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Abstract

This paper provides a new formula to take into account phase differences in the determination of an equivalent von

Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be

used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in

combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical fatigue is of major importance in the development of dynamically loaded structures. Performing
numerical analyses to predict fatigue helps to shorten development time and cost.

High-cycle fatigue can be analysed by means of the so-called stress-life approach [1]. Using this method,
fatigue failure prediction is based on the magnitude and mean of the stresses occurring in the construction.
The stress amplitude and the mean stress caused by the loading can be rainflow counted and related to an S–N

curve, which gives the number of cycles that can be applied to the structure until failure [2]. The total fatigue
damage may be determined by using the Palmgren–Miner rule. S–N curves are usually determined for uni-
axial stress states.

However, in a real environment, stresses will not be uni-axial, but bi-axial or in the most general case multi-
axial. Many multi-axial fatigue criteria have been developed (see e.g. Refs. [3,4]). Many of them are based on
the critical plane approach. Alternatively, it is possible to calculate an equivalent stress from the multi-axial
stresses, which can subsequently be used to perform uni-axial stress-life fatigue analysis as described above.
Popular equivalent stresses are the von Mises stress, the maximum principal stress and the maximum shear
stress (Tresca).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fatigue analyses are mostly performed in the time domain, in which equivalent dynamic stresses can be
easily calculated and the stress-life method introduced above can be applied without further problems.
However, if the vibrations in a construction have a random character, fatigue analysis is often based on multi-
axial stress power spectral densities (PSDs) in the frequency domain. Calculating an equivalent stress from
these stress PSDs and performing frequency domain fatigue analysis is less trivial. Several authors have
introduced methods to calculate equivalent stresses in the frequency domain [5–10].

In this paper, we are considering Preumont and Piémont’s very useful stress-life fatigue analysis procedure
[5]. It will be shown that Preumont’s method does not take into account phase differences between the multi-
axial stress components while calculating an equivalent von Mises stress PSD. However, these phase
differences can be present in real life in case of multiple random excitations, e.g. road excitation for trucks. A
new formula will be derived that includes phase differences between the multi-axial stress PSDs.

As a basis, Section 2 shortly describes the appearance of the multi-axial stress PSDs from which we would
like to calculate an equivalent stress PSD. We apply the von Mises stress as an equivalent stress. The
calculation of the von Mises stress in the time-domain is reviewed in Section 3. In Section 4, it is shown that
Preumont’s formula does not take into account phase differences. The new formula that takes into account
phase differences is derived in Section 5. In Section 6, it is shortly indicated how the new formula can be
included in frequency domain stress-life fatigue analysis. An automotive example case comparing both
Preumont’s and the new formula is also included in Section 6.

2. Determination of the bi-axial stress responses from multiple random excitations

Assume a structure that is dynamically loaded by multiple random excitations, e.g. a truck loaded by road
irregularities through its wheels. In this case, the random road excitation of the ith wheel of a truck is given by
Gii(f), the Fourier transform of the auto correlation function of the excitation signal. This is called the PSD.

Correlations that exist between the wheels are taken into account using cross PSDs. Wheels at the left rear
of a truck are subjected to the same excitation as the left front wheel, only after a time delay, i.e. a phase
difference is present in the cross PSDs between front and rear wheels. This phase difference results in complex
cross PSDs. Similar correlations exist between left and right wheels.

For each frequency fm, the input PSD matrix G(fm) can now be defined as

Gðf mÞ ¼

G11ðf mÞ � � � G1nðf mÞ

..

. . .
. ..

.

G�1nðf mÞ � � � Gnnðf mÞ

2
664

3
775 (1)

in which G�1nðf mÞ denotes the complex conjugate of G1n(fm). Eq. (1) is a Hermitic matrix, containing the auto
PSDs on the diagonal and the cross PSDs on the off-diagonal positions. The size of the matrix is n� n, with n the
number of multiple excitations. For a truck with 12 wheels G(fm) is a 12� 12 matrix. A more detailed description
of the construction of the input PSD matrix for trucks excited by road irregularities is presented by Anderson [11].

