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Abstract

An exact treatment based on the inherent background coefficients that describe the background amplitudes in the
scattered field is employed to investigate the scattering of time-harmonic plane acoustic waves by an arbitrarily thick
hollow isotropic functionally graded cylinder submerged in and filled with non-viscous compressible fluids. The mechanical
properties of the graded shell are assumed to vary smoothly and continuously with the change of volume concentrations of
the constituting materials (ZrO, and Al) across the thickness of the shell according to a power-law distribution. The
original inhomogeneous shell is approximated by a laminate model, for which the solution is expected to gradually
approach the exact one as the number of layers increases. The transfer matrix (7-matrix) solution technique, which
involves a system global transfer matrix formed as the product of the individual transfer matrices by applying continuity of
the displacement and stress components at the interfaces of neighbouring layers, is employed to solve for the modal
scattering coefficients. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to
surface waves are determined by constructing the partial waves and obtaining the backgrounds (non-resonance) and
resonance components from it. Three types of FGM cylindrical shells composed of Al and ZrO, are configured and their
response spectra to an incident plane wave are calculated. The effects of the FGM interlayer thickness and material
compositional gradient (the constituent volume fraction) on the inherent background, global and resonance scattering
coefficients are examined. Limiting cases are considered and good agreements with the solutions available in the literature
are obtained.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the study of functionally graded materials (FGMs) has attracted a lot of attention. FGMs
are advanced composites, microscopically engineered to have a smooth spatial variation of material properties
in order to improve overall performance. This is achieved by fabricating the composite material to have a
gradual spatial variation in the constituent materials’ relative volume fractions and microstructure; thus,
tailoring its material composition based on functional performance requirements [1,2]. The concept of FGM
was first introduced in 1984 by a group of material scientists in Japan [3] as an alternative to laminated
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composite materials which show a mismatch in properties at material interfaces. FGMs offer great promise in
applications where the operating conditions are severe, including spacecraft heat shields (thermal barrier
structures), heat exchanger tubes, biomedical implants, flywheels, fusion reactors, blades, storage tanks,
pressure vessels, and general wear and corrosion resistant coatings or for joining dissimilar materials in
aerospace, automobile and defence industries. A review on various aspects of FGMs can be found in the
monographs by Suresh and Mortensen [4] and Miyamoto et al. [5].

As the dynamic parameters play an important role in the design of modern advanced structures, a relatively
large number of investigations on dynamic characteristics of inhomogeneous structures and in particular
FGM cylindrical shells can be found in the literature. The important contributions are cited here. Loy et al. [6]
employed Love’s shell theory and the Rayleigh—Ritz method to examine free vibrations (natural frequencies)
of simply supported FGM cylindrical shells composed of stainless steel and nickel. This work was later
extended to the cylindrical shells with various boundary conditions [7]. Gong et al. [8] used Reddy’s third-
order shear deformation theory (without incorporating transverse normal deformation) to present an analytic
solution to predict the transient response of simply supported FGM cylindrical shells subjected to low-velocity
impact by a solid striker. Ng et al. [9] studied dynamic instability of simply supported FGM cylindrical shells
under harmonic axial loading by using a normal-mode expansion and Bolotin’s method to determine the
boundaries of the unstable regions. Han et al. [10] presented a hybrid numerical method (HNM), which
combines the finite element method with the Fourier transformation method, to analyse transient waves in an
FGM cylinder subject to a radial line load acting on its outer surface. Han and Liu [11] subsequently extended
the latter approach for analysing dispersion and characteristics of surface waves in a circular cylinder
composed of functionally graded piezoelectric material (FGPM). Also, Han et al. [12] employed Fourier
transformation and modal analysis to propose a numerical method for analysing transient waves in cylindrical
shells of an FGM excited by impact point loads. Yang and Shen [13] used Reddy’s higher-order shear
deformation shell theory to investigate free vibration and dynamic instability of functionally graded
cylindrical panels subjected to thermo-mechanical loads consisting of a steady temperature change, static and
periodically pulsating forces in axial direction. Sofiyev [14] applied Galerkin’s method in combination with a
Ritz-type variational approach to study buckling of cylindrical thin FGM shells made of FGM composed of
ceramic and metal subjected to external pressure varying as a power function of time. Subsequently, Sofiyev
[15] applied Galerkin’s method along with Lagrange-Hamilton principle to provide an analytic solution for
the stability behaviour of compositionally graded ceramic-metal cylindrical shells under aperiodic axial
compressive loading. Three-dimensional (3-D)solutions were presented by Chen and co-workers, who
investigated free vibration of an orthotropic FGM cylindrical shell [16] and also a functionally graded
piezoelectric hollow cylinder [17], both filled with a non-viscous compressible fluid medium. Elmaimouni et al.
[18] made use of Legendre polynomials and harmonic functions to develop a numerical method for calculating
guided wave propagation in an FGM infinite cylinder. Zhu et al. [19] presented a 3-D theoretical analysis of
the dynamic instability of functionally graded piezoelectric circular cylindrical shells subjected to a combined
loading of periodic axial compression and electric field in the radial direction. Patel et al. [20] analysed the free
vibration characteristics of functionally graded elliptical cylindrical shells using finite element formulated
based on the high order shear deformation theory. Just recently, Kadoli and Ganesan [21] presented linear
(LN) thermal buckling and free vibration analysis for functionally graded cylindrical shells with
clamped—clamped boundary condition based on temperature-dependent material properties. Pelletier and
Vel [22] used the 3-D steady-state heat conduction and thermoelasticity equations, simplified for the case of
generalized plane strain deformations in the axial direction, to present an exact solution for the steady-state
response of a functionally graded thick cylindrical shell subjected to thermal and mechanical loads. Shakeri
et al. [23] employed Galerkin finite element and fast Fourier transform (FFT) methods to present an analysis
for the dynamic response of a functionally graded thick hollow cylinder in plane strain condition subjected to
axisymmetric dynamic loading.

