

Dual-chamber pneumatic springs are widely in the vibration isolation systems for precision instruments such as optical

devices or nano-scale equipments owing to their superior stiffness- and damping-characteristics. In order to facilitate their

design optimization or active control, a more accurate mathematical model or complex stiffness is needed. So far

nonlinearities have not been dealt with.

Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude

dependent nonlinear behavior, which cannot be described by linear models in earlier researches. In this paper, an

improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the

amplitude-dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to

use a dynamic model for oscillating flow in capillary tube connecting the two pneumatic chambers instead of unidirectional

flow model. The proposed nonlinear complex stiffness model, which reflects dependency on both frequency and excitation

amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model

for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation

systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The dual-chamber pneumatic springs have been used recently as a key component of for vibration isolation
tables for precision equipments such as optical devices, nano-scale instruments, etc. Owing to the volumetric
compressibility of air, the pneumatic springs can have a lower stiffness than conventional isolators such as
coil- or rubber- springs. Capillary tubes across the dual-chambers are employed to obtain sufficient damping
efficiently. As the environmental vibration regulations [1,2] for precision instruments become more stringent,
it is required to improve further the isolation performance in a passive or active manner. In either case, more
accurate modeling for the complex stiffness of the dual-chamber pneumatic springs is a most important
prerequisite.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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List of symbols

f, F force (N)
A area (m2)
x dynamic amplitude (m)
d differential
D difference
p, P pressure (N/m2)
V volume (m3)
T temperature (K)
m air mass in the chamber (kg)
R the universal gas constant ( ¼ 286.9 (J/

kgK))
e internal energy (J/kg)
h enthalpy (J/kg)
Q heat transfer (J)
W work done (J)
cp(cv) the specific heat at constant pressure(vo-

lume) (J/K)
k the specific heat ratio
u cross-sectional mean fluid velocity (m/s)
tw wall shear stress (N/m2)
r density (kg/m3)
m dynamic viscosity (N s/m2)
t time (s)
K minor loss coefficient
fr friction coefficient
fro friction coefficient for oscillating flow

fru friction coefficient for unidirectional flow
o excitation frequency (rad/s)
Re Reynolds number
Reo kinetic Reynolds number
A0 dimensionless oscillation amplitude
F Fourier transformation
N volume ratio
k stiffness (N/m)

Subscripts

p piston
0 static
exp experiment
atm atmosphere
t top chamber
b bottom chamber
I entrance (or inlet) to each chamber
c capillary tube
max maximum
s single-chamber
D, d diaphragm, dual-chamber

Superscripts

d first derivative with respect to time
- cycle average
* complex variable
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The schematic of a dual-chamber pneumatic spring is shown in Fig. 1, where a capillary tube connects the
two pneumatic chambers. A rigid piston supports the payload including the isolation table and precision
instruments. Additionally, a diaphragm or a rubber membrane of complicated shape is necessarily installed for
prevention of air leakage. The two pneumatic chambers and capillary tube eventually act as a stiffness and a
damping element, respectively. Basically, hence, the physical relations among the rigid-body dynamics of the
piston, thermodynamics in the two pneumatic chambers and fluid dynamics across and in the capillary tube
should be faithfully described together with the role of the diaphragm.

Shearer [3] suggested a nonlinear model for the pneumatic cylinder by considering thermodynamics in the
chambers and unidirectional flow in the capillary tube. The mathematical formulations are quite difficult to
deal with for a design or control purpose. Under the assumption of small piston movements, linear models
were proposed by Harris et al. [4] and DeBra [5], who assumed without validation a linear relationship
between the fluid velocity in the capillary tube and the pressure gradient across the tube. However, the linear
model by Harris [4] and DeBra [5] showed discrepancies with the measured data to a significant extent.

A most recent research devoting to the improvement of modeling can be found in Erin and Wilson [6], who
included the effects of the diaphragm to compensate for the observed disagreement. This was done by simply
employing a linear dynamic model consisting of a viscous- and a hysteretic-damper and a spring for the
diaphragm and by tuning the values for each of these parameters using experimental measurements.

Significantly amplitude-dependent dynamic behavior of a dual-chamber pneumatic spring was observed in
our experimental measurements. With increase of the input level, real part of the measured complex stiffness
shows a softening spring and the frequency where loss factor takes a maximum becomes lower. Thus, existing
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Fig. 1. Schematic of dual-chamber pneumatic spring with payload.
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linear models [4–6] explained above are not adequate for the characteristics of amplitude dependent complex
stiffness. An improvement for the nonlinear complex stiffness model was attempted in this paper.

First, complex stiffness of the diaphragm was obtained by subtracting the theoretical constant stiffness of
the air from the measured complex stiffness of the pneumatic spring with single-chamber by blocking the
capillary tube. This extraction yielded that the diaphragm stiffness is not only significant in its magnitude
compared with the compressed air itself but also frequency as well as amplitude dependent. The softening
stiffness of the diaphragm resembles very much to those of typical viscoelastic materials [7]. We included the
amplitude dependent complex stiffness of the diaphragm in the modeling of the dual-chamber pneumatic
spring. An argument on nonlinearity of the air itself inside chamber is also presented.