The response stress PSDs can now be determined from this excitation PSD matrix using a matrix of transfer
functions Hs(fm) [12]:

Gssðf mÞ ¼ H�sðf mÞ �Gðf mÞ �H
T
s ðf mÞ. (2)

In case of multi-axial stresses, the stress response PSD matrix Gss(fm) is a 6� 6 matrix. For fatigue,
however, it is often assumed that cracks start at a free surface where a bi-axial stress state exists [2], in which
case Gss(fm) reduces to a 3� 3 matrix. This is also the case when analysing thin plates. Two normal (in x- and
y-direction) and one shear stress (in the xy-plane) PSD remain:

Gssðf mÞ ¼

Gsxx;sxx Gsxx;syy Gsxx;txy

G�sxx;syy Gsyy;syy Gsyy;txy

G�sxx;txy G�syy;txy Gtxy;txy

2
64

3
75 ¼

Eðs�xxsxxÞ Eðs�xxsyyÞ Eðs�xxtxyÞ

Eðsxxs
�
yyÞ Eðs�yysyyÞ Eðs�yytxyÞ

Eðsxxt
�
xyÞ Eðsyyt

�
xyÞ Eðt�xytxyÞ

2
64

3
75 (3)

with E the expected value operator.
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3. The von Mises stress in the time domain

For uni-axial fatigue analysis, it is necessary to determine an equivalent stress from the bi-axial stress state.
We use the von Mises stress sVM, which can be calculated in the time domain by

s2VMðtÞ ¼ s2xxðtÞ þ s2yyðtÞ � sxxðtÞsyyðtÞ þ 3t2xyðtÞ. (4)

Assuming sinusoidal stresses with zero mean stress but including phase differences, one inserts stresses of
the form sðtÞ ¼ ŝ cosðotþ jÞ in Eq. (4) and calculates the von Mises equivalent stress by

s2VMðtÞ ¼ ReðrÞTAReðrÞ, (5)

where

ReðrÞ ¼

ŝxx cosðotþ jxxÞ

ŝyy cosðotþ jyyÞ

t̂xy cosðotþ jxyÞ

8><
>:

9>=
>; and A ¼

1 �0:5 0

�0:5 1 0

0 0 3

2
64

3
75.

Fig. 1(a) presents the equivalent time domain von Mises stress for the general case of out-of-phase bi-axial
stresses. r in Eq. (5) is the complex and time-dependent bi-axial stress vector. Eq. (5) can be rewritten to

s2VMðtÞ ¼ ReðrÞTAReðrÞ ¼
rT þ rH

2

� �
A

rþ r�

2

� �
¼

rHArþReðrTArÞ
2

. (6)

r* is a vector containing the complex conjugates of the complex bi-axial stresses and rH denotes the
Hermitian conjugate of the complex stress vector. In the complex plane, Eq. (6) may be displayed as a vector
of length abs(0.5(rTAr)) rotating with time around the point 0.5(rHAr) as shown in Fig. 1(b).

4. The von Mises stress PSD neglecting phase differences

In 1994, Preumont and Piéfort [5] proposed the following formula for the calculation of an equivalent stress
PSD based on the von Mises stress:

GsVMðf mÞ ¼ traceðA �Gssðf mÞÞ

¼ Gsxx;sxxðf mÞ �ReðGsxx;syyðf mÞÞ þ Gsyy;syyðf mÞ þ 3Gtxy;txyðf mÞ ð7Þ

in which Gss(fm) denotes the multi-axial stress PSD matrix from Eq. (3).
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Fig. 1. (a) Time domain von Mises stress for out-of-phase bi-axial stresses; and (b) The von Mises stress as a rotating vector in the

complex plane.
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The auto PSD values at frequency band fm are equivalent to the amplitudes of the sinusoidal stress-time
domain signals:

Gsxx;sxx ¼ Eðs�xxsxxÞ�ŝ
2
xx.

The cross PSD values at certain frequency fm are equivalent to the following expression:

Gsxx;syy ¼ Eðs�xxsyyÞ�ŝxxŝyy cosðjxx � jyyÞ.