The resonances of an elastic object are considered as its fingerprints. They are intrinsic characteristics of the
object, which are completely independent of the source of excitation and depend only on its bulk physical
properties (e.g., bulk density and elastic constants). The resonance effects may be caused by the excitation of
eigenvibrations of an elastic component by an incident acoustic wave. When an elastic target is insonified by
an acoustic wave, a geometric reflection is returned from the target and various types of surface waves are
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generated in the surrounding fluid medium as well as inside the target. The scattered pressure field from the
target contains valuable information about the characteristics of the target and the surrounding medium.
Appropriate exploitation of this information and proper identification of the resonance frequencies of the
elastic object can serve as a powerful tool in many applications such as material characterization and non-
destructive testing of materials [24,25], remote classification of submerged targets [26,27], and on-line
monitoring of elastic components [28].

Resonance scattering theory (RST) was first introduced by Flax et al. [29] who applied the resonance
formalism of nuclear-reaction theory to the problem of sound scattering from submerged elastic bodies like
circular cylinders and spheres. They demonstrated that the strongly fluctuating behaviour of the scattered
signal is caused by a superposition of generally narrow resonances in the individual normal modes and a
background of rigid or soft-body scattering. They also showed that for scattering at a frequency in between
two eigenfrequencies of the elastic body, the scatterer appears as an impenetrable object. Conversely, at and
near an eigenfrequency, a scattering resonance is excited by the incident wave. Numerous authors have
investigated resonance scattering by submerged cylindrical shells. Murphy et al. [30] extended the RST,
developed for acoustic wave scattering from elastic objects and elastic-wave scattering from cavities, to the
problem of sound scattering from fluid-filled elastic cylindrical shells in a fluid. Gaunaurd and Brill [31] used
RST to investigate scattering by an air-filled hollow elastic cylinder excited by an incident plane acoustic wave.
They presented accurate expressions for the phase and group velocities and for the phase and group
attenuations of the first few surface waves circumnavigating (the extreme cases of) rigid and soft cylinders.
Izbicki et al. [32] used RST to investigate the effect of the natural modes associated with the circumferential
(axial) waves which propagate around (along) the tube (axis) on scattering of an acoustic wave by an elastic
circular cylindrical shell immersed in water and obtained good agreement between the RST predictions and
experimental results. Talmant et al. [33] employed spectral decomposition of the multiple echo pulses using the
Numrich—de Billy method and subsequent RST analysis to present an experimental and theoretical study of
the properties of circumferential waves on thin-walled elastic, air-filled cylindrical shells immersed in water.
Veksler [34] considered the two-dimensional (2-D) problem of the scattering of a plane acoustic pressure wave
by an empty cylindrical shell and showed that besides the specularly reflected and the diffracted waves, Lamb-
type waves contribute to the frequency dependence. Izbicki et al. [35] used RST to calculate the frequency
resonances and their width related to Scholte—Stoneley waves propagating around circular cylindrical shells
(air-filled aluminium pipes) of different thickness ratios. These waves are known to propagate around circular
cylindrical shells with a phase velocity that is less than the phase velocity of sound in water. Maze et al. [36,37]
also examined resonances of the fluid-borne Scholte—Stoneley circumferential wave propagating around an
evacuated cylindrical shell immersed in water. Talmant and Batard [24] considered the resonant scattering of a
plane acoustical wave in normal incidence by penetrable cylinders and tubes and numerically investigated the
dependence of the resonance parameters (frequency and width) on the bulk properties of the scatterer (density,
shear and longitudinal velocities). Kaduchak and Loeffler [38] analysed backscattering effects due to filling the
interior cavity of a submerged cylindrical shell with a higher impedance fluid such as water. Maze et al. [39]
examined the helical wave resonances (i.e., the circumferential, the transversal guided, and the Scholte waves)
observed in the scattered echoes obtained from an infinite pipe insonified with a plane short pulse in oblique
incidence. Liu and Tang [40] derived a simple and explicit expression for the purely elastic resonance scattering
function associated with oblique incidence of a plane acoustic wave on a submerged aluminium cylindrical
shell of infinite length. Lee et al. [41] introduced complex wavenumbers to investigate the effects of material
attenuation on acoustic resonance scattering from cylindrical shells for the purpose of applying it to ultrasonic
non-destructive evaluation (NDE). Veksler and Izbicki [42] proposed a procedure for modal resonance
isolation in the scattering problems of a plane acoustic wave by cylindrical and spherical shells. Kaduchak and
Loeffler [43] used the exact 3-D elasticity theory to examine acoustic scattering from a multilayered
transversely isotropic cylindrical shell excited by an obliquely incident plane wave. Choi et al. [44-40]
considered resonance scattering of acoustic waves from submerged penetrable targets of canonical geometry
(e.g., an empty cylindrical or spherical elastic shell in a fluid) and proposed exact expressions, named the
inherent background coefficients, which is obtained from the zero-frequency limit of an equivalent fluid target,
in order to properly describe the acoustical background over the entire frequency range. Joo et al. [47]
subsequently extended the concept of the inherent background to multilayered elastic cylindrical structures by
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solving the problem of acoustic wave scattering by an analogous liquid structure. Conoir et al. [48] studied the
resonances of an air-filled elastic cylindrical shell immersed in a fluid using the phase gradient method,
which is based on the phase derivative of the scattering matrix with regard to the frequency. Kheddioui
et al. [49] theoretically and experimentally studied resonant scattering by a pair of parallel elastic cylindrical
shells immersed in water. They evaluated the strength of the multiple interaction couplings between
the two shells in relation to the gap between them. Bao et al. [50] used partial-wave resonances in the
acoustic scattering amplitude of a normally incident plane wave to discuss the existence of various types of
circumferential waves, both predominantly shell or fluid borne, for an infinite, thin elastic, circular-cylindrical
shell immersed in a fluid and filled with another fluid. Tesei et al. [26] used resonance scattering analysis
based on autoregressive (AR) spectral estimation technique to characterize and classify submerged
elastic targets (e.g., water-loaded elastic, cylindrical, thin-walled shells immersed in salt water) in terms of
their elastic and geometrical parameters. More recently, Uberall [51] reviewed the physical phenomena that
arise in the scattering of acoustic waves from fluid-immersed elastic (metallic spherical and cylindrical)
shells which may be either evacuated or filled with the same or with a different fluid. He discussed the
various phenomena occurring including the formation of circumferential (peripheral or “‘surface’) waves t
hat circumnavigate the shells, propagating ecither as elastic waves in the shell material or as fluid-borne
waves of the Scholte—Stoneley type in the external or the internal fluid. Kim and Th [52] used the normal
mode expansion technique to present a resonance scattering analysis for obliquely incidence of a plane
acoustic wave upon an air-filled, transversely isotropic cylindrical shell immersed in water. In a much
related problem, Fan et al. [53] studied the circumferential resonance modes of an immersed solid elastic
cylinder which is insonified by an obliquely incident plane acoustic wave over a large range of incidence
angles. They employed RST to derive physical explanations for singular features of their frequency-incidence
angle plots.

