
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
fax: +78432 98

E-mail addr
Journal of Sound and Vibration 302 (2007) 425–441

www.elsevier.com/locate/jsvi
Forced vibrations of two nonlinearly connected solid
waveguides under static load

I.K. Vagapov�, M.M. Ganiev, A.S. Shinkarev

Kazan State Technical University ‘‘A. N. Tupolev’’ 420111, Karl Marx street, 10, Kazan, Republic of Tatarstan, Russian Federation

Received 24 June 2002; received in revised form 25 August 2005; accepted 1 February 2006

Available online 9 February 2007
Abstract

Forced impact oscillations in nonlinearly coupled solid waveguides with nearly equal natural frequencies are examined

using the harmonic balance method. A dynamic model is used to describe the process of ultrasonic micro-forging where the

material to be worked is considered as a nonlinear connecting-link between the ultrasonic transducer and passive

waveguide-reflector. The influence of the material properties (yield stress, stiffness of tool–workpiece contact, striker and

blank geometries) and the processing conditions (amplitude of vibration, static compressive force, work rate) on the

resonance characteristics of the vibratory system is taken into account. The resonance and antiresonance frequencies,

boundaries of response stability, ranges of inphase and antiphase oscillations of impacting waveguides, and some other

features of strongly coupled vibrators under impact loading are determined.

It is shown also that the largest amplitude of impact oscillations can be attained only if the natural frequency of the

ultrasonic transducer exceeds that of the waveguide-reflector. By measuring the dynamic drift in the unfastened ultrasonic

unit, it is possible to control, directly in the course of ultrasonic micro-forging, the thickness of the metal workpiece.

Calculated data are compared with the experimental results.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In ultrasonics, wide use is made of vibratory systems where a workpiece is placed between the end faces of
longitudinal vibration-type waveguides pressed in contact with each other [1–4]. One of these waveguides (or
both) is excited by a high-power electromechanical transducer. The workpiece is subjected to repeated
impacts. A compressive force is applied to the supporting flanges at the waveguide nodal planes, and the
workpiece is placed at the displacement maximum of the longitudinal standing wave. The dynamics of
ultrasonic machining may be considered as the forced vibrations of two resonant subsystems coupled via the
workpiece; the latter acts both as the processing load and the connecting link.

A distinguishing feature of ultrasonic machining is the high-frequency vibro-impact interaction between the
tool and the blank that results in small but cumulative residual plastic strains during every load cycle [5,6]. The
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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order of magnitude of the impact duration is comparable with that of the ultrasound period; so the impact
cannot be considered instantaneous.

In order to ensure resonance excitation in both waveguides at the same frequency, the difference between
their natural frequencies must be chosen to be less than the bandwidth of the resonance peak in the unloaded
waveguide; otherwise, the use of an additional resonant waveguide is meaningless. In practice, the natural
frequencies of real engineering waveguides differ slightly in magnitude due to manufacturing inaccuracy,
distinctions in acoustic properties, non-identity and wear of machining tools attached to these waveguides [2].

A shortcoming of ultrasonic devices equipped with only one resonant vibrator is that the massive non-
resonant support (anvil) used to support a blank against the waveguide’s end face acts at the same time as a
vibration damper. In cases where a thin specimen is clamped between two waveguides tuned to resonate at the
same frequency, a longitudinal standing wave can be excited in the coupled vibrating system as a whole, while
the mounting flanges (used for fixing the waveguides) can be placed precisely at the standing wave nodes.
Owing to the elimination of wave leakages into the non-resonant supporting frame of the machine, this scheme
makes it possible to optimize vibration isolation and energy conservation in the system; in addition, it allows
redoubling of input power supplied [3]. The advantages of the scheme considered here are of great significance
when machining brittle, hard, and high-strength materials (where a need exists for high-power vibrations in
the presence of the maximum admissible force of static compression [2,5–7]).

On the other hand, introduction of the additional resonator results in the appearance of two neighboring
eigenfrequencies that correspond to the inphase and antiphase oscillation in the coupled vibrators [8]. It
should be noted that the inphase oscillation gives rise to motion of adjacent end faces of waveguides towards
each other; for this reason, it is this vibration mode that is solely suitable for material machining in the impact
regime [9]. The connecting-link between these two ultrasonic waveguides must be thus considered as a
nonlinear (impacting) and dissipative link. The coupling strength depends on the mechanical properties of the
material worked and a number of technological factors (largely, on the compression force value) [10]. Any
variations of the load, and the nonlinear nature of interaction between the tool and the blank, make it difficult
to sustain the resonance of impact oscillation while tuning out the useless antiphase mode that corresponds to
the end faces moving in the same direction [9]. A similar problem associated with tuned frequency isolation
from nearby modes has been considered for multiple-blade ultrasonic cutting devices [11].

The basic features of linear vibrating systems with two degrees of freedom are expounded in Ref. [8]. The
system of two identical linearly coupled oscillators is considered in Ref. [12], where the authors predict the
existence of symmetric, anti-symmetric and chaotic modes. Mutual influence of two oscillators with nearly
equal natural frequencies is examined in Ref. [13]. Also shown here is the fact that, in the presence of a definite
ratio of values of natural frequencies, bandwidth and coefficient of coupling, one of the two resonance peaks
disappears. In Ref. [14] Cveticanin established the fact that the motion of two-mass system with nonlinear
connection can be treated as a combination of translational and oscillatory motions. The period of oscillation
depends in this case on the factor of nonlinearity and vibrational amplitude. The influence of coupling strength
and frequency of excitation upon the periodic and chaotic motion of a forced impact oscillator that is coupled
linearly with a second harmonic oscillator is investigated in Ref. [15]. Theoretical investigation to reduce
undesirable nonlinearities of an ultrasonic system has been carried out in the context of ‘Nonlinear
Cancellation Coupling’ of two degree of freedom systems [16]. Application of this method to the high power
ultrasonic cutting assembly, consisting of the transducer and half-wavelength blade, proved capable of
reducing the effect of the nonlinearities within the vibratory system.