Second, another nonlinear behavior of the loss factor that the frequency where it peaks shifts to lower range
with increase of the amplitude was observed. This was believed to be related with frictional characteristics of
the air flow through capillary tube, since the capillary tube plays a key role of damping element in the dual-
chamber pneumatic spring. In previous researches [4–6], theory of unidirectional flow, also known as
Poiseuille flow [8], was employed to describe the air flow in capillary tube. The air in the capillary tube, in fact,
is oscillating. Thus, in this paper, an oscillating flow theory [9,10] is employed to describe the fluid flow in
capillary tube, where two similarity parameters instead of conventional Reynolds number is used to flow
characterization.

Section 2 present experimental measurements on the complex stiffness, which motivated us to do this study.
Development of an improved model and comparison with an existing model are presented in Section 3. Then,
the improved complex stiffness model of the dual-chamber pneumatic spring will be validated with the
experimental measurements.

2. Measurements of amplitude-dependent complex stiffness of dual-chamber pneumatic spring

An experimental apparatus for measurement of the complex stiffness is shown in Fig. 2, where the dual-
chamber pneumatic spring (detail specifications in Table 1) with a static pressure p0 was installed in a
computer controlled servo-hydraulic actuation system, INSTRON dynamic material testing system (model:
8502). The displacement and force signals measured by a linear variable differential transformer (LVDT) and
a load cell, respectively, are passed through signal conditioners and post-processed to attain the complex
stiffness. Heavy line in Fig. 2 represents a pressurized line. A pressure gauge was installed to measure the
applied pressure in the chamber, i.e. the pressure at static equilibrium, p0. To investigate dependence on
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Fig. 2. Experimental set-up for complex stiffness measurement.

Table 1

Design specifications of employed pneumatic spring

Symbol Name Value

r Density 5.97 kg/m3

m Dynamic viscosity 1.79� 10�5N s/m2

R Gas constant 286.9 J/kgK

k Specific heat ratio 1.4

T0 Temperature 288.1K

P0 Supplied pressure 4.93� 105 Pa

K Minor pressure loss coefficient 1.5

Vt0 Top chamber volume 8.1� 10�4m3

Vb0 Bottom chamber volume 1.5� 10�3m3

N Volume ratio, Vb0/Vt0 1.9

Lc Capillary tube length 1.2� 10�2m

Dc Capillary tube diameter 0.9� 10�3m

Ap Effective piston area 5.3� 10�3m2

Table 2

Input conditions for the experiment: sinusoidal displacement excitation

Dynamic amplitude (mm) 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50

Frequency (Hz) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.7,

4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 14.0, 16.0, 20.0, 24.0
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dynamic amplitude and frequency for the dual-chamber pneumatic spring, sinusoidal displacement excitations
(dynamic amplitude: 0.05–0.5mm, driving frequency: 0.2–24Hz, detailed in Table 2) were applied to the
piston under a given preload corresponding to the weight of payload mass (100 kg).
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Measurements of the complex stiffness of dual-chamber pneumatic spring are represented by solid lines in
Fig. 3. Frequency- and amplitude-dependent stiffness and loss factor are visible at a first glance. Regarding the
frequency dependence, real part of the complex stiffness, i.e., elastic stiffness increases slightly with frequency
in low below about 1Hz and high above about 10Hz but increases dramatically in the mid-frequency ranges
between 1 and 10Hz. Loss factor, given by the imaginary part divided by real part of the complex stiffness and
representing damping characteristics, shows bell-shaped curves in the frequency domain with the maximum
values at frequency points where the real parts exhibit very rapid increase.

Amplitude-dependent behavior of the complex stiffness looks more complicated. The real part generally
decreases with the amplitude. That is, softening stiffness characteristics [7] are observed. Furthermore, the
frequency where the real parts show dramatic changes shift to the lower region. This seems to be quite relevant
to the observation that the frequency of maximum loss factor moves from 4 to 1Hz with increase of
amplitude.

Thus, it is very clear that the complex stiffness of dual-chamber pneumatic spring has strong dependencies
on the frequency as well as the dynamic amplitude. The linear models in previous researches [4–6] describe just
frequency dependent behavior of the dual-chamber pneumatic spring without any mention on amplitude
dependency. Therefore, a more accurate model of the dual-chamber pneumatic spring to include amplitude
dependent characteristics is required.