The above review clearly indicates that, in contrast with the homogeneous shells, there seem to be no
rigorous investigations on acoustic interaction of an incident wave field with a functionally graded cylindrical
shell. The primary purpose of the current work is to fill this gap. Consequently, we employ the novel features
of RST in combination with the classical 7-matrix solution approach [54] to carry out an exact analysis for
scattering of acoustic waves by a thick-walled functionally graded hollow cylinder submerged in and filled with
compressible ideal fluids. The proposed model is of high practical value in ultrasonic characterization or
testing of FGM cylindrical vessels, storage tanks, and pipelines which are of important application in oil, gas,
water transport, power generation, and chemical processing industries [1-5,24,25]. It is also of interest in other
closely related technical applications such as remote classification of submerged targets (shells) [26,27] or on-
line monitoring of elastic components [28] fabricated from FGM:s.

2. Acoustic mediums

Following the standard methods of theoretical acoustics, the field equations for an inviscid and ideal
compressible medium that can not support shear stresses may conveniently be expressed in terms of a scalar
velocity potential as [55]

v=—Vo, p=—iwpp, Ve+k¢=0, (1)

where k = w/c is the wavenumber for the dilatational wave, ¢ the speed of sound, p the ambient density, v the
fluid particle velocity vector, and p the acoustic pressure. Also, noting that the incident wave is time-harmonic,
with the circular frequency , we have assumed harmonic time variations throughout with the e’
dependence suppressed for simplicity.

The dynamics of the problem may be expressed in terms of appropriate scalar potentials that can be
represented in the form of an infinite generalized Fourier series whose unknown scattering coefficients are to
be determined by imposing the proper boundary conditions. The problem geometry is depicted in Fig. 1,
where (x, y, z) is the Cartesian coordinate system with origin at O, the z direction is coincident with the axis of
the cylindrical shell, and (r, ) is the corresponding cylindrical polar coordinate system. The expansion of the
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Fig. 1. Problem geometry.

incident plane wave in cylindrical coordinate has the form [56]

Pine. (1,0, 0) = @ Y _ &ui" Tk 7) cos (n0), )

n=0

where J, is the cylindrical Bessel function of the first kind of order n [57], symbol ¢, the Neumann factor
(¢, =1 for n=0, and &, = 2 for n>0), i = v/—1, ¢, the amplitude of the incident wave, k; = w/c; is the
wavenumber in the medium 1 (see Fig. 1), and the subscripts 1 and 2 for the material properties refer to the
surrounding and the inner fluid mediums, respectively, throughout the formulation. Likewise, keeping in mind
the radiation condition, the solutions of the Helmholtz equation for the scattered potential in the surrounding
fluid medium 1 and the transmitted potential in the encapsulated fluid medium 2 can, respectively, be
expressed as an linear combination of cylindrical waves as [56]

o0

01(r,0,0) = > &,i" A,()HD (kyr) cos(nh),
n=0

92, 0,0) = 4" By(2)J u(kar) cos(nh)), 3)
n=0

where k, = w/c; is the acoustic wavenumber in the medium 2, qul)(x) = J,(x)+1Y,(x) is the cylindrical
Hankel function of the first kind of order #n, Y,,(x) is the cylindrical Bessel function of the second kind of order
n [57], and A4,, and B, are unknown coefficients. Furthermore, using Eq. (1), the radial velocities and acoustic
pressures in mediums 1 and 2 are, respectively, written as

0 = - WO EO) NP5 — kel B (ki) ()] costnd),
n=0
Jp = .
) _ 2 ny
We=-t=— ; kaeni"J! (ko) B, () cos(nd) (4a)
and
_ _N 1 ()
P = —i0p(@ine + 01) = Y _ [~0p 9™ Tukir) — opyeni™™ HP (k1r) Ay(w)] cos(nd),
n=0
_ _ o sn+1
Py = —iwpy0y = = > wpyen" T (kar)By() cos(n), (4b)
n=0

where prime denotes differentiation with respect to the argument.
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3. Elastic shell

The wave motion in an isotropic elastic medium is governed by the classical Navier’s equation [58]

o’u
Ps3p = 1V + (Zs + p)V(V - u) (5)

subject to the appropriate boundary conditions. Here, p, is the solid material density, Ay, p, are the Lame
constants, and u is the vector displacement that can advantageously be expressed as sum of the gradient of a
scalar potential and the curl of a vector potential:

u=Veo+Vxy (6)

with the condition V-3 = 0 [58]. Furthermore, by making use of problem symmetry (see Fig. 1), we have
Y = (0,0,¥) [56]. The above decomposition enables us to separate the dynamic equation of motion into the
classical Helmholtz equations:

(V2 +10p =0, (V+kp =0, 7

where k, and k, are complex wavenumbers, known as [58]

) 1)
kp=——m7m—, ky=—F—=. (8)
SO s amie,  Vuln,
The displacement components of the elastic medium in the polar coordinate system are [58]
_0¢p 1oy _ 10 oy
=5ty YTy o ©)
and the radial and tangential stresses may be written as
ou, 10u, Ouy uy
Orr —isé‘i‘zﬂxa, 010 —,Us(;% 5—7) (10)

where = V.u= V?¢ = —kf,(/).

