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Abstract

This paper presents the results of an extensive study carried out to investigate the applicability of a novel scheme for

inserting added viscous dampers in shear-type systems. The findings, even though developed with specific reference to civil

building structures, provide useful insight also for the effective addition of viscous dampers in mechanical dynamic systems

(of similar characteristics) when excited at the base.

The novel scheme proposed (referred to as the MPD system) is based upon the mass proportional component of the

Rayleigh damping matrix (MPD matrix) and is characterised by a peculiar damper placement which sees the dampers

placed so that they connect each mass to a fixed point.

Firstly, the paper briefly recalls (a) the physical principles and (b) selected results of numerical investigations which show

that the MPD system is characterised by superior dissipative properties.

Secondly, the paper investigates the implementation of the MPD system in civil building structures. Two solutions are

envisaged herein: direct implementation (through the use of long buckling-resistant dampers which connect each storey to

the ground) and indirect implementation (by placing common dampers between the structure and a very stiff lateral-

resisting element adjacent or internal to the structure). The first solution leads to the implementation in the structure of an

exact MPD matrix, if damper sizing is chosen appropriately. The second solution (simpler than the first one to implement

in building structures) leads to an exact MPD matrix, if, in addition to appropriate damper sizing, the lateral-resisting

element is infinitely stiff. As far as the direct implementation is concerned, this paper shows how long buckling-resistant

braces are available for structural systems up to three storey high. As far as the indirect implementation is concerned, this

paper shows (through extensive numerical parametric investigations) how this solution is capable of providing damping

effects which are similar to those offered by the direct implementation, even for lateral-resisting elements characterised by

finite lateral stiffness. The results obtained also provide insight for the optimal insertion of viscous dampers in coupled

mechanical dynamic systems.
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1. Introduction

Dissipative systems have widely proven their effectiveness in mitigating seismic effects in shear-type
structures [1,2]. Still the issue is open in terms of identifying the additional damper system that maximises the
overall dissipative properties of the structure under a wide range of dynamic inputs and with reference to a
number of performance indexes [3–10].

In previous research works [11–17], the authors have examined the problem in an innovative, across the-
board manner by studying damper placement and damper sizing contemporarily. This approach has led to the
identification of a special scheme based upon the mass proportional damping (MPD) component of classic
viscous damping matrices which is capable of maximising the overall dissipative properties of the structure
under a wide range of dynamic inputs and with reference to a number of performance indexes. Sections 2–4
summarise the physical principles and the fundamental results of the previous research works carried out by
the authors regarding the optimal damper insertion in shear-type systems. The interested reader may also refer
to Refs. [11–17] for more detail information.

This special scheme (referred to as the MPD system) is characterised, among other properties, by a
peculiar placement of the damping devices. Given the novelty of the proposed disposition (it differs
considerably from the traditional interstorey damper setup), it is fundamental to develop a specific study
of its applicability to actual building structures. Sections 5–7 report the results of these investigations.
The parametric study is developed with specific reference to civil building structural systems, nonetheless the
findings may give useful insight also into the effective addition of viscous dampers in coupled mechanical
systems.
2. The dynamic system considered

The equations of motion of an N-degrees-of-freedom (N-dof) linear elastic dynamic system subjected to
dynamic loading can be written, in time domain, as follows [18]:

M€uðtÞ þ C_uðtÞ þ KuðtÞ ¼ pðtÞ, (1)

where M is the mass matrix, K the stiffness matrix, C the damping matrix, u(t) the displacement vector
representing the displaced shape of the system and p tð Þ the vector of the externally applied dynamic loading.
A dot over a symbol indicates differentiation with respect to time.

Let us consider a dynamic system composed of (i) an N-dof linear elastic shear-type system and (ii) a generic
ensemble of added viscous dampers. Fig. 1a provides the physical representation typical of the mechanical
engineering for the dynamic system considered, while Fig. 1b provides the physical representation typical of
the structural engineering for the dynamic system considered. Internal (intrinsic) damping is neglected and a
linear constitutive law of the type Fd ¼ cv (where Fd is the force provided by the damper, c is its damping
coefficient and v is the relative velocity between the two damper ends) is assumed for the damping mechanism.
It is well known that in this specific case:
�
 uðtÞ ¼ fu1ðtÞ u2ðtÞ � � � uNðtÞg
T is the column vector of the mass displacements ui(t) of the shear-type

system (with i ¼ 1,y,N indicating the number of the masses from the left to the right in the case of the
shear-type mechanical system and from the bottom to the top in the case of the shear-type structural
system);