Despite their similarity to the present ultrasonic vibro-impact system, all these systems from Refs. [12–16]
must be regarded as linear or nonlinear cases of non-dissipative inseparable coupling, since the interruption of
a contact between the vibrators never takes place in reality.

Nonlinear models of tool–workpiece contact interaction accounting for machining processes with
superimposed ultrasonic vibration are developed in Refs. [4–6,17,18]. On the assumption that the contact
interaction force is a sum of elasto-plastic and dry friction components, the vibro-impact and permanent
contact regimes of ultrasonic cutting have been investigated [5]. The influence of static load on ultrasonic
percussive drilling is explained using nonlinear models based on the concept of pure impact and impact with
dry friction [6]. A relief of plastic flow due to reduction of friction forces in metal forming processes with the
use of radially oscillating die [17] and upsetting of specimen between two parallel rigid dies [4] are considered.
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The dynamics of an impact oscillator with drift is investigated by means of the intermittent contact interaction
model [18]. Each period of oscillation is divided into four intervals corresponding to distinct phases of contact
interaction, and is described by four piecewise linear differential equations.

The longitudinal impact oscillations of two identical viscoelastic rods are studied in Refs. [9,19] assuming same
problem with absolute rigidity of the contacting end faces the non-identical waveguides is studied in Ref. [2].
Also studied are some variations in the amplitude–frequency characteristic (AFC) and phase-frequency
characteristic (PFC), regions of unstable oscillation, appearance of inphase and antiphase eigenmodes and some
other dynamic peculiarities.

In the present paper, analysis is made of the forced impact vibration of two non-identical coupled
waveguides by using the model for impact deformation [10] that is used conventionally for cold deformation
of metals (forging, flatting, and pressing). As distinct from the approximation of infinitely rigid contact [19],
this approach makes it possible to derive the relations that describe the interdependence between the
technological parameters and resonance characteristics (responses) of the vibratory system. The calculated
data are compared here with those obtained experimentally during ultrasonic micro-forging, and are used to
develop a new technology for sharpening blades of surgical instruments [7].

2. Dynamic model of ultrasonic micro-forging

Fig. 1 shows the layout of the machining system, consisting of two coaxial waveguides designed as stepped
half-wavelength horns. A working tool (striker) either is fastened to the horn’s end face or is designed to be
integral with the horn (Fig. 1(a)). An ultrasonic transducer can be connected to the rear end of the horn
through a tightening screw. One of the waveguides (lower) is fixed rigidly at the node of vibration, while the
other one (upper) can move along the longitudinal axis, with its working end face (or striker) pressed to that of
the fixed waveguide. An edge of flat blank is drawn continuously through the gap between the waveguides at a
(a)

(b) (c)

Fig. 1. (a) Scheme of ultrasonic micro-forging set up, 1—forced (active) waveguide, 2—passive waveguide-reflector, 3—blank, 4—flange,

5—framework, 6—linear ball-bearing, 7—transducer, 8—electronic generator, 9—linear motion gauge; (b) scheme of deformation site;

dashed line shows the blank’s cross-section shape before the collision; (c) time history of strikers vibration.
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constant speed. The static force G is applied to a flange situated at the node of vibration of movable ultrasonic
unit 1.

When the workpiece is absent and the ultrasonic transducer is de-energized, the strikers’ tops are brought
into a contact with each other, the gap between strikers is closed, and the upper movable unit 1 is in its lower
position. With the ultrasonic generator switched-on and the blank edge fed into the site of deformation, the
upper unit has a mean displacement H measured with the use of the gauge 9. In the nonlinear or impact
vibrating systems, the occurrence of constant time-independent component or slow drift, in parallel with fast
vibration, is a well-known phenomenon [4,6,12,13]. The value of H depends on a number of dynamic
characteristics (applied power, amplitudes, phases, damping, etc) and processing conditions (pressing force,
speed of the material feed, mechanical properties of work material, blank thickness, geometry of strikers, etc.);
it is clear that during the steady-state stationary regime of machining, the dynamic drift value H remains
unchanged.

The forging regime of operation (i.e., impact working) can be realized only if the amplitude of velocity of
the strikers’ relative vibration exceeds the projection of feed velocity onto the direction of longitudinal
vibration: aVo42V tan a, where V is the component of feed velocity that is directed to the center of the round-
shaped striker, and a is the angle of the striker’s conical surface inclination. When passing through the site of
deformation, the blank is subjected to a large number of impacts; as a result, the blade’s cutting edge is formed
gradually into a tapered wedge with a small flat burr on its top. The so-attained decrease in the edge thickness,
d, specifies a degree of sharpness in the blade made [7]. The presence of complex pattern of metal yield in the
site of deformation makes the rigorous calculation of deforming force difficult; for this reason, it is necessary
to approximate the waveguides interaction through the work piece using the simple analytical expressions (see
the below-given Eqs. (4) and (5)).