Now, we consider a functionally graded cylindrical shell of uniform thickness /4, inner radius ay and outer
radius a, with variable material properties suspended in and filled with ideal compressible fluid mediums, and
insonified by a time-harmonic plane acoustic wave normal to the axial direction (Fig. 1). Adopting a laminate
model [16,17], the functionally graded shell is assumed to be composed of ¢ layers of homogeneous isotropic
materials, which are perfectly bonded at their interfaces and lined up such that their axes of symmetry coincide
with each other (Fig. 1). The material properties within each layer of inner radius a;_;, outer radius a; and
uniform thickness 4; = a; — a;_; may described by the simple rule of mixture as [16,17,59,60]

W= Vi) + [1 = Vi) 22,
W = V)l + [1— Ve de,
P = Vel + [1 = Vi) pld, (11)

where 7 = (a;, +a,1)/2 (= 1, ..., q), and (A7, ul1), pU1 and V' p(7;) are the Lame constants, mass density, and
volume fraction of constituting material in the jth layer of the multilayered shell, respectively. Furthermore,
the relevant scalar potentials corresponding to the compressional and shear waves transmitted into the jth
layer of multilayered shell may conveniently be represented in the form of infinite generalized Fourier series as
[56]

3

b= > [ HP @) + D) HP (K1) cos(no),

n=0
W, = i [EDN()H D (KYr) + GU(w) HE (kKP7)] sin(n0), (12)

n=1
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where Hff)(x) = J,(x) —1Y,(x) is the cylindrical Hankel function of the second kind of order n [57], and C,[{]
through G,[{] are unknown transmission coefficients which will be determined later by imposing the appropriate
boundary conditions.

4. Method of solution (7-matrix approach)

The specific steps taken in constructing the model for making use of the transfer matrix solution technique
are described as follows [54]. After constructing the formal solution for the relevant field variables (i.e., stresses
and displacements) associated with each layer in the multilayered (functionally graded) cylindrical shell in
terms of scattering and transmission coefficients, these solutions are specialized to the outer and inner
interfaces of the layer. Subsequently, the local transfer matrix for each layer is constructed by elimination of
the common transmission coefficients. Such a matrix relation can be used, in conjunction with satisfying
appropriate interface conditions across neighbouring layers, to directly relate the field variables of the inner
face of one layer to the outer face of its outer neighbour. When this procedure is carried out consecutively for
all layers in the bundle, a global transfer matrix (i.e., the product of the individual transfer matrixes) results,
which connects the boundary variables at the outer and inner surfaces of the multilayered shell. In this way,
the noble advantage of using the global transfer matrix saves us from tedious implementation of the boundary
conditions at all g+1 interfaces (i.e., only the boundary conditions on the first and the last interface need to be
imposed). Consequently, substitution of the scalar potentials (12) into the constitutive relations (9) and (10),
leads to the matrix form of the formal solutions for the field variables (stress and displacement components)
associated with the jth layer [54], i.e.,

Wi = QUIxU, (13)
where
. 21T
1] . 1] . . . . T
WO = [o0,, olh,, il |, X0 = [, DA, £, G (14)

in which the elements of the coefficient matrix QE] are given in Appendix A, and the stress and displacement
components in the jth layer are expressed as

al(r,0,0) = > oW (r, ) cos(nl),
n=0

6,[»]3(;’7 07 CU) = Z JE,].F])’H(V, (D) Sil’l(l’lO),
n=1

ul(r, 0, ) = Z ull (r, ) cos(n0),
n=0

w(r,0,0) = > ul) (r, ) sin(n0). (15)
n=1

The matrix relation (13) can advantageously be specialized for the inner and outer radii r = a;,a;_; of the jth
layer as

Al 1 il

WE 1 — Q,[f ]XE]’ W[,{ 1 — Q,[{ ]X[r{]’ (16)
where the superscripts [j+] and [j—] denote the quantities evaluated at r = a; and a;_,, respectively. The above
equations can be supplemented with the continuity conditions between each interface layer, i.e., WE{H =

WEY“H at r = a;. Next, by eliminating the common amplitude vector XU in Eq. (16), the field variable vector
WU+ may be related to WU by

WU = MW=, (17)

where MY = QUH[QU17! is the local transfer matrix for jth layer, which relates the field variables at its outer
surface to those at the inner surface. Subsequently, by invoking the continuity conditions between all interface
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layers, the field variables at the outer radius of the total system, r = a, is related to those at the inner radius,
r = ay, via a 4 x 4 global transfer matrix, T,, by
wletl — an[lfl’ (18)
where
T, = WY LZ0,Y (Gt N Y/ (L) (19)

The unknown coefficients 4, and B, and the elements of the field variable vector, WLI -1 can be determined
from the appropriate boundary conditions imposed at the inner (r = ag) and the outer (r = a,) surfaces of the
multilayered shell. Thus, assuming continuity of normal fluid and solid velocities, normal stress and fluid
pressure, and vanishing of tangential stress at r = ay and a, implies that [53]

(—iw)u,(r, 0, w)’ =v,(r,0, w)|

r=ag,a, r=agp,a,’