�
 the mass matrix is an N�N diagonal matrix, whose terms depend on the masses of the physical elements of

the system [18];

�
 the stiffness matrix is an N�N banded (tri-diagonal) matrix, whose terms depend upon the stiffnesses of

the physical elements of the system [18];

�
 the damping matrix is an N�N matrix which can be full, banded or diagonal depending on the ensemble of

added viscous dampers which is introduced into the structure.
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Fig. 1. (a) Physical representation of an N-dof shear-type mechanical system equipped with a generic system of added viscous dampers. (b)

Physical representation of an N-dof shear-type structural system equipped with a generic system of added viscous dampers.
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3. The MPD and SPD limiting cases of the Rayleigh damping matrix

Let us now consider an ensemble (system) of added viscous dampers which leads, for the generic N-storey
linear elastic shear-type system described before, to a Rayleigh damping matrix CR [18]. The Rayleigh
damping matrix CR has the following expression:

CR
¼ aMþ bK, (2)

where M and K are, respectively, the mass matrix and the stiffness matrix described in Section 2 and a and b
are two constants having, respectively, units of s�1 and s.

Eq. (2) leads also to the definition of the following two limiting cases:
�
 Mass Proportional Damping matrix or MPD matrix:

CMPD
¼ aM. (3)
�
 Stiffness Proportional Damping matrix or SPD matrix:

CSPD
¼ bK. (4)
Note that CR
¼ CMPD

þ CSPD.
The system of added viscous dampers which leads to a damping matrix equal to a Rayleigh damping matrix

is referred herein to as ‘‘Rayleigh damping system’’. Similarly, the system of added viscous dampers which
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leads to a damping matrix equal to the MPD matrix is referred herein to as ‘‘MPD system’’ and the system
of added viscous dampers which leads to a damping matrix equal to the SPD matrix is referred herein to as
‘‘SPD system’’.

Recalling the well-known form of the matrix M for a shear-type dynamic system leads to

CMPD
¼

am1 0 . . . . . . 0

0 am2 0 . . . . . .

. . . 0 . . .

ami

. . . . . .

. . . amN�1 0

0 . . . . . . 0 amN

2
666666666664

3
777777777775
, (5)

where mi represents the mass of the ith element in the case of the shear-type mechanical system and the mass of
the ith storey in the case of the shear-type structural system. By calling ami ¼ ci ð8i ¼ 1; . . . ;NÞ, Eq. (5)
becomes

CMPD
¼

c1 0 . . . . . . 0

0 c2 0 . . . . . .

. . . 0 . . .

ci

. . . . . .

. . . cN�1 0

0 . . . . . . 0 cN

2
666666666664

3
777777777775
. (6)

From simple kinematics considerations and from the definition of element crs of a generic damping matrix,
it can be observed that the damping matrix provided by Eq. (6) corresponds to a physical system of added
viscous dampers, which connect each storey to a fixed point (e.g. the ground). In detail, with reference to the
definition of crs (the force corresponding to coordinate r due to unit velocity of coordinate s) and to the form
of Eq. (6), a unit velocity along coordinate i, _ui ¼ 1, produces only a damping force of magnitude Fi ¼

ci _ui ¼ ci1 ¼ ci along the direction of coordinate i: this can be physically achieved only by placing dampers
which connect each ith storey to a fixed point (e.g. the ground).

Similarly, recalling the well-known form of the matrix K for a shear-type dynamic system leads to

CSPD
¼

bk1 þ bk2 �bk2 0 . . . 0

�bk2 bk2 þ bk3 �bk3 0 . . . . . .

0 �bk3 bk3 þ bk4 . . .

. . . . . . . . .

. . . . . . 0

. . . . . . bkN�1 þ bkN �bkN

0 . . . �bkN bkN

2
666666666664

3
777777777775
, (7)

where ki represents the stiffness connecting the ith element to the (i�1)th element (i.e. to the fixed point if
i ¼ 1) in the case of the shear-type mechanical system and the total lateral stiffness of the vertical elements
connecting the ith storey to the (i�1)th storey (i.e. to the ground if i ¼ 1) in the case of the shear-type
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structural system. By calling bki ¼ ci ð8i ¼ 1; . . . ;NÞ, Eq. (7) becomes

CSPD
¼

c1 þ c2 �c2 0 . . . 0

�c2 c2 þ c3 �c3 0 . . . . . .

0 �c3 c3 þ c4 . . .

. . . . . . . . .