An exploration to investigate the amplitude dependent behavior was performed by a single-chamber
configuration, in which the capillary tube is blocked as depicted in Fig. 4. Dashed lines in Fig. 3 show
measurements for the single-chamber configuration. The frequency dependence is simpler than that of the
dual-chamber. That is, the real part increases with frequency slightly in a monotonous manner. The
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Fig. 4. Single-chamber configuration of pneumatic spring by blocking of capillary tube.
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amplitude-dependent softening stiffness characteristics are almost the same as for the dual-chamber. It can be
seen that the loss factor is not much frequency dependent but increases with the dynamic amplitude on the
entire frequency ranges. Those observations are very similar to the typical characteristics of viscoelastic
materials [7]. Since the effects of capillary tube were eliminated by the single-chamber configuration, the
amplitude- and frequency-dependence represented by dashed lines in Fig. 3 can be considered to be due to the
diaphragm made of rubber, which is a viscoelastic material under the assumption that the air behaves in a
linear manner in the dynamic amplitude range although it may behave in a nonlinear manner for the static
equilibrium. This thought means that the amplitude dependent complex stiffness of the diaphragm should be
treated very carefully in modeling of the pneumatic spring.

It is to be noted in Fig. 3 that the measured complex stiffness of the dual- and single-chamber springs is
nearly identical in the highest frequency range. This can be explained as follows. The air can move through the
capillary tube in the lowest frequency range with negligible resistance. With increase of frequency, resistance of
the air flow in the capillary tube increases. Then in the highest frequency range, the air flow gets blocked by the
capillary tube. Such a frequency-dependent air flow in the capillary tube gives a change of effective volume
along the frequency range. When blocking of air occurs, the pneumatic spring has a top-chamber volume only
as its effective one. But the effective volume in the lowest frequency range is the sum of both top- and bottom-
chamber one due to the negligible resistance of air flow. In other words, as graphically illustrated in Fig. 5, the
dual-chamber pneumatic spring behaves like a single-chamber one of which the effective volume is the sum of
those of both top- and bottom-chambers in the lowest frequency range, and another single-chamber one with
only the top-chamber volume in the highest frequency range. Furthermore, it can be later known from Section
3 that the single-chamber type pneumatic spring without diaphragm does not have a damping characteristic,
but a constant stiffness one with inversely proportional to the chamber volume. Therefore, the dual-chamber
pneumatic spring has a hard stiffness in the high frequency range but a soft one in the low frequency range. At
the same time, its damping characteristic (or loss factor) is significant only around mid-frequency ranges,
where effective volume of dual-chamber pneumatic spring changes to top chamber from both top- and
bottom-ones. Therefore, the highest frequency behavior of dual-chamber pneumatic spring is nearly identical
to the single-chamber one with blocked capillary tube.

Another important observation on the loss factor measurements in Fig. 3(b) is that the frequency points of
the maximum values move to the lower range with increase of vibration amplitudes. As explained above, the
maximum loss factor is shown at the transition of effective volume. The increased level of vibration gives a
more restriction on air flow across the capillary tube, which causes a transition of effective volume in the lower
frequency ranges. In other words, by referring again Fig. 5, the frequency where dual-chamber pneumatic
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Fig. 5. Change of effective volume with respect to frequency and amplitude.
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spring turns to be a single-chamber one with only the top-chamber volume moves to the lower frequency range
along the vibration amplitude, since the increase of vibration amplitude results to the blocking of air in the
lower frequency range. This means the frequency of maximum loss factor moves to the lower frequency range
with increase of vibration amplitude. Thus, the observed nonlinear behavior of the air flow across capillary
tube needs to be considered. In very limited input conditions of low amplitude and frequency, the flow in
capillary tube would be almost steady one, which can be described by the linear unidirectional flow theory.
But, for the case of higher input we concern, the actual flow would be close to the oscillating one, showing a
nonlinear characteristic. Hence, in this study, an oscillating flow theory [9,10] is employed to reflect the
nonlinear relation of air flow in capillary tube.

In summary, amplitude as well as frequency-dependent behavior of a dual-chamber pneumatic spring have
been clearly pointed out. The causes of such nonlinear behaviors are believed to be related to the viscoelastic
properties of the diaphragm as well as the characteristics of oscillating flow in the capillary tube. These two
sources are studied in more detail in next section.

3. Modeling of dual-chamber pneumatic spring

3.1. Complex stiffness of dual-chamber pneumatic spring with complex stiffness of diaphragm excluded

Consider a dual-chamber pneumatic spring shown in Fig. 6 to derive a dynamic model for its complex
stiffness. Static equilibrium in Fig. 6(a) is determined by payload mass, atmospheric pressure and chamber
pressure. In Fig. 6(b), small piston movements by dynamic forces will change mass, pressure, volume and
temperature of the air in upper chamber, cause the air to flow through the capillary tube, and consequently
change mass, pressure, temperature in bottom chamber. Hence, complex stiffness defined as the force for unit
displacement of the piston is related to rigid-body dynamics of the piston, thermodynamics in the pneumatic
chambers and fluid dynamics across the capillary tube. Effects of diaphragm to prevent leakage of the air will
be considered in Section 3.2.