Urr(r, 07 w)‘,,:ao,aq = _p(r’ 99 w)'r:ao,aqa
ar(r, 0, w)| =0. (20)

r=ag,a,

Finally, making use of Egs. (4) and (19)4a,4b,19 in Eq. (20), we obtain
—zw[T“ (-] 4 32401 | 33,11 4 pddy fi- 1} + ke H' Vka) Au(0) = —pokiea" T, (kray),  (21a)

lrn an ;n

—icoull, T+ ko, (kaag) Bu(w) = 0, (21b)

Ty ol ) + T2l V4 T3l + Th4ull T — wpy e, HD (k12 Au(0) = opypgend™  Tukiay),  (2lc)
T+ wpye,i™ I, (kaag) By(w) = 0, (21d)

72! Prn + 722! [1 ]+T23u[l ]+T24“9n =0, (21e)

oly) = 0. (21f)

5. The global and resonance scattering coefficients

The most relevant field quantities associated with acoustic resonance scattering are the global and resonance
scattering coefficients. The global scattering coefficient may be obtained from the standard definition of the
backscattering form-function amplitude, which is written as [47,56]

2 =
VOO(H =n,w)| ~ lim = M = O =m, klaq) S (22)
r—o00 |\l dqg Pinc.
where
2&,
fn(ga klaq) = Ay COS(I’!@) (23)

is referred to as the global scattering coefficient for the nth mode. Consequently, the pure resonances in the

scattering amplitudes of the nth normal mode can be isolated by subtracting the inherent backgrounds from
the global form function as follows [47]:

30 = kiag)| =17, (24)
where the inherent background coefficients are defined as
F90, kya,) = 2—A“’) cos(nb), (25)

A/ T kldq
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here the background scattering coefficient, Aff’), which is determined by solving the problem of interaction of a
plane acoustic wave with an analogous multilayered fluid shell structure (i.e., by setting the transverse wave
speeds in all of the solid layers equal to zero), is defined as [47]

klal]‘];q(klaq) - [Fn(0+)]q']n(klaq)
klaquzl),(klaq) - [Fn(OJr)]qHE,l)(klaq)

AP = (~1) (26)

Here, the superscript “b” denotes the acoustical background and [F ,,(O*)]q is the zero limit of the
accelerance function associated with the outer (gth) layer of the multilayered shell structure that, for the n = 0
mode, can be obtained through the following recurrence relation [47,61]

e 4pP
[Fo(0 )]0 = Py — 4p£1] In(1 — hl)’
U+1] [Fo(0)];_,
Fo(0h)), =5 - ’
Oy =" (1= In(1 = AIFoO*) | 27
Fa0y, = e
s {1 —In(1 — /’lq)[FO(0+)]q71i|

where j =1, 2,...,(q—1), and similarly for the n>1 modes

[ 11( )]O_ n,
P2

U+11p2 + LIF (0-&-)]‘_
ps JLtn j—1
F,(0M)] = 5= Ly
[ b Pl L+ [Fu(0M)], (27b)
_ P n + lq[Fn(Oﬂ]q—l
qu] Iq + [Fn(OJr)]q—]

[F,(0%)],

in which /; =n(1+ (1 - hj)z")/(l —(1- hj)zn) and j=1,2,...,(¢g—1). This completes the necessary back-
ground required for the exact resonance scattering analysis of a functionally graded cylindrical shell in an
acoustic medium. Next, we consider some numerical examples.

6. Numerical results

In order to illustrate the nature and general behaviour of the solution, we consider some numerical
examples. Realizing the large number of parameters involved here while keeping in view our computing
hardware limitations, we confine our attention to a particular model. The surrounding and filling fluids are
respectively assumed to be water (p; = 1000 kg/m®, ¢; = 1480 m/s) and air (p, = 1.2kg/m>, ¢, = 344m/s) at
atmospheric pressure and ambient temperature. The cylindrical shell(total thickness /1/a, = 0.1) is assumed to
be three-layered in which the interlayer (thickness sy = hy + h3 + - -+ 4+ h,_1) is graded in the radial direction
with varying proportions of metallic aluminium (Al) substrate (thickness /;) and ceramic zirconia (ZrO,)
coating (thickness /,). The volume fraction of metal in the FGM interlayer is varied from 100% on the inner
interface (at r = ag + 1 = a;) to zero on the outer interface (at r = ag + /1 + 7y = a,—1). Three special cases
are considered. In the first case (case I), the Al substrate and the ZrO, coating are assumed to be absent (i.e.,
we have a single layer functionally graded cylindrical shell; iy = h, = 0, i;/h = 1). In the second case (case II)
the thickness of the FGM mid-layer is supposed to be 50% of the total shell thickness (h;/h = hy/h = 0.25,
hy/h =0.5), while in the third situation (case III) it is assumed to be only 10% of the total shell
thickness (h/h = hy/h = 0.45, h;/h = 0.1). Furthermore, five distinct gradient profiles for the functionally
graded interphase are studied in each case. Also, the volume fraction of Al in a; <r<a,_; for these situations
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are assumed as follows:

y =0.2 metal rich (MR),

Vi) = (1 _’;al) where { 7=1.0 linear (LN), (28)
! 9 =5.0 ceramic rich (CR),
and
1 1 2(r — 4
—+= 1—u . a<r<a;+(h/2),
Vo) 22 hy (28b)
F r) = »
1 1[2(r—a)) !
2_2{}11 — 1} , ar+(h/2)<r<a,,

where y = 0.2 for sigmoidall (SM1) and y = 5 for sigmoidal2 (SM2) profiles. The corresponding variations in
volume fraction of Al along the radial axis are shown in Fig. 2. It is clear that MR simulates a metal-rich (MR)
profile, CR a ceramic-rich profile, LN a linear profile, and SM1 and SM2 refer to sigmoidal compositions in
the FGM interlayer. The latter design is desirable in situations where an MR composition near the inner
interface and a CR near the outer interface is required. Also, due to the changes in the relative proportions of
ZrO, and Al, eclastic properties of the graded layer should also vary across its thickness. The effective
structural properties of the interlayer can be determined by physical properties and volume fraction of the
constituents (see Table 1) [62].