Let us consider now the ultrasonic system, consisting of two waveguides, one of which is connected to a
source of ultrasonic vibrations, while the other one represents the passive waveguide-reflector used to press a
blank against it, as well as for purposes of vibroinsulation of the coupled vibratory system and reflection of
elastic wave passed through the workpiece. Making use of the dynamic compliance operator of viscoelastic
rod-shaped waveguide [19], it is possible to write now the equations for the longitudinal displacements of the
strikers:

u1 ¼ L1 oð ÞP1 tð Þ þ L1 oð ÞF uV ; _uVð Þ � L1 0ð ÞG;

u2 ¼ �L2 oð ÞF uV ; _uVð Þ:
(1)

Here the values of displacements, u1 and u2, are measured starting from the end face positions in the
waveguides unloaded; in other words, it is assumed that u1 ¼ 0 and u2 ¼ 0 for the waveguides unstrained.
uV ¼ u1 � u2 is the relative displacement of the strikers’ tops. Ln(o) is the operator of dynamic compliance of
the nth waveguide (n ¼ 1, 2) that specifies the relationship between the contacting end face displacement and
the longitudinal driving force (see Appendix A). Following Ref. [19], the excitation force P1 tð Þ ¼ P cosot; that
is generated by ultrasonic transducer, is assumed to be applied to the contacting end face of the active
waveguide. The function F uV ; _uVð Þ describes the force of contact interaction of waveguides in-between via the
workpiece.

The method of harmonic linearization [5,19] makes it possible to seek for a solution of Eqs. (1) in the single-
mode form:

un ¼ mn þ an cos ot� jn

� �
; uV ¼ mV þ aV cos ot� jV

� �
, (2)

where mn and mV are the constant (time-independent) components of displacements, an and aV are amplitudes,
jn and jV are the phase shifts of absolute and relative vibrations of the waveguides’ end faces.

The distance between the strikers’ tops, or width of the gap between the upper and lower strikers, can be
represented as (see Figs. 1c and 2a)

l ¼ l0 þ uV ¼ l0 þmV þ aV cos ot� jV

� �
, (3)

where l0 is the distance at time instant t1 when the strikers are brought into a contact with the workpiece. In
the impact regime, the period of vibrations is divided into two stages, more specifically, the feed of workpiece
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(a) (b)

Fig. 2. (b) Time history of the gap width oscillation: curve 1 shows oscillation of relative distance between the strikers, curve 2 shows an

increase in the work piece thickness due to continuous blank feed during the time interval of contact interruption (between two collisions);

(b) deformation force dependence on the distance between the strikers: curve 3 shows an increase in force during the workpiece squeezing

interval (when the strikers move one towards another), curve 4 shows a decrease in force during the interval of workpiece unloading (when

strikers move in opposite directions). Arrows indicate the directions of deformation force variation during the working cycle.
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into the site of deformation and the stage of deformation itself. The interval of plastic deformation lasts
starting from the moment of contact, t1, to the moment of contact break, t2, i.e., at time instant when the
relative vibration velocity of strikers moving in opposite directions becomes equal to that of the piece feed in
the direction of vibrations: aVo sinot2 ¼ n; where n ¼ 2V tan a. At time interval from t2 to the next collision at
time instant T+t1 (at the point of intersection of curves 1 and 2, Fig. 2a), the upper and lower strikers perform
back-and-forth motion in opposite directions. Curve 1 in Fig. 2a shows variation of distance between their flat
tops. Curve 2 shows an increase in the workpiece thickness at the blank feed through the site of deformation in
the workpiece feed interval, [t2,T+t1]. In order to make the model ideal, the following assumption is made:
�
 the upper and lower strikers are brought into contact with the piece at one and the same instant of time and
the interruption of this contact for both strikers occurs simultaneously;

�
 within the entire working cycle, the velocity of feed, V, remains unchanged due to inertia of the blank

rotation gear and rather short period of vibration.

The contact break thus takes place later as compared with the time instant of closest approach of strikers,
T/2. Within the interval of gap widening from T/2 to t2, the wedge-shaped surface of the blank pushes, due to
blank feed, against the conical part of strikers. In the interval of the workpiece compression, [t1,T/2], one of
the strikers moves oppositely to the other one and an increase of plastic deformation force can be
approximated by inversely proportional dependence on the relative distance between the strikers (Fig. 2b,
curve 3)

F lð Þ ¼
A

l
þ C. (4)

The constant C can be easily found from the initial condition that F l0ð Þ ¼ 0; as a result, it gives C ¼ �A=l0.
The phenomenological parameter A is specified by the geometry of deformation site, stress-strained state, and
mechanical properties of the workpiece; it must be noted, however, that it is independent on the rate of
deformation and ultrasound intensity [10].

In the interval of the workpiece unloading T=2; t2
� �

, the strikers move in opposite directions and the
inclined part of the workpiece alone is being deformed (by the conical surface of the strikers). Now, it is
possible to approximate the contact unloading using as the base the linear law (Fig. 2b, curve 4):

F lð Þ ¼ K � ðl � hÞ, (5)

where h ¼ d þ aV ð1þ cosot2Þ is the distance between the strikers at time instant of contact interruption, t2.
The constant coefficient K in this formula can be found by proceeding from the initial condition for maximum
value of the force Fmax dð Þ ¼ Að1

�
d � 1=l0Þ at the distance of the strikers’ closest approach l ¼ d. For each
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working cycle, the force of resistance to plastic deformation or, that is just the same, the force of contact
interaction between strikers can be thus described by the following piecewise smooth function [10]:

F lð Þ ¼

0; lXl0; 0ptpt1;

A l�1 � l�10

� �
; dplpl0; t1ptpp=o;

A
dl0
� l0�d

h�d
h� lð Þ; dplph; p=optpt2;

0; lXh; t2ptp2p=o;

8>>>><
>>>>:

(6)

where the moments of piecewise functions change are the following (see Fig. 2a):

t1 ¼
p
o
�

1

o
arccos

mV

aV

; t2 ¼
p
o
þ

1

o
arcsin

n
aVo

. (7)