3.1.1. Rigid-body dynamics of the piston

In static equilibrium where pressure in both chambers is constant and the same, the force at piston fp is
given by

f p ¼ Apðp0 � patmÞ, (1)
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Fig. 6. Variables in static and dynamic equilibrium of dual-chamber pneumatic spring: (a) static equilibrium, (b) dynamic equilibrium.
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where p0 and patm ( ¼ 101.325 kPa) are absolute chamber pressure and atmospheric pressure, respectively, and
Ap an equivalent piston area to represent movement of both piston and diaphragm.

Dynamic displacement dxp of the piston due to dynamic force dfp on the piston causes pressure variations in
top/bottom chambers, dpt and dpb, respectively. The total force equilibrium is given by

f p þ df p ¼ Apðp0 þ dpt � patmÞ (2)

dynamic force is related to the pressure variation of top chamber by

df p ¼ Apdpt, (3)

dpt need to be represented in terms of dxp to derive the complex stiffness.

3.1.2. Thermodynamics of air in chambers

Dynamic displacement of the piston causes variations of mass (m), pressure (p), volume (V) and temperature
(T) of the air in the chambers as depicted in Fig. 6, where subscripts ‘t’ and ‘b’ denote the top- and bottom
chamber, respectively, ‘0’ static equilibrium. The air in the chamber is assumed to be a perfect (or ideal) gas in
both static- and dynamic-equilibrium state, respectively, as follows:

p0V i0 ¼ mi0RT0 ði ¼ t; bÞ, (4)

ðp0 þ dpiÞðVi0 þ dViÞ ¼ ðmi0 þ dmiÞRðT0 þ dTiÞ, (5)

where R( ¼ 286.9 J/(kgK)) denotes the universal gas constant. From Eqs. (4) and (5), a relationship between
the rate of change in pressure, volume, mass and temperature can be derived as follows:

_mi

mi0
¼

_Vi

Vi0
þ
_pi

p0

�
_Ti

T0
, (6)

where the rate of change of temperature _Ti is determined by the type of thermal process in the chamber. The
dual-chamber pneumatic spring actually results in neither an isothermal nor an adiabatic process, but
polytropic. But for simplicity, two extreme cases, i.e., isothermal- and adiabatic-process are discussed in
relation with the velocity of piston. In order to be an isothermal condition, the heat generated during the
piston movement should not contribute to the variation of temperature, i.e., should be completely transferred
to the environment. For such a heat transfer, the piston must have remarkably slow movements. In short, the
isothermal process is a very slow process in a dynamical viewpoint. On the contrary, if the piston moves fast
enough that all of the heat of the stroke is conserved, an adiabatic process occurs. Now it is important to
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determine thermal process governing the pneumatic chamber, because the stiffness of pneumatic spring will
change according to the thermal process. The polytropic constant, n, varies between the isothermal and
adiabatic, i.e. 1ono1.4. Thus, the minimum stiffness occurs under an isothermal assumption, whereas the
maximum stiffness an adiabatic one (�1.4 times of isothermal one). Based on approximate heat transfer
calculations for the setup in this study, isothermal process is possible far below 0.1Hz. In a rigorous sense,
isothermal process can be possible only at DC (0Hz). Thus, vibrations above 0.2Hz in this study can be
assumed as an adiabatic process. Although this assumption may cause a slight error in the prediction of
stiffness characteristics, the polytropic process which actually governs pneumatic chamber is much closer to
adiabatic than isothermal. Furthermore, adiabatic assumption is commonly accepted in the literature [4–6].

For an adiabatic process, the heat generated during a stroke does not escape the pneumatic chamber, but
causes a variation of internal temperature. The first law of thermodynamics [11] can be employed for the
description of temperature variation _Ti in Eq. (6). That is to apply energy balance to each control volume and
control surface depicted as dashed lines in Fig. 6 by using internal energy e and enthalpy h. Once a static
equilibrium state is reached, internal energy variations (det, deb) due to the temperature changes are used to
describe the dynamic equilibrium. Besides, enthalpy (htI, hbI) and temperature (TtI,TbI) at control surface, i.e.,
at the entrance to each chamber are used to reflect the air flow across the capillary tube.