. . . . . . 0

. . . . . . cN�1 þ cN �cN

0 . . . �cN cN

2
666666666664

3
777777777775
. (8)

It can be then observed that the damping matrix provided by Eq. (8) corresponds to a physical system of
added viscous dampers placed so that they connect adjacent storeys. In detail, with reference to the definition
of crs and to the form of Eq. (8), a unit velocity along coordinate i, _ui ¼ 1, produces:
�
 a positive damping force of magnitude F i ¼ ðci þ ciþ1Þ _ui ¼ ðci þ ciþ1Þ1 ¼ ci þ ciþ1 along the direction of
coordinate i;

�
 a negative damping force of magnitude F i�1 ¼ �ci _ui ¼ �ci1 ¼ �ci along the direction of coordinate
ði � 1Þ;

�
 a negative damping force of magnitude F iþ1 ¼ �ciþ1 _ui ¼ �ciþ11 ¼ �ciþ1 along the direction of coordinate

(i+1).

From simple kinematics considerations, it can be seen that this can be physically achieved only by placing
dampers so that they connect adjacent storeys. Damper characterised by coefficient ci (as defined with respect
to the motion of coordinates i and (i+1)) connects storey i (or coordinate i) to storey (i�1) (or coordinate
(i�1)). Damper characterised by coefficient ci+1 connects storey i (or coordinate i) to storey (i+1) (or
coordinate (i+1)).

Consequently, the Rayleigh damping matrix given by Eq. (2) corresponds to a physical system which
encompasses both added viscous dampers connecting each storey to the ground and added viscous dampers
connecting adjacent storeys.

With reference to the illustrative 3-dof shear-type mechanical system represented in Fig. 2a:
�
 when a Rayleigh system is inserted into the shear-type system, the physical system thus obtained
corresponds to that schematically represented in Fig. 2b;

�
 when an MPD system is inserted into the shear-type system, the physical system thus obtained corresponds

to that schematically represented in Fig. 2c;

�
 when an SPD system is inserted into the shear-type system, the physical system thus obtained corresponds

to that schematically represented in Fig. 2d.
With reference to the illustrative 3-dof shear-type structural system represented in Fig. 2e:

�
 when a Rayleigh system is inserted into the shear-type system, the physical system thus obtained

corresponds to that schematically represented in Fig. 2f;

�
 when an MPD system is inserted into the shear-type system, the physical system thus obtained corresponds

to that schematically represented in Fig. 2g;

�
 when an SPD system is inserted into the shear-type system, the physical system thus obtained corresponds

to that schematically represented in Fig. 2h.

Inspection of Figs. 2c, d, g and h indicates that the MPD and the SPD systems are physically separated.
Inspection of Figs. 2c, d, g and h also allows to formulate the following alternative definitions in terms of
damper placement and damper sizing for the MPD and the SPD systems (see also details given in Refs. [11–17]):
�
 MPD system: the dampers are placed in such a way as to connect each mass to a fixed point. This placement
can be referred to as ‘‘Fixed Point placement’’ or ‘‘FP-placement’’. The dampers are sized so that each
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Fig. 2. A 3-dof shear-type mechanical system: (a) undamped, (b) equipped with Rayleigh damping system, (c) equipped with MPD system

and (d) equipped with SPD system. A 3-dof shear-type structural system: (e) undamped, (f) equipped with Rayleigh damping system,

(g) equipped with MPD system and (h) equipped with SPD system.
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damping coefficient cj is proportional to the corresponding mass mj. This sizing can be referred to as ‘‘Mass

Proportional sizing’’ or ‘‘MP-sizing’’.

�
 SPD system: the dampers are placed in such a way as to connect two adjacent masses. This placement can

be referred to as ‘‘Inter-Storey placement’’ or ‘‘IS-placement’’. The dampers are sized so that each damping
coefficient cj is proportional to the stiffness kj connecting these two adjacent masses. This sizing can be
referred to as ‘‘Stiffness Proportional sizing’’ or ‘‘SP-sizing’’.

4. Performances of the MPD and SPD systems

As illustrative examples of the performances provided by the MPD and SPD systems (and, more in general,
of the performances provided by damper systems characterised by FP-placement and IS-placement),
analytical findings and selected numerical results are presented in the following.
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4.1. The equal ‘‘total size’’ constraint

In order to make meaningful comparisons of the dissipative performances offered by different damper
systems, the following condition (referred to as the equal ‘‘total size’’ constraint) is imposed upon their ‘‘total
size’’. The sum, ctot, of the damping coefficients, cj, of all M added viscous dampers introduced into the shear-
type system, is equal to a set value, c̄, as given by the following formula:

ctot ¼
XM
j¼1

cj ¼ c̄. (9)

In accordance with the usual matrix notation, where crs is the rsth element of the system damping matrix C,
for N-dof shear-type systems, this condition translates intoXN

r¼1

XN

s¼r

crs ¼ c̄. (10)

4.2. Physical dissipative properties of the Rayleigh damping systems and its limiting cases

All results presented in this section are obtained with reference to the class of shear-type systems
characterised by values of mass and stiffness which do not vary (mi ¼ m and ki ¼ k, 8i ¼ 1; . . . ;N).