With the steady-state regime of ultrasonic micro-forging, the thickness, d, of the forged edge is constant.
Both the distance, at which deformation starts to onset, l0, and the distance at which it terminates, h, have
the same value for every working cycle repeated. Since the striker rebounds from the workpiece, the
upper vibration unit is lifted as a whole at a certain height H and remains practically immovable (since
the total mass of the ultrasonic transducer and the pressing mechanism exceeds the effective mass of the
stepped horn’s front part). Obviously, the parameters d, l0, h, H remain during every cycle invariable, if
the thinning of the blade edge is compensated by feed of the workpiece in the stage of free motion of strikers
(see Fig. 2a):

l0 � h ¼ n T � t2 � t1ð Þ½ �. (8)

Without looking into the pattern of plastic yield in detail, it is seen that the herein-presented model makes it
possible to describe the basic features of ultrasonic micro-forging: periodic interruption of contact (at vibro-
impact regime), unlimited increase of strain resistance (shown by the extension of the dashed line 3, Fig. 2b) in
the presence of the workpiece compression, weakening of contact when the strikers begin to move in opposite
directions, and continuous drawing of blank edge through the vibrating gap.

The system of Eqs. (3), (7), and (8) must be completed with the relation (Fig. 2):

l0 þmV ¼ aV þ d � H. (9)

Making use of Eq. (9) and taking the condition aVobn into account, it is possible to calculate the duration
of deformation period (time of impact)

t ¼ t2 � t1 �
2p
o

ffiffiffiffiffiffiffiffiffiffiffiffi
n

paVo

r
1þ

1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
n

paVo

r� 	
(10)

and the constant component of the relative displacement of the strikers:

mV � aV �
2pn
o

1�

ffiffiffiffiffiffiffiffiffiffiffiffi
n

paVo

r� 	
. (11)
3. Harmonic linearization

On substituting the variable l from Eq. (3) into Eq. (6) and carrying out the harmonic linearization in strict
accordance with the formulas of Appendix B, it is possible to obtain the following relation for contact
interaction force of strikers:

F lð Þ ¼ F uV ; _uVð Þ ffi f 0 þ ðk þ iobÞaVe
i ot�jVð Þ, (12)
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where the constant component of interaction force is as follows:

f 0 ¼
A

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd þ 2aV Þ
p p

2
� arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðaV þmV Þ

ðd þ 2aV ÞðaV �mV Þ

s !
�

1

2ðd þ aV �mV Þ
arccos

mV

aV

" #

þ
A

p
1

2d

aV �mV

d þ aV �mV

� 	
n

aVo

� 	
 �
. ð13Þ

The harmonic coefficients of stiffness and damping are the following:

k ¼
2A

aVp
1

2aV

arccos
mV

aV

�
1

aV

d þ aVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd þ 2aV Þ

p p
2
� arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðaV þmV Þ

ðd þ 2aV ÞðaV �mV Þ

s !" #

þ
2A

aVp
1

2ðd þ aV �mV Þ
arccos

mV

aV

�
n

aVo
�

aV �mV

aV

� 	
 �
, ð14Þ

b ¼ �
A

paVo
1

aV

ln 1þ
aV �mV

d

� 

�

aV �mV

aV �mV þ d

1

aV

þ
1

2d

n
aVo

� 	2
 !" #

.

If the permanent working load is balanced against the static pressure force, the upper vibration unit remains at rest,
i.e., f0 ¼ G. For the sake of simplicity of the above-given expressions, it is then necessary to assume here that

aV �mV

aV

51 and
aV �mV

d
51. (15)

The physical meaning of this assumption is based on the supposition that the rigidity of contacting materials is
sufficiently high; as is shown in Ref. [19], the exact equality mV ¼ aV within the limits of infinitely rigid (non-
deformable) contact is met. The supposition is valid for our case of stainless steel cold working by use of strikers
made of hard-alloy. Taking all this into account, jointly with the requirement that aVobn, it is possible to obtain
from Eqs. (13–15) the below-given expressions:

d ¼
pn
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4Ao
GVp

ffiffiffiffiffiffiffiffiffiffiffiffi
n

paVo

rs
� 1

" #
, (16)

k ¼ �
2G

aV

þ
A

a2
Vp

ffiffiffiffiffiffiffiffiffi
n

aVo

r
4
ffiffiffi
p
p
�

ffiffiffiffiffiffiffiffiffi
n

aVo

r� 	
, (17)

b ¼ �
G

2aVo

ffiffiffiffiffiffiffiffiffi
n

aVo

r
4
ffiffiffi
p
p
� 3

ffiffiffiffiffiffiffiffiffi
n

aVo

r� 	
. (18)

Substitution of the value n ¼ 0 in Eqs. (10), (11), and (16)–(18) leads to the exact coincidence with the data of
calculations [2,19] as the approximation of infinitely large rigidity of contact:

t ¼ 0; mV ¼ aV ; d ¼ 0; k ¼ �
2G

aV

; b ¼ 0.

For this reason, the approximation of infinite contact rigidity is included into the herein-presented model as a
special case that corresponds to direct collision of strikers without the workpiece. It should be noted that the
phenomenological constant A can be determined from Eq. (16) by measuring the thickness of the blank forged, d,
provided that the values of all other processing parameters entering Eq. (16) are known. According to Eq. (9), the
thickness of the forged blade edge can be determined by measuring a difference of dynamic drift, H, and the
relative vibration amplitude, aV, i.e., merely by measuring the dynamic characteristics of the ultrasonic setup itself.
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This fact is of great importance for immediate control of the blade sharpness, since the measurements of a narrow,
thin, and uneven burr by any other method are hard to be realized.