The first law of thermodynamics for the top chamber gives

dQ� dW ¼ ½�dmthtI �cs þ ½ðmt0 þ dmtÞðe0 þ detÞ �mt0e0�cv, (7)

where dQ, heat exchange with the environment, becomes zero by the adiabatic process assumption. The work-
done dW is given by p0dVt under the small piston displacement. In the right-hand side of Eq. (7), the first- and
second-part imply the energy balance at the control surface (cs) and control volume (cv), respectively. For an
ideal gas, both enthalpy and internal energy depend solely on temperature [11] as follows:

htI ¼ cpTtI , (8)

e0 ¼ cvT0; det ¼ cv dTt, (9)

where cp and cv denote specific heat capacity at constant pressure and constant volume, respectively, and the
specific heat ratio k defined as cp/cv is 1.4 for the air. Using Eqs. (8) and (9) in Eq. (7) and dividing by the time
variation dt, the relation of temperature variation for top chamber can be readily derived:

mt0cv
_Tt ¼ ðcpTtI � cvT0Þ _mt � p0

_V t. (10)

Similarly, that for bottom chamber is obtained as follows:

mb0cv
_Tb ¼ ðcpTbI � cvT0Þ _mb. (11)

Further substitution of Eqs. (10) and (11) into Eq. (6) gives mass flow rate into each chamber, respectively:

_mt ¼
1

RTtI

p0
_V t þ

V t0

k
_pt

� �
, (12)

_mb ¼
1

RTbI

V b0

k
_pb

� �
. (13)

In Eqs. (12) and (13), TtI and TbI representing temperature of the air at the ends of the capillary tube in the
top- and bottom-chamber, respectively, are unknown without the knowledge of temperature distribution
through the capillary tube, which is very difficult to estimate in an analytical way. According to Shearer [12],
temperature variation in the capillary tube is negligible under small motions. This enables an assumption that
TtI and TbI be identical to T0, which allows Eqs. (12) and (13) to be in simpler forms:

_mt ¼
1

RT0
p0
_V t þ

V t0

k
_pt

� �
, (14)
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_mb ¼
1

RT0

V b0

k
_pb

� �
. (15)

3.1.3. Fluid-dynamics for air flow in capillary tube

The thermodynamic relations of pressure, volume, temperature in the top- and bottom-chamber treated
separately in previous section are to be coupled with each other by the air flow rate in the capillary tube and
the pressure difference across the capillary tube.

The momentum equation governing the air flow in the capillary tube can be derived by applying the
Newton’s 2nd law to a dotted differential fluid element in Fig. 7, where xc is the coordinate along the capillary
tube, u mean fluid velocity, Lc and Ac(Dc), respectively, length and cross-sectional area(diameter) of the
circular capillary tube, tw wall shear stress due to the friction, and p and p+dp, respectively, the pressures
across the differential element:

pAc � ðpþ dpÞAc � twðpDc dxcÞ ¼
q
qt
ðruAcÞdxc þ ruAcðuþ duÞ � ruAc u. (16)

Density of the air r in the capillary tube may be actually time varying, since the air in the chambers
undergoes compression or expansion. Compressibility of a gas can be neglected for a fluid-dynamic analysis if
the Mach number of the flow is less than 0.3 [13]. The Mach number of the air flow in this study is about 10�3,
which is far below 0.3. This allows the air in the capillary tube to be regarded as an incompressible fluid,
reducing Eq. (16) the following:

�
dp

dxc

¼ r
du

dt
þ

4

Dc

tw. (17)

If we further assume that the pressure gradient is constant along the capillary tube, i.e., �dp/dxcE(pt�pb)/
Lc�Dp/Lc, and that the inertia term in the first part of right-hand side can be negligible, then the above
equation can be reduced to Eq. (18):

Dp ¼
4Lc

Dc

tw. (18)

Here, the assumption of constant pressure gradient is well accepted to the fluid-mechanics researchers. Its
experimental validation can be found Hagen’s data [8], where he measured steady water flow in brass pipes
and found linear relationship between pressure drop and fluid velocity. It may be difficult to assure that the
assumption of constant pressure gradient does hold for our case, i.e., a fluctuating air. However, we decided to
employ this assumption for a simple- and closed-form of momentum equation in the capillary tube. Otherwise
computational fluid mechanics (CFD) techniques are required to solve the momentum equation, which is far
beyond our research scope.

Substituting an expression for the wall shear stress tw represented by the product of dynamic pressure and
friction coefficient fr [8]:

tw ¼
r uj ju

8
fr (19)
pt pb

 τw

Lc

p p+dp
xc dxc

u u+du

Dc, Ac

Fig. 7. Diagram for modeling of air flow in capillary tube.
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into Eq. (18) and further consideration of minor pressure loss K at the inlet and outlet of the capillary tube [8]
results in Eq. (20):

Dp ¼
Lc

Dc

frþ K

� �
r
2

uj ju. (20)

For harmonic piston movements, the fluid velocity u takes a harmonic function:

u ¼ umax sin ot. (21)

Thus, the nonlinear term |u|u in Eq. (20) can be linearized by the use of Fourier series 1st-order
approximation as follows:

uj juffi
o
p

Z 2p=o

0

sin otj jsin2 otdt

" #
u2
max sin otþ

o
p

Z 2p=o

0

sin otj j sin ot cos otdt

" #
u2
max cos ot

¼
8umax

3p
u. ð22Þ

The pressure difference across the capillary tube then can be finally formulated as follows:

Dp ¼
Lc

Dc

frþ K

� �
4rumax

3p
u, (23)

which shows that the pressure loss is approximated by the friction at the tube wall and minor loss at the inlet
and outlet of capillary tube. The ratio of frictional loss (Lc/Dc)fr to minor loss K generally decreases with
increase of the fluid velocity in the capillary tube, which means that minor loss become more important in the
higher frequency range. In the frequency range of 2–5Hz where the damping of capillary tube becomes
important, the ratio is about 10 and, hence, damping due to frictional loss inside the capillary tube turns to be
far more important than the one due to minor loss. Consideration of minor loss was not made in the linear
flow model of previous researches [4–6], but it will be included in our case for a faithful description of
nonlinear air flow.