We can now write Eq. (7) as

GsVMðf mÞ ¼ ŝ2xx � ŝxxŝyy cosðjxx � jyyÞ þ ŝ2yy þ 3t̂2xy ¼ rHAr (8)

with

r ¼

ŝxxe
jðotþjxxÞ

ŝyye
jðotþjyyÞ

t̂xye
jðotþjxyÞ

8><
>:

9>=
>;.

Since Eq. (8) neglects phase differences between the bi-axial stresses, it is always larger than Eq. (6). Only in
case the stresses are in-phase, it yields the same results. This can also be observed in Fig. 1(b).

Fig. 2(a) presents a time domain von Mises stress which was calculated from in-phase bi-axial stresses by
Eq. (4). The result of Eq. (7) for the same in-phase bi-axial stresses described in the frequency domain is
indicated in Fig. 2(a) as the dashed line. Thus, Fig. 2(a) shows that in case of in-phase bi-axial stresses, Eq. (7)
exactly calculates the maximum value of the corresponding time-dependent von Mises stress. This maximum
von Mises stress can subsequently be used for further uni-axial fatigue analysis. Thus, Eq. (7) is valid in case of
in-phase bi-axial stresses. For out-of-phase bi-axial stresses, however, Fig. 2(b) shows that Eq. (7)
overestimates the maximum von Mises stress.
5. A new formula for the von Mises stress PSD including phase differences

We will now propose a new formula that includes phase differences. We assume zero mean bi-axial stresses
including phase differences as introduced in Eq. (5) in Section 3. Using the goniometric relationship
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Fig. 2. (a) In-phase bi-axial stresses: time-dependent von Mises stress (solid line) and PSD value calculated using Eq. (7) (dashed line); and

(b) out-of-phase bi-axial stresses: time-dependent von Mises stress (solid line) and PSD value calculated using Eq. (7) (dashed line).
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cos2ðotþ jÞ ¼ 0:5ð1þReðeð2jðotþjÞÞÞ, Eq. (5) can be rewritten to

s2VMðtÞ ¼ 0:5ðŝ2xx þ ŝ2yy þ 3t̂2xyÞ þ 0:5 ŝ2xxRe e2jðotþjxxÞ
� �

þ ŝ2yyRe e2jðotþjyyÞ
� �

þ 3t̂2xy Re e2jðotþjxyÞ
� �� �

�Re ŝxxe
jðotþjxxÞ

� �
Re ŝyye

jðotþjyyÞ
� �

.

The last term of this equation may be deduced as follows:

Re ŝxxe
jðotþjxxÞ

� �
Re ŝyye

jðotþjyyÞ
� �

¼
ŝxxe

jðotþjxxÞ þ ŝxxe
�jðotþjxxÞ

2

� �
ŝyye

jðotþjyyÞ þ ŝyye
�jðotþjyyÞ

2

� �

¼ 0:5ŝxxŝyyRe e2jotejðjxxþjyyÞ
� �

þ 0:5ŝxxŝyy cosðjxx � jyyÞ.

The von Mises stress now becomes

s2VMðtÞ ¼ 0:5 ŝ2xx þ ŝ2yy � ŝxxŝyy cosðjxx � jyyÞ þ 3t̂2xy

� �

þ 0:5Re ŝ2xxe
2jjxx þ ŝ2yye

2jjyy � ŝxxŝyye
jðjxxþjyyÞ þ 3t̂2xye

2jjxy

� �
e2jot

� �
.

Note the resemblance with Fig. 1(b). The first part is the mean of the von Mises stress, the second part is the
real part of the vector rotating with time. As indicated in Section 4, the interesting stress quantity to take into
account for fatigue analysis is the maximum von Mises stress. Calling to mind the zero mean bi-axial stress
assumption, this maximum von Mises stress equals the von Mises mean plus the modulus of the rotating
vector:

maxðs2VMÞ ¼ 0:5 ŝ2xx þ ŝ2yy � ŝxxŝyy cosðjxx � jyyÞ þ 3t̂2xy

� �

þ 0:5abs ŝ2xxe
2jjxx þ ŝ2yye

2jjyy � ŝxxŝyye
jðjxxþjyyÞ þ 3t̂2xye

2jjxy

� �

¼ 0:5 ŝ2xx þ ŝ2yy � ŝxxŝyy cosðjxx � jyyÞ þ 3t̂2xy

� �

þ 0:5abs ŝ2xx þ ŝ2yye
2jðjyy�jxxÞ � ŝxxŝyye

jðjyy�jxxÞ þ 3t̂2xye
2jðjxy�jxxÞ

� �
.