For the class of shear-type systems here considered, imposing the equal ‘‘total size’’ constraint to a generic
Rayleigh damping system leads to the identification of a class of Rayleigh damping systems characterised by
the following specific values āR and b̄

R
of the a and b parameters:

āR ¼ āð1� gÞ,

b̄
R
¼ b̄g, ð11Þ

where
�
 g is a dimensionless parameter with values ranging between 0 and 1, that identifies each specific Rayleigh
system within the class defined above;

�
 ā ¼

c̄

Nm
¼

c0

m
, (12)
�
 b̄ ¼
c̄

Nk
¼

c0

k
, (13)
�
 c0 ¼
c̄

N
, (14)

g ¼ 0 identifies the MPD system, whilst g ¼ 1 identifies the SPD system.

Note that:
�
 for N-dof shear-type systems, the MPD and the SPD systems are characterised by M ¼ N;

�
 for the MPD system:

āMPD ¼ ā,

b̄
MPD
¼ 0, ð15Þ
�
 for the SPD system:
āSPD ¼ 0,

b̄
SPD
¼ b̄, ð16Þ
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the MPD and the SPD systems are made up of N equally sized dampers (each one characterised
�

by c0).
Note that Eqs. (12) and (13) lead to the following relationship between the ā and b̄ values that guarantees
the satisfaction of the equal ‘‘total size’’ constraint, independently of c̄:

ā ¼ b̄o2
0 (17)

where o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is a useful reference circular frequency that corresponds to the circular frequency of a

single-degree-of-freedom (sdof) system with stiffness equal to k and mass equal to m.
For classically damped N-dof dynamic systems, it is possible to define a damping ratio for each mode of

vibration [18]. For Rayleigh damped N-dof dynamic systems, it is well known that the ith modal damping
ratio, xR

i , expressed according to the notation of Eq. (2), is given by

xR
i oið Þ ¼

a
2oi

þ
boi

2
, (18)

where oi is the ith modal (undamped) circular frequency of the N-dof dynamic system.
For the class of shear-type systems here considered, imposing to Eq. (18) the equal ‘‘total size’’ constraint in

the form of Eqs. (15), (16), (11) and (17) leads to

xMPD
i ¼

ā
2oi

¼
ā

2o0

o0

oi

� �
¼

x0
Oi

, (19)

xSPDi ¼
b̄oi

2
¼

āoi

2o2
0

¼
ā

2o0

oi

o0

� �
¼ x0Oi, (20)

xR
i ¼

āR

2oi

þ
b̄

R
oi

2
,

¼
ā
2oi

ð1� gÞ þ
b̄oi

2
g,

¼ xMPD
i ð1� gÞ þ xSPDi g,

¼ xMPD
i � gðxMPD

i � xSPDi Þ, ð21Þ

where
�
 Oi ¼ oi=o0 is the ith normalised circular frequency (with respect to the reference circular frequency o0);

�
 x0 ¼ ā

2o0
¼

b̄
2
o0 ¼

c̄

2N
ffiffiffiffiffi
km
p ¼ c0

2
ffiffiffiffiffi
km
p ; is a reference damping ratio that only depends on the characteristics of the

shear-type system (k, m and N) and the ‘‘total size’’ ðc̄Þ of the damper system. It is worth pointing out that
x0 corresponds to the damping ratio of an sdof system with stiffness equal to k, mass equal to m and
damper coefficient equal to c0.
Fig. 3 shows the modal damping ratio vs. normalised circular frequency curves for a shear-type system
equipped with the MPD system, the SPD system and the Rayleigh damping system characterised by g ¼ 0:5,
as obtained under the equal ‘‘total size’’ constraint. As known, MPD systems provide a modal damping ratio
which progressively (hyperbolically) decreases as the modal frequency gets higher and higher; while SPD
systems provide a modal damping ratio which linearly increases as the modal frequency gets higher and
higher. Note that, as per Eq. (21), the Rayleigh damping system is characterised by intermediate properties.