If the flow in capillary tube is unidirectional, the friction coefficient fr in Eq. (23) solely depends on a single
similarity parameter, Reynolds number [8], and is quite well established in the classical fluid-dynamics. Noting
that the actual flow in the capillary tube is oscillating, it was decided to employ a friction coefficient for
oscillating flow.

The friction coefficient for an oscillating flow proposed by Zhao [9,10] and denoted by fro replaces fr in
Eq. (23) will be called oscillating friction coefficient here. The oscillating friction coefficient fro is dependent on
two similarity parameters instead of one for the unidirectional friction coefficient fru. That is, fro is given by a
function of kinetic Reynolds number Reo( ¼ roDc

2/m) and dimensionless oscillation amplitude A0( ¼ xmax/
Dc) for laminar and turbulent flows, respectively, as follows:

fro ¼
4

A0

3:27

Re0:548o � 2:04

 !
for 23pReop395 and 0pA0p26:4, (24)

¼
4

A0

76:6

Re1:2o

þ 0:41

 !
for 81pReop540 and 53:4pA0p113:5. (25)

Here, xmax( ¼ umax/o) denotes the amplitude of fluid displacement, and m the coefficient of dynamic
viscosity of air.

In previous researches [4–6], the air flow in the capillary tube was assumed to be not only unidirectional but
also laminar one so that the model was constrained to be linear and, hence, not able to describe nonlinear
behavior. A friction coefficient for unidirectional flows fru known as Darcy friction factor depends only on
Reynolds number Re and given by

fru ¼
64

Re
for Rep2300 (26)
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just for the laminar flow region, where the Reynolds number is defined as follows:

Re ¼
rūDc

m
. (27)

ū in the above Eq. (27) denotes the cycle-averaged fluid velocity, i.e., computed by

ū ¼
o
2p

Z 2p=o

0

uj jdt ¼
2

p
umax. (28)

The two different air flow models will be compared with measurements in terms of the complex stiffness for
a dual-chamber pneumatic spring later in this paper.

3.1.4. Combining three dynamic models

One rigid-body dynamic Eq. (3) for the piston, two thermodynamic Eqs. (14) and (15) for the pneumatic
chambers and one fluid dynamic Eq. (23) for the capillary tube, all of which described in time domain, can be
combined to derive the complex stiffness of the whole system. For a given value of dynamic displacement dxp,
6 unknowns of dpt, dpb, dmt, dmb, dmtb and dfp in the above 4 equations can be solved for by introducing two
more the so-called continuity relations for mass flow rates between chambers and capillary tube

_mt ¼ � _mtb, (29)

_mtb ¼ _mb, (30)

where _mtb denotes the mass flow rate in the capillary tube.
Fourier transformations, i.e. frequency domain representations of the above dynamic relations give the

complex stiffness of dual-chamber pneumatic spring in the following. First, Eq. (3) is transformed into
frequency domain:

dFpðoÞ ¼ Ap dPtðoÞ. (31)

Knowing that volume variation of the top chamber is the product of equivalent piston area Ap and
displacement of piston dxp, the frequency domain representation of Eqs. (14) and (15) for mass flow rates
yields the followings:

F½ _mt� ¼
1

RT0
p0ApjoX pðoÞ þ

Vt0

n
joPtðoÞ

� �
, (32)

F½ _mb� ¼
1

RT0

Vb0

n
PbðoÞ

� �
, (33)

where F denotes the Fourier transformation.
The fluid-dynamic Eq. (23) for velocity of the air in the capillary tube can be written in frequency domain as

follows:

UðoÞ ¼
PtðoÞ � PbðoÞ

Lc

Dc

frþ K

� �
4rumax

3p

, (34)

which multiplied by rAc yields the mass flow rate across the tube

F½ _mtb� ¼ rAcUðoÞ ¼
PtðoÞ � PbðoÞ

CðX p;oÞ
. (35)

C(Xp,o) in Eq. (35) defined as below represents damping characteristics of the capillary tube:

CðX p;oÞ �
Lc

Dc

frðX p;oÞ þ K

� �
4umaxðX p;oÞ

3pAc

. (36)

For oscillating flows, C(Xp,o) and fr(Xp,o) in the above Eq. (36) are simply replaced with Co(Xp,o) and
fro(Xp,o) respectively and umax is given by the following approximate continuity relation between at piston
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and capillary tube:

umax ffi ðAp=AcÞX po, (37)

where effects of compressibility of the air in top chamber are neglected just for simplicity. But, it might be
negligible under small piston movement coming up to the hundreds of micrometer.