4. Dynamic response under loading

Subtraction of Eqs. (1), one from another, gives the equation for strikers’ relative motion:

uV ¼ L1 oð ÞP1 tð Þ þ L1 oð Þ þ L2 oð Þ½ �F uV ; _uVð Þ � L1 0ð ÞG. (19)

On substituting Eqs. (2) and (12) into Eq. (19) and separating the time-independent and fundamental
harmonic terms, one obtains:

mV ¼ L1 0ð Þ þ L2 0ð Þ½ �f 0 � L1 0ð ÞG, (20)

aV ¼ L1 oð ÞPeijV þ aV L1 oð Þ þ L2 oð Þ½ � k þ iobð Þ. (21)

Limiting transition for static compliance of unfastened upper vibrator L1 0ð Þ ! 1 in Eq. (20) leads to
earlier proven equality f 0 ¼ G. Applying it to Eq. (20) gives

mV ¼ L2 0ð ÞG. (22)

Eq. (21) must be considered as the equation in the unknown aV, because the harmonic coefficients k and b
depend only on the relative amplitude aV (see Eqs. (17) and (18)). Equating real and imaginary parts in
Eq. (21) yields two coupled equations

P

aV

cosjV ¼ ReL1 oð Þ � kT oð Þ � obS oð Þð ÞQ�11 oð Þ � UV o; aVð Þ, (23)

P

aV

sinjV ¼ � ImL1 oð Þ � kS oð Þ þ obT oð Þð ÞQ�11 oð Þ � �VV o; aVð Þ, (24)

where Q1 oð Þ ¼ Re2L1 oð Þ þ Im2L1 oð Þ;T oð Þ ¼ ReL1 oð ÞRe L1 oð Þ þ L2 oð Þð Þ þ ImL1 oð ÞIm L1 oð Þ þ L2 oð Þð Þ;
S oð Þ ¼ ImL1 oð ÞReL2 oð Þ � ImL2 oð ÞReL1 oð Þ. UV o; aVð Þ and VV o; aVð Þ are the real and imaginary
components of effective dynamical stiffness W oð Þ ¼ UV o; aVð Þ þ iVV o; aVð Þ of coupled vibration system
under the load [19].

The solution of Eqs. (23) and (24) is reduced to the transcendental equations for amplitude and phase
response of vibration system loaded:

aV ¼
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
V o; aVð Þ þ V2

V o; aVð Þ

q , (25)

tanjV ¼ �
V V o; aVð Þ

UV o; aVð Þ
. (26)

Substitution of harmonic coefficients k and b from Eqs. (17) and (18) into the expression for dynamical
stiffness components UV o; aVð Þ and VV o; aVð Þ (given by. Eqs. (23) and (24)) reduces Eq. (25) to the irrational
algebraic equation in the unknown an:

a3
V a2

V Q1 oð Þ þ aV M oð Þ þN oð Þ
� �

þ aV

ffiffiffiffiffiffi
aV

p
a2

V X oð Þ þ aV Y oð Þ þ Z oð Þ
� �

þ I oð Þ ¼ 0. (27)

The coefficients that depend on the variable o are the following:

M oð Þ ¼ 4G T oð ÞReL1 oð Þ þ S oð ÞImL1 oð Þð Þ; N oð Þ ¼ 4G2 þ T2 oð Þ þ S2 oð Þ
� �

� P2Q2
1 oð Þ;

X oð Þ ¼ �4G

ffiffiffiffiffi
pn
o

r
Q1 oð ÞImL1 oð Þ �Q2 oð ÞReL2 oð Þ
� �

; Z oð Þ ¼ �16AG

ffiffiffiffiffiffiffi
n
po

r
Q2

1 oð Þ þQ2
2 oð Þ

� �
;

Y oð Þ ¼ �8A

ffiffiffiffiffiffiffi
n
po

r
Q1 oð ÞReL1 oð Þ þQ2 oð ÞImL2 oð Þ
� �

; I oð Þ ¼
16A2n
po

Q2
1 oð Þ þQ2

2 oð Þ
� �

:

Each root of Eq. (27) that is found for the value of o chosen and fixed values of other parameters specifies a
point of AFC of relative vibration of contacting strikers. Substitution of this root value aV into Eq. (26)
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specifies a point of PFC at the same frequency. Treating the excitation frequency o as an independent variable
to calculate the roots of Eq. (27), one can plot the frequency response curves point by point.

The dependence of resonance frequency on vibration amplitude (which is peculiar to the nonlinear systems)
can be described by the equation for the backbone curve:

ReL1 oð Þ þ
2G

aV

�
4A

a2
V

ffiffiffiffiffiffiffiffiffiffiffiffi
n

poa2
V

r� 	
Q oð Þ1 þ

2Gp
aV

ffiffiffiffiffiffiffiffiffiffiffiffi
n

poa2
V

r� 	
Q2 oð Þ ¼ 0. (28)

This equation has been derived from the condition UV o; aVð Þ ¼ 0, which provides the largest amplitude
value in Eq. (25). By analogy with procedure of construction of the amplitude and phase response curves, the
backbone curve can be traced as a set of the roots of Eq. (28) calculated for different values of independent
variable o. Examination of Eq. (28) shows that the backbone curve is a double-valued function of o and has a
negative slope (see Figs. 3–5).
Fig. 3. Theoretical AFC and PFC of relative and absolute vibrations of strikers for f R ¼ f T . The solid and dash lines correspond to

static pressure force G ¼ 410N and G ¼ 600N, respectively; dot lines show unstable parts of characteristics (where the criterion Eq. (29)

is violated); dash–dot lines show backbone curves of relative vibrations (described by Eq. (28)) for G ¼ 410N (curve 1) and G ¼ 600N

(curve 2).
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Fig. 4. The same as in Fig. 3 for f T4f R.
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The peculiarities of this backbone curve give rise to an oscillation instability, so each root of Eq. (27) has
been verified by use of stability criterion [19]:

UV o; aVð Þ UV o; aVð Þ þ aV

dUV o; aVð Þ

daV

� 	
þ VV o; aVð Þ VV o; aVð Þ þ aV

dVV o; aVð Þ

daV

� 	
X0. (29)

Determination of a sign in the function (29) calculated for each root value of Eq. (27) allows to separate
the stable solutions from unstable ones. Dot lines draw the unstable branches of amplitude and phase
characteristics in Figs. 3 and 5.