An MATLAB code was constructed for computing the global transfer matrix, T,, treating boundary
conditions and to calculate the unknown scattering coefficients, and the global and the inherent background
coefficients as functions of the non-dimensional frequency kja, for a unit amplitude incident plane wave
(99 = 1). The computations were performed on a Pentium IV personal computer with a maximum number of
layers ¢, = 100, a maximum truncation constant of n,,, = 50, especially selected to assure convergence in

Table 1
Material properties of the constituents

Material s (kg/m?) 5 (GPa) s (GPa)
Aluminium (Al) 2706 57.09 26.69
Zirconia (ZrO,) 5700 129 94.8
h
~—h; — by «—h;—
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\
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Fig. 2. The variations in volume fraction of aluminium in the FGM interlayer. ( MR; — LN; ------ CR;— - — - — SM2;

--------- SM1).
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case of a thick FGM interlayer and also in the high-frequency range. The convergence was systematically
checked in a simple trial and error manner, by increasing the number of layers, ¢, as well as the truncation
constant (i.e., by including more modes in all summations) while looking for steadiness or stability in the
numerical value of the solutions.

Fig. 3 shows the variations of the inherent background coefficient, [fﬁf’(@ =, kia,)|, with dimensionless
frequency, kia,, for case I (a single-layer FGM shell) with selected material gradient profiles (i.e., MR, LN,
CR). The inherent background coefficients associated with a rigid cylinder and also a soft cylinder are shown
for comparison purposes [30]. The rigid background is suitable for isolating the resonances of a very dense
(heavy) cylinder, while the soft background has proved useful in extracting the resonances of a low density
cylinder. Clearly, when densities of the solid and fluid mediums are of the same order of magnitude, neither
rigid nor soft backgrounds are applicable [31]. In cases where the impedance ratio is close to unity, the proper
background behaves intermediately between the rigid and soft backgrounds. We also note that results
corresponding to the sigmoidal (SM1, SM2) profiles are not presented as they exhibit a very similar behaviour
to that of the LN profile. This may be explained by the fact that the overall values of volume fractions of Al or
ZrO, in the interphase region are very close in these situations. The most important observations are as
follows. Since the FGM shell will appear “thin” to sound of long wavelength (small values of kja,) but
“thick™ to sound of short wavelength (large values of kja,), as expected, the character of the background
coefficients will strongly depends on the acoustic wavelength in such a way that they approach the soft
amplitude for kja, — 0, and the rigid amplitude for kja, — oo. In particular, at very low frequencies, the
“not so much thick™ air-filled FGM shell appears to the incident wave simply as a cylindrical air bubble,
which behaves essentially as a soft shell [30]. Consequently, at these frequencies, the inherent background
coefficients associated with the LN, MR, CR profiles follow the soft background result fairly well.
Furthermore, in the n = 0 case (monopole mode), a notably high peak which is known in literature to be
associated with the “giant monopole” resonance (i.e., analogous situation of air bubbles in water) is observed
at a very low frequency [30]. Moreover, due to the relatively high thickness of the cylindrical shell (#/a, = 0.1),
the inherent background coefficient curves roughly follow the soft background curve (dotted line) in a very
narrow band near the zero frequency. On the other hand, as the incident wave frequency increases, the
inherent background coefficient curves begin to fairly well follow the rigid background curve (dash—dotted
line). As the mode number increases, this correlation of background coefficients shifts to the higher
frequencies, and the material composition (distribution profile) of the FGM shell appear to more effectively
influence the modal background coefficients, especially at intermediate frequencies. Lastly, the inherent
background coefficient curves corresponding to the CR gradient profile (dashed line) seem to be slightly
shifted toward higher frequencies in comparison with that of the MR profile (thick solid line), mainly due to
the increased overall rigidity of the CR composition. Also, for the same reason, the transition frequency (the
frequency at which the inherent background undergoes from soft background to the rigid background) for CR
shell is marked lower than that of the MR shell.

The first column in Fig. 4 shows the variations of the global scattering coefficient, |f,,(0 = =, k1a,)|, and the
inherent background coefficient, [fi,b)(ﬂ =, ka,)|, with dimensionless frequency for a double layer cylindrical
shell, which consists of an Al inner layer and a ZrO, coating layer, at selected coating thickness ratios
(hg/h =0, 0.25,0.75, 1) for a fixed total shell thickness of /1/a, = 0.1. The second column in Fig. 4 shows the
associated resonance scattering coefficients, |f’ ffes)(H = m, kia,)|, which are simply obtained by subtracting the
inherent backgrounds from the global form functions. This can be used to illustrate that the elastic response
consists of smooth background and resonance spectra. The difference in the two layered shell responses (e.g.,
compare |f,(0 = m, kja,)| for hy/h = 0.25, 0.5, 0.75) implies that the rigidities of these shells are different. The
Al shell is the softest, while the Al shells with a ZrO, layer have a medium rigidity, and the ZrO, shell is the
most rigid. In particular, the elastic responses of the two-layered shells are between those of the Al (h,/h = 0)
and ZrO, (h,/h = 1) shells: the former is the low-frequency bound and the latter the high-frequency bound.
This may be related to the fact that the circumferential waves corresponding to the resonances in ZrO, shell
have faster phase speed than those in the Al shell. The global scattering coefficients perfectly coincide with the
inherent background coefficients, except in the resonance region, where the resonances are very clearly
isolated. As the partial wavenumber (mode number) n increases, the locations of the dominant resonance
(peak) frequencies shift toward higher wavenumbers and some of the resonances are so weak that they hardly
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The inherent background coefficients, |f n(b)|

klaq

Fig. 3. The change in the inherent background coefficient with dimensionless frequency for selected mode number and compositional
gradients: (@) n=0,(b)n=1,(c)n=2,(d)n=3,()n=4( MR; LN;------ CR;— - — - — rigid; <o eeeeee soft).