Substitution of Eqs. (32) and (35) into Eq. (29), substitution of Eqs. (33) and (35) into Eq. (30), and
combining these with Eq. (31) give the complex stiffness of pneumatic spring without diaphragm k�d ðX p;oÞ as
follows:

k�dðX p;oÞ � �
dF pðoÞ
dX pðoÞ

¼ ks

1þ
V b0CðX p;oÞ

RT0k
jo

N þ 1þ
V b0CðX p;oÞ

RT0k
jo

, (38)

where

N � Vb0=V t0, (39)

ks � kp0A2
p=Vt0 (40)

denote the ratio of the bottom- to top-chamber volume and the stiffness of single top chamber, respectively. It
is noted that the single-chamber pneumatic spring without diaphragm given in Eq. (40) does not have a
damping characteristic, but has a linear elastic stiffness which does not depend on input amplitude Xp or
frequency o. Furthermore, as mentioned in Section 2, the constant stiffness in Eq. (40) is inversely
proportional to the chamber volume.

For comparison with oscillating flow damping characterized by Co(Xp,o), a damping for unidirectional
laminar flow in earlier studies is designated as Cu and given by

Cu ¼
128mLc

prD4
c

, (41)

which does not include minor loss at the inlet and outlet of the capillary. It is noted that this damping Cu is
independent of the dynamic amplitude and frequency and is equivalent to the flow restriction constant Cr in
Erin and Wilson [6].

Depending on the type of modeling of flow in the capillary tube C(Xp,o), the complex stiffness k�dðX p;oÞ is
classified into two types: k�d;oðX p;oÞ for oscillating flow modeling by Zhao and k�d;uðoÞ for conventional
unidirectional one by Darcy. Note that the latter model k�d;uðoÞ proposed in earlier researches [4,5] depends on
the frequency only and cannot describe the amplitude-dependent characteristics of the pneumatic spring
observed in our measurements.

3.2. Consideration of dynamic characteristics of diaphragm

The diaphragm shown in Fig. 1, which is essentially used in air spring for sealing purpose primarily,
eventually works as a complex stiffness element together with the air in the pneumatic chamber by
pressurization of the air inside the chambers [6]. Thus, effects of the diaphragm need to be treated carefully in
the dynamic modeling of the dual-chamber pneumatic spring.

The diaphragm used in pneumatic springs has a little complicated shape in its cross-sectional view and is
typically made of viscoelastic materials like rubber. Since it works as a complex stiffness element only as the
air pressure is increased, it is not easy to estimate the complex stiffness of the diaphragm alone in both
computational and experimental ways. This paper proposes an indirect method for extraction of the complex
stiffness of the diaphragm.

The idea is to measure the complex stiffness of a single-chamber spring consisting of air and diaphragm, e.g.
by blocking the capillary tube in dual-chamber pneumatic spring as shown in Fig. 4 and just to eliminate
the constant stiffness of air ks from the measurement data under the assumption that the stiffness of the air
alone is given by Eq. (40). The complex stiffness of the diaphragm k�DðX p;oÞ estimated in such a way is shown
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in Fig. 8. Because the stiffness of air alone is simply a constant, the frequency- and dynamic amplitude-
dependent behaviors obtained for the single-chamber configuration in Fig. 3 are solely attributed to the
diaphragm. The real part or elastic stiffness shows softening spring phenomenon for the whole frequency
range and the loss factor increases with respect to the dynamic amplitude. Dependence of the real part and loss
factor on the frequency is not so strong probably because the frequency range investigated is rather small.
These observations for the diaphragm complex stiffness are very similar to typical characteristics of
viscoelastic materials [7]. Thus, the proposed technique to estimate the complex stiffness of the diaphragm is
believed to be reasonable since it is made of a viscoelastic material, rubber. In this study, the numerical
complex stiffness data for the diaphragm shown in Fig. 8 will be directly applied to predict the complex
stiffness model of dual-chamber pneumatic spring.

The total complex stiffness of the dual-chamber pneumatic spring can be represented by the sum of the
complex stiffness of dual-chamber pneumatic spring without the diaphragm k�dðX p;oÞ and the one of the
diaphragm k�DðX p;oÞ as follows:

k�dþDðX p;oÞ � k�dðX p;oÞ þ k�DðX p;oÞ, (42)

because these two springs are connected in parallel in the dual-chamber pneumatic spring as depicted in Fig. 9.
For clarity, the total stiffness of the dual-chamber pneumatic spring will be distinguished by k�dþD;oðX p;oÞ

and k�dþD;uðX p;oÞ depending on whether the flow in the capillary tube is modeled as an oscillating or
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Fig. 9. Parallel connection of diaphragm stiffness with pneumatic spring stiffness.