Let us calculate now the responses for each of the contacting strikers. The substitution of Eqs. (2) and (12)
into Eqs. (1) and application of harmonic balance method makes it possible to obtain, for oscillatory
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Fig. 5. The same as in Fig. 3 for f Tof R.

I.K. Vagapov et al. / Journal of Sound and Vibration 302 (2007) 425–441 435
component of absolute motion of forced waveguide, the following equation

a1e
�ij1 ¼ L1ðoÞPþ L1ðoÞ k þ iob½ �aVe

�ijV , (30)

while for the passive waveguide-reflector, it can be represented as

a2e
�ij2 ¼ L2ðoÞ k þ iob½ �aVe

�ijV . (31)

Eliminating of unknown multiplier aVe
�ijV by use of Eq. (21) and separating the real and imaginary parts of

Eqs. (30) and (31), it is possible to obtain:

P

a1
cosj1 ¼

ReL1 oð Þ
Q1 oð Þ

�
k � k2

þ o2b2
� �

ReL2 oð Þ
B oð Þ

� U1ðo; anÞ, (32)

P

a1
sinj1 ¼ �

ImL1 oð Þ
Q1 oð Þ

�
obþ k2

þ o2b2
� �

ImL2 oð Þ
B oð Þ

� �V 1ðo; anÞ, (33)
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P

a2
cosj2 ¼ �

ReL1 oð Þ
Q1 oð Þ

�
ReL2 oð Þ

Q2 oð Þ
þ

kT oð Þ � obS oð Þ

k2
þ o2b2

� �
Q1 oð ÞQ2 oð Þ

� U2ðo; anÞ, (34)

P

a2
sinj2 ¼

ReL1 oð Þ
Q1 oð Þ

þ
ImL2 oð Þ

Q2 oð Þ
�

obT oð Þ þ kS oð Þ

k2
þ o2b2

� �
Q1 oð ÞQ2 oð Þ

� V2ðo; anÞ, (35)

where B oð Þ ¼ 1� 2kReL2 oð Þ þ 2obImL2 oð Þ þ k2
þ o2b2

� �
Q2 oð Þ. Solution of Eqs. (32)–(35) gives AFC and

PFC for both of strikers attached to the working ends of the upper and lower waveguides:

an ¼
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
n o; aVð Þ þ ioV 2

n o; aVð Þ

q ; tanjn ¼ �
V n o; aVð Þ

Un o; aVð Þ
; n ¼ 1; 2. (36)

Eqs. (36) specify the frequency responses of absolute vibration as the function of the relative amplitude aV.
Any point that belongs to the plot of absolute response can thus be easy calculated by substitution of the
relative amplitude value (calculated as the root of Eq. (27) for the same frequency of excitation) into Eqs. (36).
After substitution of the so-obtained relative amplitude aV into Eqs. (9)–(11), it is possible to obtain the values
of parameters describing the process of metal working such as, for instance, the blade sharpness d, impact
duration t, dynamic drift H, and the largest value of deformation force Fmax dð Þ. The parameters that are of
utmost significance for purposes of practical use in the ultrasonic technology of blade sharpening [7] are
summarized in Table 1. The last column of this table presents the experimental values of the blade sharpness
dexp that have already been estimated in the course of direct optical measurements of real sizes of polished
transverse microsections of blades.

The numerical calculations and construction of frequency response plots were carried out by making use of
the parameters that are most suitable for the processing conditions given: P ¼ 1300N, A ¼ 4.3	 10�3Nm,
n ¼ 0.04m s�1, f1 ¼ 21230Hz, f2 ¼ 21110Hz. The operator of dynamic compliance was calculated in Appendix
A to be accurate to the second-order infinitesimal of the coefficient of ultrasonic absorption w. The value of the
absorption coefficient w can be determined by comparing the 3dB bandwidth of amplitude response in the
waveguide unloaded (calculated by substitution of G ¼ 0 and n ¼ 0 into Eq. (36)) with experimental data of
the resonance peak measured for the idling ultrasonic transducer (shown by the dotted lines in Figs. 5 and 6). By
equating the theoretical and experimental values of this bandwidth, one can easily estimate the coefficient of
absorption as w ¼ 0:048. It is worthwhile to note that in the absence of any coupling, the 3 dB bandwidth of the
bell-type amplitude peak is about 150Hz and exceeds the natural frequency difference |f1�f2|.