S.M. Hasheminejad, M. Rajabi | Journal of Sound and Vibration 302 (2007) 208-228 221

a
o= hgy /h=1.00
PR, \ hy /h=0.75
y Nyt \ hgy /h=10.50
W \ hq /h=0.25
}v\/ PO ttira. O et O \ hq / h - 0.00
0 5 10 15 20 0 5 10 15 20
b TN
//' \ 27N
- /l" NN,
% I" N N,
> P N N,
= /' -
E y g \\V N, —
< '/ Dy §
= ¢ NN e
2 =
e o0 5 10 15 20 & 0 5 10 15 20
c & g
< ]
2 m £ N
% E [P
-q.:) MW E,J N
=} -
2 - I
= M/’\/\/‘\, 2 A
o0
E 0 5 10 15 20 g 0 5 10 15 20
d g 2
b= o
< =
i _.I.--/\//\/\N =
= < A A
2
RV VN AL
en
=
IV Ve Y
TN NATN N A

10 15 20

(e}
W
—_
(e}
[
W
[\e}
(e}
(e}
W

?

Lot

0
klaq
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appear in the spectrum (especially for n = 2, 3, 4 at relatively low frequencies). The resonance frequency
associated with the single layer ZrO, shell (h,/h = 1) is slightly higher than that of the Al shell (#,/h = 0), and
this difference increases as the mode number increases. Furthermore, the resonance frequency bandwidth
associated with the single layer ZrO, shell is slightly narrower than that of the Al shell, especially for low mode
numbers. The resonances of the two-layered shells have different characteristics of propagation and radiation
damping. The dependence of the resonance frequencies on coating thickness can be observed more clearly with
these resonance spectra than on the global scattering coefficients. In particular, as the waves penetrate into the
compound shell, the entire structure of two-layered system is seen to affect both the frequency and the quality
(amplitude and width) of the resonances in these spectra. The resonances corresponding to the higher mode
numbers (rn>2), show higher sensitivity to the change in coating (ZrO,) thickness. These variations are
approximately LN and show monotonic behaviour. It can be shown that this monotonic behaviour and LN
variation of resonances with change of coating thickness, is consistent with the dependence of phase velocities
of surface waves corresponding to these resonances [63]. As a consequence, the characteristics of dominant
resonances of the higher modes (i.e., location, amplitude and width) can be a good indicator of coating
thickness.

Fig. 5 shows the variations of the global scattering coefficient and the associated resonance scattering
coefficient with dimensionless frequency for selected Al/ZrO, gradient profiles (i.e., MR, LN, CR) and
structural configurations (case I: a single FGM shell: iy = h, =0, h;/h = 1; case 1I: a 50% FGM mid-layer
hi/h=hg/h =025, hi/h = 0.5; case 11I: a 10% FGM mid-layer: h; /h = hy/h = 0.45, hy/h = 0.1) for a given
total shell thickness of /4/a, = 0.1. As before, the resonances can be readily isolated by using the inherent
backgrounds for FGM cylindrical shells (see Fig. 3). The most important observations are as follows. As the
thickness of the FGM interlayer increases, the difference between the scattering coefficients increases,
especially for higher mode numbers. In particular, the dominant resonance frequencies corresponds to the MR
profiles are (monotonically) shifted to the left toward the resonance frequency previously observed in Fig. 4
for a single-layer Al shell, while the quality (amplitude, bandwidth) of the resonances also tend to become
similar to that of the Al shell, with increasing the thickness of FGM layer. Similarly, the dominant resonance
frequencies corresponding to the CR profile are shifted to the right toward the resonance frequency for the
single-layer ZrO, shell (see Fig. 4), while the quality (amplitude, bandwidth) of the resonances also tend to

a kjag=0.1 kjag=1 kja, =10
Incident —p
wave @ —> 0 180 0 180
—_ 0 180 0 180
—_—
C
0.05 1 5
— m 0 180 m 0 180 0
—

Fig. 6. The angular distribution of the far-field form function amplitude for selected wavenumbers and material gradient profiles: (a) case
I, (b) case 1II, (c) case III ( MR; LN;------ CR).
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a b

Fig. 7. (a) The variations of the global and inherent background coefficients with dimensionless frequency for selected mode numbers for a
two-layered air-filled aluminium-tungsten carbide cylindrical shell submerged in water ( global scattering coefficient; - - - - - - inherent
background coefficients). (b) The change in the modal backscattering form function amplitude with dimensionless frequency for selected
mode numbers for an air-filled aluminium shell submerged in water. ( Murphy et al.’s results [25]; O multilayered Al shell, ¢ = 100).

become similar to that of the ZrO, shell. Thus one can conclude that the gradient profile of the constituents
have the most pronounced effects on the resonance spectra characteristic, especially for relative thick FGM
interlayers (shells). We also note that the resonance frequencies associate with the constant LN profile do not
appear to change position as the FGM interlayer thickness increases, which is clearly due to the fact that the
constituent volume fractions remain constant across the interlayer thickness (i.e., 50% Al-50% ZrO,) in this
situation.