For each frequency fm, the von Mises PSD value is defined as the maximum von Mises stress, which results
in the following alternative for Eq. (7):

GsVMðf mÞ ¼ 0:5 ŝ2xx þ ŝ2yy � ŝxxŝyy cosðjxx � jyyÞ þ 3t̂2xy

� �

þ 0:5abs ŝ2xx þ ŝ2yye
2jðjyy�jxxÞ � ŝxxŝyye

jðjyy�jxxÞ þ 3t̂2xye
2jðjxy�jxxÞ

� �
. ð9Þ

All amplitude terms in Eq. (9) can be derived from the response stress PSDs of Gss(fm) as defined in Eq. (3):

ŝ2xxðf mÞ ¼ s�xxðf mÞsxxðf mÞ ¼ Gsxx;sxxðf mÞ; ŝ2yyðf mÞ ¼ Gsyy;syyðf mÞ; t̂2xyðf mÞ ¼ Gtxy;txyðf mÞ,

ŝxxðf mÞŝyyðf mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2xxðf mÞŝ

2
yyðf mÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gsxx;sxxðf mÞGsyy;syyðf mÞ

p
.

For the phase angles the following relation can be derived:

jyyðf mÞ � jxxðf mÞ ¼ angleðGsxx;syyðf mÞÞ,

jxyðf mÞ � jxxðf mÞ ¼ angleðGsxx;txyðf mÞÞ.

For in-phase stresses, Eq. (9) reduces to Eq. (7). Fig. 3 shows that Eq. (9) indeed gives the maximum von
Mises stress for both in-phase and out-of-phase bi-axial stresses. The formula can be extended to multi-axial
stresses without further problems.

The formula has been derived for bi-axial stresses assuming a zero mean stress. Non-zero mean stresses
could be incorporated using the first stress invariant of the static stress tensor and the Goodman diagram [5,8].
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Fig. 3. (a) In-phase bi-axial stresses: time-dependent von Mises stress (solid line) and PSD value calculated using Eq. (9) (dashed line); and

(b) out-of-phase bi-axial stresses: time-dependent von Mises stress (solid line) and PSD value calculated using Eq. (9) (dashed line).
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6. Fatigue analysis of a truck chassis

The new formula can be included in frequency domain stress-life fatigue analysis as follows:
1.
 Calculate the response stress PSDs in each finite element using Eq. (2). The input PSD matrix of
Eq. (1) should be known, the transfer functions Hs(fm) follow from a Finite Element frequency response
analysis.
2.
 Calculate the von Mises equivalent stress using the new formula presented in Eq. (9).

3.
 Perform a Dirlik rainflow count [13,14] on the von Mises stress PSD.

4.
 Apply the Palmgren–Miner rule to determine the fatigue damage.
To demonstrate the above analysis, we will apply it to a small example. The above procedure and another
example have also been demonstrated in another paper by the authors [15]. For this example, consider a truck
driving over a specific road type at a speed of 50 km/h. The road surface information has been measured and is
presented as a PSD. Using the truck’s velocity and its wheelbase, one can determine the input PSD matrix
G(fm) of Eq. (1) from this road surface information PSD. NASTRAN Finite Element software is used to
calculate the transfer functions Hs(fm). Eq. (2) yields the response stress PSDs in each finite element.

The next step is to determine the von Mises equivalent stress by the new formula (Eq. (9)). Fig. 4(a) presents
the results for a part of the truck’s chassis. Fig. 4(b) presents the results when Eq. (7) is applied instead of
Eq. (9). One can observe different contours in the lower part of the chassis beam where out-of-phase stresses
are known to be present. It can be seen that Eq. (9)—as expected—yields lower stress values in this region than
Eq. (7). Fig. 5 shows for both formulas the von Mises stress PSDs in finite element X indicated in Fig. 4. Again
the difference between Eq. (9) and Eq. (7) is clearly demonstrated. However, the considered element is not the
hot-spot, which is located near the hole in the chassis beam (see Fig. 4). Here, stresses are close to uni-axial
and the difference between both formulas diminishes.