The construction of frequency response plots was carried out for the following ratios between the natural
frequencies of the coupled waveguides, more specifically, for the ideal case of equality between the natural
frequencies of both waveguides fT ¼ fR (Fig. 3), natural frequency of the active waveguide, fT, (that is forced
by the ultrasonic transducer), which is larger (Fig. 4) and smaller (Fig. 5) as compared with the natural
frequency, fR, of the passive waveguide-reflector. The symbols ‘‘T’’ and ‘‘R’’ denote here the natural
frequencies and response curves that correspond to the waveguide connected to the transducer and the
waveguide-reflector, respectively.
Table 1

Influence of static pressure force on resonance characteristics and deformation parameters

G (N) aV (mm) maxa fV (Hz) maxb aT (mm) aR (mm) t/T FmaxðdÞðNÞ H (mm) d (mm) dexp (mm)

350 22.5 212 40 20.3 4.8 0.108 410 37.0 14.5 11–14

410 22.0 212 50 19.1 6.0 0.119 490 33.0 11.0 10–14

600 20.1 213 30 15.0 6.8 0.138 740 28.3 8.2 8–9

830 16.3 214 30 11.3 6.1 0.176 990 22.8 6.5 6–8

Each parameter within the table line is calculated with the use of the same frequency value, fV, corresponding to the largest value of

relative amplitude aV. Calculations are made for the case when f T4f R.
aThis column adduces the largest values of relative amplitude.
bThis column adduces the excitation frequency values corresponded to the largest values of relative amplitude.
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Fig. 6. Experimental AFC of waveguide that is forced by magnetostrictive transducer, aT, and AFC of passive waveguide-reflector, aR, in

the course of ultrasonic micro-forging for f Tof R and static pressure force G ¼ 410N, 600N and 830N (curves 1, 2 and 3, respectively).

The dot line shows the AFC of the idling waveguide (without static load and worked material).
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5. Comparison of experimental data and discussion of results

The theoretically obtained data of calculations were verified with the use of the experimental
set up consisting of two impacting half-wavelength stepped horns that differ slightly in their natural
frequencies. The waveguides were excited in turn through the magnetostrictive transducer of approximately
1 kW in power within the frequency range of 22 kHz. The upper and lower waveguides can be easily
interchanged, so the inverse ratio between the natural frequencies of active and passive waveguides can be
realized. A steel blade of 0.4mm thick was fed through the vibrating gap between the strikers. The amplitudes
and phases of vibration were measured with the use of the ring-type magnetic vibration detectors mounted on
both waveguides.

The families of curves plotted for amplitude responses of these impacting waveguides (one of which being
excited from the ultrasonic transducer) were measured for both ratios between the natural frequencies (confer
Figs. 6 and 7).

Figs. 3–5 show the variations in the AFC and PFC (responses) with an increase in the static compression
force, G, with values of all other technological parameters kept unchanged. The curve for the amplitude response
of relative vibration envelops the backbone curve and follows its form. Distortions of the backbone curves show
the influence of the load upon the resonance characteristics of strongly coupled vibro-impact system, especially
in the case when f Tof R (Fig. 5, curves 1 and 2). A pre-resonant branch of amplitude response curve becomes
steeper as the compression force increases; the post-resonant branch becomes less steep.

When the excitation frequency lies below the resonance frequency, antiphase vibration of the waveguides
takes place; it means that the strikers move in the same direction. Despite the large values of the strikers’
absolute vibration amplitudes, the relative amplitude is small, especially in the case when f Tof R (Fig. 5). At
post-resonance frequencies, inphase vibration occurs with relative amplitude nearly equal to the sum of
absolute amplitudes of the two strikers. At an instant of the strikers’ collision, they move one towards another
and strong impact action will provide thus the efficient processing.

On the other hand, the strong nonlinear (impact) interaction between these waveguides results in
antiresonance damping of oscillation in the waveguide excited by transducer. The antiresonance frequency can
be derived from the condition U1 o; aVð Þ ! 1 in Eq. (32). Neglecting the dissipative terms in this equation,
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Fig. 7. The same as in Fig. 6 for f T4f R. Curves 4 are added for G ¼ 880N.
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i.e., setting that b ¼ 0 and w ¼ 0, it is possible to obtain the approximate equation for estimation of
antiresonance frequency value:

1� kReL2 oð Þ ¼ 0. (37)

Substitution of the expression for the real part of the dynamic compliance operator that is derived in
Appendix A into Eq. (37) gives

x2 cot x2 þ
2G

aV

�
S2

E2F2
¼ 0. (38)

It is clear, that Eq. (38) is satisfied for negative values of cot x2 under x24p=2, i.e. when an excitation
frequency exceeds of natural frequency of passive waveguide f4g2=4S2 � f 2. By examining Eq. (38), it is seen
that the antiresonance frequency lies always over the natural frequency of the waveguide-reflector, fR,
(irrespective of a natural frequency value of the waveguide excited, fT). The antiresonanse drop changes the
bell-type AFC of the waveguide excited into the double-hump form. The abrupt changes in AFC and PFC are
indicative of the strong mutual influence of impacting waveguides. Distortions of the response curves become
more noticeable with the strengthening of coupling that appears due to an increase in the force of static
pressure. As a distinguishing feature from the linearly coupled oscillators [13], it is worth to note that both
calculated resonance peaks in Figs. 3–5 are shifted just towards to the higher frequencies with respect to a
given position of natural frequencies on the frequency axis.

The comparison of our results with the approximation of infinitely rigid contact [2,19] (that predicts a loss
of oscillation stability, if the compression force exceeds the threshold G ¼ P/4) shows certain distinctions that
are due to the account of energy dissipation in the workpiece processed. So, for instance, a violation of
criterion (29) takes place for the branches of amplitude response curves having the positive slope (Figs. 3 and
5, for G ¼ 600N); the threshold of stability is here considerably greater than P/4.