Fig. 6 displays the angular distribution of the far-field form function amplitude, |f (0 = 7, )|, for the
selected configurations (cases I, II, IIT) and material gradient profiles (LN, MR, CR) at specific wavenumbers
(kia, = 0.1, 1, 10). The most important observations are as follows. Decreasing the thickness of FGM layer
(i.e., cases II and III), leads to a notable decrease in the difference between the curves corresponding to
different material composition profiles, especially in the forward (60 = 0) direction. At low and intermediate
frequencies (kja, = 0.1, 1), the form function directivities exhibit a very uniform pattern. This is due to the fact
that, in contrast to the high frequency case (k;a, = 10), the breathing (» = 0) and the rigid body (n = 1) modes
are the dominant modes at these frequencies. Furthermore, the CR profile causes the largest (smallest)
scattering amplitude in the backward (forward) direction, while for the MR (metal rich) profile the situation is
reversed. At the highest frequency considered (kja, = 10), there is almost no difference observed between the
profiles in the forward direction as all the curves nearly coincide in this direction, even for the thickest FGM
interlayer (case I). Hence we may conclude that identification of material distribution profiles from the
scattering amplitude measurements in the backward direction may be far more gainful than that in the
forward direction, even for very thin interlayer at relatively high excitation frequencies. As a final observation,
we note that maximum scattering amplitude occurs mainly in the backward direction for all three frequencies
considered.

Finally, to check overall validity of the work, we computed the variations of the global scattering coefficient
and the associated inherent background coefficient with dimensionless frequency for a two-layered
air-filled aluminium (Al)-tungsten carbide (WC) 2%-thickness shell submerged in water by setting
hja, = 0.02, ¢ =2, p"2790kg/m?, M = 59.9GPa, "l = 26.8 GPa, p!! = 13,800 kg/m?, 2! = 166.0 GPa,
1 = 241.6 GPa, p; = 1000 kg/m®, ¢; = 1480 m/s, p, = 1.2kg/m> and ¢, = 340 m/s in our general MATLAB
code. The numerical results, as shown in Fig. 7a show good agreement with those displayed in Fig. 11 of [47].
As a further check, we greatly increased the number of layers (i.e., set ¢ = 100) in an FGM cylindrical shell
(case)and lety — 0 (V' — 1) in Eq. (28a) to compute the modal backscattering form function amplitude for
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an air-filled single-layer aluminium shell submerged in water by setting /2/a, = 0.8, ¢ = 100, PV = 2790 kg/m?,
' =59.7GPa, ! = 26.7GPa (for j = 1,2,...,100), and p; = 1000 kg/m?>, ¢; = 1480 m/s, p> = 1.2kg/m*> and
¢> = 344 m/s, in our general MATLAB code. The numerical results, as shown in Fig. 7b show good agreement
with those displayed in Fig. 1 of Ref. [30].

7. Conclusions

The acoustic resonance characteristics of layered (FGM) shells can effectively be analysed by taking
advantage of the inherent background coefficients. The pure resonances associated with the scattering
amplitudes of the nth order partial wave can be isolated by subtracting the inherent backgrounds (non-
resonance component) from the backscattering form function. The present work is concerned with acoustic
wave interaction with a thick-walled three-layered cylindrical shell in which the coating phase is interfaced
with the substrate shell through a functionally graded interlayer. The solution of the problem is derived by
means of the very powerful transfer matrix method, which effectively reduces the order of the final solving
matrix and greatly improves the computational precision. Special attention is paid to the influence of material
compositional profiles in the graded region on the frequency spectrum of global, inherent background, and
resonance scattering coefficients. Numerical results for a ZrO,-coated Al shell with different variations of
interlayer properties are presented and discussed. The computed results reveal that the background coefficients
for the FGM cylindrical shell strongly depends on the acoustic wave length in such a way that they approach
the soft background amplitude (e.g., behave like a cylindrical air bubble) at low incident wave frequencies, and
toward the rigid background amplitude (e.g., behave like a rigid cylinder) at high frequencies. As the mode
number increases, this correlation of background coefficients shifts to the higher frequencies, and the material
compositional profile of the FGM shell appear to more effectively influence the modal background
coefficients, especially at intermediate frequencies. It has also been found that for a relatively thick FGM Al/
ZrO, interlayer, the gradient profile of the constituents have the most pronounced effects on the resonance
spectra characteristics. In particular, the dominant resonance frequencies corresponding to the MR (CR)
profiles are monotonically shifted to the left (right) toward the resonance frequency for a single-layer Al
(ZrO») shell, while the quality of the resonances also tend to become similar to that of the single-layer Al
(ZrO») shell. The resonance frequencies associated with the constant LN profile do not appear to change
position as the FGM interlayer thickness increases. Furthermore, the far-field form function amplitude
directivity patterns show that identification of material composition distribution profiles from the scattering
amplitude measurements in the backward direction may be far more gainful than that in the forward direction,
even for very thin interlayer at relatively high excitation frequencies. Finally, in case of a (two-layer) ZrO,
coated Al shell, the sensitivity of the resonance frequencies and quality (amplitude and width) to coating
thickness is illustrated. In particular, it has been demonstrated that the quality and characteristics of dominant
resonances of the higher-order modes (n>2) can be a good indicator of coating thickness.

Appendix A

o(1,1) = — [(zyf] + 24 ? — n — IXI2) + 200n(1 — n)] HO Ny — 2000 1), (),

01(1,2) = — |G+ 2002 — 0 — G+ 201 = )| HP K — 200K 2, (),
0(1,3) = 2 | (n — DHP ) — KrH D, ),
0(1,4) = =20 | (n — DHP ) — KrH ) ()|,
02, 1) = 20 [ B UDrm(n = 1) = ke H Y, K|,

01(2,2) = 20 HOKPrm(n = 1) = k) k)|,
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011(2.3) = Wl [ HP RIn2n(n — 1) — ) + 240rH ) (k).
01(2,4) = W[ HPUPr)2n(n - 1) — K07 + 24D 1, (k)
o3, 1) = —nHP KMy + krH ) (K,

ON(3,2) = —nHP (kM) + krH) (K),

0(3,3) = —nH D (kr),

oY3,4) = —nHP (),

04, 1) = nH,D (i),

01(4,2) = nH P (I]r),

OV(4,3) = nHO (k) — k0 HY) (D7),

+
04, 4) = nHP (kM) — kKrHS) (kDr).
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