The third and fourth step of the fatigue analysis comprise Dirlik rainflow counting [13–15] and applying the
Palmgren–Miner rule to yield the expected fatigue damage. For both Eq. (9) and Eq. (7) Palmgren–Miner
numbers have been calculated to be 78 975 and 93 814, respectively. Hence, the fatigue damage of element X is
estimated to be 19% higher using Eq. (7) than using Eq. (9). It can be concluded from this example that using
Eq. (9) instead of Eq. (7) results in a less conservative fatigue life estimate for certain locations in a
construction where the multi-axial stresses are out-of-phase.
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Fig. 4. (a) von Mises stress in a truck chassis calculated using the new formula Eq. (9); and (b) von Mises stress in a truck chassis using

Preumont’s formula Eq. (7).
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Fig. 5. von Mises stress PSD histogram in a truck chassis calculated using Eq. (7) (dashed line) and Eq. (9) (solid line).
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7. Conclusions

A practical formula has been derived for determining an equivalent von Mises stress in the frequency
domain. Assuming zero mean, sinusoidal multi-axial stresses, it takes into account phase differences between
the multi-axial stress components. This calculated von Mises PSD can subsequently be used for frequency
domain fatigue analysis of structures that are randomly excited by multiple loads, e.g. a truck subjected to
road irregularities.
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[5] A. Preumont, V. Piéfort, Predicting random high-cycle fatigue life with finite elements, Journal of Vibration and Acoustics 116 (1994)

245–248.

[6] D. Segalman, G. Reese, R. Field Jr., C. Fulcher, Estimating the probability distribution of von Mises stress for structures undergoing

random excitation, Journal of Vibration and Acoustics 122 (1) (2000) 42–48.

[7] A. Preumont, X. Pitoiset, Discussion: estimating the probability distribution of von Mises stress for structures undergoing random

excitation, Journal of Vibration and Acoustics 122 (2000) 336.

[8] X. Pitoiset, A. Preumont, Spectral methods for multi-axial random fatigue analysis of metallic structures, International Journal of

Fatigue 22 (2000) 541–550.

[9] X. Pitoiset, I. Rychlik, A. Preumont, Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random

vibrations, Fatigue & Fracture of Engineering Materials & Structures 24 (2001) 715–728.

[10] T. Lagoda, E. Macha, A. Nieslony, Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial

random loading, Fatigue & Fracture of Engineering Materials & Structures 28 (2005) 409–420.

[11] J.B. Anderson, Frequency Domain Fatigue Analysis of Commercial Vehicles Based on a Modular Finite Element Library, Society of

Automotive Engineers (SAE), Warrendale, PA, USA, 2003.

[12] L. Meirovitch, Elements of Vibration Analysis, second ed., McGraw-Hill Book Company, Singapore, 1986.

[13] T. Dirlik, Application of Computers in Fatigue Analysis, PhD Thesis, University of Warwick, UK, 1985.

[14] N.W.M Bishop, The Use of Frequency Domain Parameters to Predict Structural Fatigue, PhD Thesis, University of Warwick, UK,

1988.

[15] M.H.A. Bonte, R. Liebregts, A. De Boer, Prediction of mechanical fatigue caused by multiple random excitations, Proceedings of the

ISMA Conference, Leuven, Belgium, 2004, pp. 697–708, ISBN:90-73802-82-2.

http://ISBN:90-73802-82-2

	Determining the von Mises stress power spectral density �for frequency domain fatigue analysis including �out-of-phase stress components
	Introduction
	Determination of the bi-axial stress responses from multiple random excitations
	The von Mises stress in the time domain
	The von Mises stress PSD neglecting phase differences
	A new formula for the von Mises stress PSD including phase differences
	Fatigue analysis of a truck chassis
	Conclusions
	Acknowledgements
	References


