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Abstract

This paper applies He’s parameter-expanding method (PEM) to determine the limit cycles of strongly nonlinear
oscillators by which one iteration leads to an accurate solution. Comparison of the obtained results with those of the exact
solution shows that the method is very effective and convenient and quite accurate to both linear and nonlinear physics and
engineering problems.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Many asymptotic techniques including modified Lindstedt—Poincare method [1-5], variational iteration
method [6-10], homotopy perturbation method [11-21], energy balance method [22-25] were used to handle
strongly nonlinear systems. He’s parameter-expanding methods (PEMs) [26] including modified Lindstedt—
Poincare method [2] and bookkeeping parameter method [27] were paid attention recently; it is proven that the
PEMs are very effective to determine the limit cycle of strongly nonlinear oscillators with high accuracy [28].

2. Parameter-expanding method

We consider the following nonlinear oscillator [26]:

W' +au+bid +cu'? =0, w0)=4, u/(0)=0. (1)

By simple analysis [26] we know that Eq. (1) has periodic solution when a + bA> + cA**>0. In case a <0,

traditional perturbation methods do not work even when the parameters b and ¢ are small.
According to the PEM [26,27], the solution is expanded into a series of an artificial parameter, p, in the
form:

u=uy+puy +pluy+ -, (2)

where p is a bookkeeping parameter, p = 1.
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The coefficients a, b and ¢ can be, respectively, expanded into a series in p in a similar way [11]

a=w+po+proy+ -, (€)
b=pbi+pby+--, (4)
c=pe+pre . &)
Substituting Egs. (2)—(5) into Eq. (1) and equating the terms with the identical powers of p, we have
P’y + otuy = 0, (6)
P! :u/{—i—wzul +w1u0+b1u(3)+clu(1)/3 =0. (7

Considering the initial conditions uy(0) = 4 and u,(0) = 0, the solution of Eq. (6) is uy = A cos wt.
Substituting the result into Eq. (7), we have

U] + w’uy + w14 cos ot + 3b1A° cos wt + 1b1A* cos 3ot + 1A' (cos wt)'? = 0. ®)
We expand the term (cos cot)l/ 3 into a Fourier series representation as follows:
(cos wt)l/3 = iaer,l cos(2n + lwt, 9)
n=0
where
Pp—_) (10

2BPr(n+3)r-n)
with a; = 1.15959526696 and the interval of ¢ in Eq. (9) is [-n/w, n/w]. Therefore, the first several terms are

4+ (11)

1/3 cos 3wt cos Swt 7 cos Twt
"= @(cos ot = — 10110

Substituting Eq. (11) into Eq. (8) we can obtain the following equation:

(cos wt)

cos 3wt

U] + w’ur + w14 cos wt + 3 4% cos ot + b1 A cos 3wt + 1A ay(cos wt — +--9=0. (12

No secular term in u; requires that

A +30 A4 + c14Pa; = 0. (13)
If the first-order approximation is enough, then, setting p = 1 in Egs. (3)—(5), we have
a=w+ o), (14)
b=b, (15)
c=c. (16)
Solving Egs. (13)—(16), we have
w= \/% bA® + 1.15959526696¢4 % + a. (17)

In order to verify the correctness of the obtained frequency, we consider some special cases.
Case 1: If a=0, b=0, ¢ =1, Eq. (1) reduces to

W +u3=0, w0)=4, u«(0)=0. (18)

Then, from Eq. (17), we can obtain the frequency of the nonlinear oscillator as follows:

o = V1.15959526696 423 = 1.076844/3. (19)
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The exact frequency is @ = 1.07045147'/3. Therefore, it can be easily proved that the maximal relative error

is less than 0.597%.

Hence, we can obtain the following zero-order approximate solution [29]:

(20)

A cos(1.076844~"3¢)

u

which agrees very well with the exact solution [26] as shown in Fig. 1.
Case2: If a=0, b=1, ¢ =0, Eq. (1) becomes

@21

u'(0) = 0.

>

=4

u(0)

+u3=0,

7

Fig. 1. Comparison of the approximate solution with the exact solution: dashed line: approximated solution and solid line: the exact

solution.

Fig. 2. Comparison of the approximate solution with the exact solution: dashed line: approximated solution and solid line: the exact

solution.
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Then, from Eq. (17), we can obtain the frequency of the nonlinear oscillator as follows:

w = /34> = 0.8664. (22)
Hence, the approximated period is
T— 2n 7.2554
©0.8664 A

The exact period [26] is T' = 7.41634~". Therefore, it can be easily proved that the maximal relative error is
less than 2.17%.
According to Eq. (22), we can obtain the following zero-order approximate solution [29]:

u = Acos(0.866A4¢) (24)

(23)

which agrees very well with the exact solution [26] as illustrated in Fig. 2.
Case 3: If a=0, b=1, ¢ =1, Eq. (1) reduces to

W+ +uP=0, u0)=4, u'(0)=0. (25)
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Fig. 3. Comparison of the approximate solution with the exact solution: dashed line: approximated solution and solid line: the exact
solution.
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Then, from Eq. (17), we can obtain the frequency of the nonlinear oscillator as follows:

o= \/gAz +1.159595266964 /7. (26)
Therefore, we can obtain the following zero-order approximate solution [29]:
u = Acos|GA% + 1.159595266964/%)'/21] (27)

which agrees very well with the exact solution [26] as shown in Fig. 3.
Case 4: If a=1, b=0, ¢ = 1, according to Eq. (1), we can obtain the following nonlinear oscillator:

W +u+u'P =0, u0) =4, u0)=0. (28)

Then, from Eq. (17), we can obtain the frequency of the nonlinear oscillator as follows:

o= \/ 1.15959526696A4 %3 + 1. (29)
Therefore, we can obtain the following zero-order approximate solution [29]:

u= Acos[(1.159595266964 %% + 1)!/?4] (30)

which agrees very well with the exact solution as they are shown in Fig. 4.
Case 5: If a=1, b=1, ¢ =0, according to Eq. (1), we can obtain the following nonlinear oscillator:

W' tu+ud=0, w0)=4, «0)=0. (31)
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Fig. 4. Comparison of the approximate solution with the exact solution: dashed line: approximated solution and solid line: the exact
solution.
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Then, from Eq. (17), we can obtain the frequency of the nonlinear oscillator as follows:

w=/347 + 1. (32)

Therefore, we can obtain the following zero-order approximate solution
3 1/2
u= Acos (ZAer 1) t (33)

which agrees very well with the exact solution [26] as shown in Fig. 5.

3. Conclusion

The solution procedure of He’s PEM is of deceptive simplicity and the insightful solutions obtained are of
high accuracy even for the zero-order approximation [29]. The method, which is proved to be a powerful
mathematical tool to the search for limit cycles of nonlinear oscillators, can be easily extended to any
nonlinear equation, and the present letter can be used as paradigms for many other applications in searching
for periodic solutions, limit cycles or other approximate solutions for real-life physics problems.
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Fig. 5. Comparison of the approximate solution with the exact solution: dashed line: approximated solution and solid line: the exact
solution.
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