By and large, the data of our calculations are in a good agreement with those of the AFC measured (Figs. 6
and 7). Nonetheless, the spacing between two resonance peaks is somewhat greater than it is predicted by
theory. The low-frequency peak lies below the lower natural frequency (of two) and it is typical for the linearly
coupled oscillators [13]. Fig. 6 shows that the high-frequency peak of the excited waveguide is higher than the
low-frequency peak (contrary to the theory, Fig. 5).
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The above-noted discrepancies can be attributed to the assumptions adopted on the contact rigidity and
expressed with use of the above-given inequalities (Eqs. (15)) and the requirement for impact interaction. At
aV ! 0, the harmonic coefficients k and b (Eqs. (17) and (18)) become hence infinite, while the derived here
formulas describe correctly only the vibro-impact regime having the sufficiently large value of the relative
amplitude aV. At pre-resonance frequencies, the relative amplitude and velocity of strikers moving in the same
direction have small values; as to the harmonic coefficients calculated by using formulas (17) and (18), they are
overestimated. One can say that the real contact interaction of weakly impacting waveguides is more ‘‘soft’’ as
compared with theoretical data from Eqs. (17) and (18) and that the behavior of the vibro-impact system is
similar to that of oscillators with inseparable linear coupling [13].

In cases when the compression force exceeds a certain threshold, the vibro-impact regime terminates. The
adjacent end faces of the waveguides experience the vibratory motion without any interruption of contact;
within the entire period of vibration, the joint remains closed and the further processing becomes impossible
(curve 3 in Fig. 6 and curve 4 in Fig. 7). At f T4f R the threshold of compression force that corresponds to the
contact closure and also the maximal attainable amplitude of relative vibration have the values that are
significantly larger as compared with those at the inverse ratio of waveguides’ natural frequencies. This fact
can be explained by the relative location of resonance and antiresonance frequencies: the resonance peak of
impact regime is being shifted towards the high-frequency region (in accordance with the backbone curve),
while the antiresonance frequency of the excited waveguide lies always above the natural frequency of the
waveguide-reflector (in accordance with Eq. (37)). In case when the waveguide connected with ultrasonic
transducer has the natural frequency value lesser than that of the waveguide-reflector f Tof R

� �
, the frequency

band of antiresonance damping overlaps the neighboring bandwidth of resonance peak of impact vibration. In
case of inverse ratio f T4f R

� �
, the frequency bands corresponding to the antiresonance damping and

resonance amplification of impact vibration are split by frequency fT and spaced widely.
The relation f T4f R ensures the stability of vibro-impact regime with the largest amplitude in the presence

of the largest compression force; it has a certain advantage over the conventional equality of natural
frequencies of both waveguides (confer the amplitude of relative vibration at the same value of compression
force, Figs. 3 and 4). The optimal value of excess in the natural frequency of the excited waveguide depends on
a design of ultrasonic set up used and the processing parameters, but it must not be larger than that of the
resonance peak bandwidth.
6. Conclusions
1.
 The AFC and PFC of two nonlinearly coupled waveguides with somewhat unequal natural frequencies are
calculated here by making use of the method for harmonic linearization. The contact interaction between
the waveguides through the workpiece is approximated by a piecewise continuous function that makes it
possible to describe the basic features of the vibro-impact regime.
2.
 The comparison of the model with two extreme cases, viz. (1) linear coupling and (2) infinitely rigid contact,
reveals some similarities and distinctions that appear due to nonlinear and dissipative properties of the
connecting link (workpiece).
3.
 The stable vibro-impact resonance needed to process the workpiece efficiently can be attained by meeting
the rigorous requirement stating that the natural frequency of the ultrasonic transducer should exceed that
of the waveguide-reflector.
4.
 The thickness of material forged can be directly controlled by measuring the dynamic response of the
ultrasonic set up; the thickness of the forged workpiece is equal to the difference of dynamic shift of
unfastened ultrasonic unit and the relative amplitude of the strikers vibration. This fact was verified in the
course of metallographic measurements and has great practical importance.
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Appendix A. Operator of dynamic compliance

The expression for the operator of dynamic compliance of waveguide was obtained in Ref. [19] by solving
the longitudinal wave equation for the visco-elastic rod stressed by harmonic force at the working end and
rigidly jammed at the mid plane.

Following Ref. [19], it is possible to write

L oð Þ ¼ �
lg2

EFo2
� tanh lSð Þ, (A.1)

where l ¼ io=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ibo

p
, E is the Young modulus, F and S are the cross-section area and the length of the

rod, b ¼ g2w
�
2po is the linearized coefficient of internal friction , g is the sound velocity and w is the sound

absorption coefficient of the material the waveguide is made from. The second-order expansion in series of
small value of absorption coefficient w yields:

Ln oð Þ ¼
Sn

EnF nxn

�
0:5sin 2xn � xn wn=4p

� �2
� i wn=4p
� �

xn þ 0:5sin 2xnð Þ

cos2xn þ wn=4p
� �

xn sin xn

� �2 , (A.2)

where the index n ¼ 1, 2 denotes the upper and lower waveguides, respectively; xn ¼ oSn=gn is the
dimensionless frequency for the nth waveguide. Static compliance of the waveguide is equal to longitudinal
compliance of the rod with length Sn: L 0ð Þ ¼ Sn=EnF n at xn ¼ p=2, the first maximum of dynamic compliance
gives the lowest value of natural frequency: f n ¼ gn=4Sn.

Appendix B. Coefficients of harmonic linearization

The coefficients of harmonic linearization of impact characteristic by Eq. (12) can be calculated according to
the formulas [19]:

f 0 ¼
1

T

Z T

0

F lð Þdt, (B.1)

k ¼
2

Ta

Z T

0

F lð Þcosotdt, (B.2)

b ¼
2

Tao

Z T

0

F lð Þsinotdt, (B.3)

where T ¼ 2p=o is the period of ultrasonic vibration.
Substitution of time-dependent variable l (Eq. (3)) into Eqs. (B.1)–(B.3) and division of the integration

period into the same intervals in accordance with Eq. (6) allows to write Eqs. (13) and (14).
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