Fig. 10. Assumption of diaphragm movement for calculation of equivalent piston area Ap.
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unidirectional. Due to the effects of diaphragm, k�dþD;uðX p;oÞ will have the dependency on not only frequency
but also dynamic amplitude although k�d;uðoÞ does not have a dependency on dynamic amplitude.

3.3. Comparison between predictions by the dynamic models and experimental measurements

The complex stiffness of dual-chamber pneumatic spring by the new dynamic model proposed in this paper
is now compared with the one by the old model and experimental measurements. To compute the complex
stiffness, the equivalent piston area Ap in Eqs. (37), (40) and the minor pressure loss coefficient K in Eq. (23)
are required.

Fig. 10 shows deformation diagram of the diaphragm under the piston displacement of dxp to obtain the
equivalent piston area. Volume variation of the top chamber dVt is approximated to be a part of a cone with
cross-section ABCD as depicted in the figure. Thus, the equivalent piston area Ap is obtained from dividing
dVt by dxp as follows:

Ap ¼ dV t=dxp ¼ pðr22 þ 2r2r1 þ 4r21=3Þ. (43)
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The minor pressure loss coefficient K can be set as 0.5 and 1, respectively, at the sharp in-/out-let of a
capillary tube between two large reservoirs [8]. Since the top- and bottom-chambers in the pneumatic chamber
can be regarded as two large reservoirs, the value of K in this study is chosen by the sum of these values 1.5. All
parameter values are stated in Table 1 with physical dimensions of the pneumatic spring. Now, for the given
input conditions at piston Xp and o, the two complex stiffness k�dþD;oðX p;oÞ and k�dþD;uðX p;oÞ can be
calculated by using the values listed in Table 1.

Comparison results between the experimental data and predictions by the complex stiffness models are
shown in Fig. 11 for three levels of input magnitudes. The measurement data are quite well predicted by the
newly proposed stiffness model k�dþD;oðX p;oÞ employing the oscillating flow in the capillary tube as well as
amplitude dependent complex stiffness of the diaphragm. The average value of root mean square errors
between predictions and measurements for various input levels are 2% and 8% for the real part and loss
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factor, respectively. It is noted that, as the dynamic amplitude increases, the discrepancies for the loss factor
increases in the low- and high-frequency ranges, i.e., at frequencies off the peak points. Yet, the new complex
stiffness model k�dþD;oðX p;oÞ predicts well the nonlinear behaviors of the dual-chamber pneumatic spring that
we primarily concern. In more detail, inclusion of the amplitude-dependent complex stiffness of the diaphragm
gives a very good prediction of softening of the elastic stiffness and increment of maximum loss factor for the
whole pneumatic spring as the input level is increased. Furthermore, modeling by the oscillating flow of the
one in the capillary tube represents fairly well shifting of the frequency where the loss factor takes it maximum
and the slope of the elastic stiffness is steepest.

It can be seen in Fig. 11 that discrepancies between the experimental measurements and predictions by the
conventional complex stiffness model k�dþD;uðX p;oÞ employing the unidirectional flow increase significantly as
the input conditions, i.e., dynamic amplitude and/or frequency change. Closeness between the new stiffness
model k�dþD;oðX p;oÞ and the conventional model k�dþD;uðX p;oÞ in the lower dynamic amplitude and/or
frequency ranges points out an observation that frictional characteristics of the flow in the capillary tube
predicted by the unidirectional flow model can represent those for the actual oscillating flow only under very
limited input conditions of low amplitude and frequency. In order to include higher-level input conditions,
modeling by the oscillating flow is definitely required. Furthermore, if the amplitude dependent complex
stiffness of the diaphragm were not included in the conventional stiffness modeling k�dþD;uðX p;oÞ as in this
study, softening behavior of the elastic stiffness and increase of the maximum value of loss factor could not be
represented as shown in Fig. 11.

4. Concluding remarks

Nonlinear behaviors of a dual-chamber pneumatic spring were observed through careful experiments. In
order to be able to describe the observed nonlinear behaviors, conventional linear complex stiffness model was
improved by reflecting characteristics of oscillating flow in the capillary tube and amplitude-dependent
complex stiffness of the diaphragm.

To this end, three relations: rigid-body dynamic of the piston, thermodynamics in the pneumatic chamber
and fluid mechanics in and across the capillary tube were combined to obtain a resultant complex stiffness by
including nonlinear characteristics of the diaphragm. Besides, two frictional flow models of oscillating and
unidirectional flow were considered together for comparison. The new complex stiffness model of the dual-
chamber pneumatic spring with nonlinear properties of the oscillating flow and viscoelastic diaphragm
reflected in is proved to be very valid based on comparison with experimental measurements.
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