In order to draw conclusions regarding the relative dissipative efficiencies of the MPD and the SPD systems,
it is necessary to know whether the normalised circular frequencies Oi of the modes of vibration which govern
the response of the dynamic system considered are larger or smaller than unity.
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From Eqs. (19) and (20), it can be deduced that

xSPDi

xMPD
j

¼ OiOj. (22)

Specialising Eq. (22) for i ¼ j, it is clear that:
�
 if Oi ¼ 1 then xMPD
i ¼ x0 ¼ xSPDi ;
�
 if Oio1 then xMPD
i 4x04xSPDi ;
�
 if Oi41 then xMPD
i ox0oxSPDi .
Specialising Eq. (22) for i ¼ j ¼ 1 leads to

xSPD1

xMPD
1

¼ O2
1. (23)

For the class of shear-type systems here considered, investigation of the properties of the normalised
circular frequencies Oi (i ¼ 1; . . . ;N), which involves the study of the eigenproblem of a banded and an
identity matrices, reveals that the following result is demonstrated [17]:

O1o1, (24)

which, thanks to Eq. (23), directly leads to

xSPD1

xMPD
1

o1 (25)

i.e., the insertion into the shear-type (either mechanical or structural) system of an MPD system leads to a
damping ratio of the fundamental mode of vibration which is always larger than that given by the insertion of
an equal ‘‘total size’’ SPD system (xMPD

1 4xSPD1 ). Also from Eq. (21) it is clear that the insertion into the shear-
type (either mechanical or structural) system of an MPD system leads to a damping ratio of the fundamental
mode of vibration which is larger than that given by the insertion of any Rayleigh damping system of equal
‘‘total size’’. This result is of fundamental importance for shear-type systems characterised by dynamic
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response governed by the first mode of vibration, such as those excited at the base with a broad-band
excitation (such as the earthquake input).

Still, the study of the properties of the first normalised circular frequency O1 reveals that the following
results are demonstrated [17]:

xMPD
1 4x0

ffiffiffiffiffi
N
p

, (26)

xSPD1 o
x0ffiffiffiffiffi
N
p , (27)

xSPD1

xMPD
1

o
1

N
, (28)

which indicate that the superior dissipative properties of the MPD system with respect to those of the equal
‘‘total size’’ SPD system increase with increasing number of degrees of freedom N.

Fig. 4 shows the numerical values of the ratio xSPD1 =xMPD
1 for N varying from 2 to 30, as obtained for the

class of shear-type systems here considered. The figure also shows the curve y ¼ 1=N which, as demonstrated
in Ref. [17], represents an upper bound for xSPD1 =xMPD

1 .
Focusing on higher modes of vibration, the study of the properties of Oi (i ¼ 1; . . . ;N) reveals that also the

following result is demonstrated [17]:

xMPD
1 4xSPDN�pþ14xSPDN�p4 � � �4xSPD1 , (29)

where p is the number of modes of vibrations for which Oip1 (i ¼ 1; . . . ; p). It is numerically seen [17] that

p ¼
N þ 2

3

� �
, (30)

where [z] indicates the integer part of z.
Fig. 5 shows the numerical values of the ratio between N � pþ 1 and N, as obtained for the class of shear-

type systems here considered. Inspection of this figure indicates that xMPD
1 is larger than roughly the first 70%

(with respect to the total number of modal damping ratios) modal damping ratios xSPDi .
All above results clearly indicate that a shear-type (either mechanical or structural) system equipped with

added viscous dampers which lead to an MPD matrix, when excited at the base with a broad-band excitation
(such as the earthquake input), should always display superior dissipative properties than those displayed by
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a shear-type system equipped with equal ‘‘total size’’ added viscous dampers which lead to an SPD matrix.
Also, these superior dissipative properties should increase with increasing number of degrees of freedom.

Finally, as far as the geometrical sum of the modal damping ratios, xg:s: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1x
2
i

q
, is concerned, it is

demonstrated that [17]

xSPDg:s:

xMPD
g:s:

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðx

SPD
i Þ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðx
MPD
i Þ

2
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N � 2

N2 þN

s
. (31)

For shear-type systems subjected to a broad-band base excitation and under the here conservative
(pejorative with respect to the evaluation of the damping performances of shear-type systems equipped with
the MPD system) hypothesis that all modes have the same importance in the determination of the global
system response, the geometrical sum of the damping ratios can be reasonably assumed as a meaningful
performance index of the dissipative effects of the MPD and SPD systems. Therefore, Eq. (31) indicates that
the dissipative effects of the MPD system are larger than those of the equal ‘‘total size’’ SPD system even for
N42 and that they increase for increasing N, as also illustrated in Fig. 6.

4.3. Numerical verifications of the dissipative properties of the MPD and SPD systems

This section presents selected numerical results which synthesise the findings of extensive parametric
analyses carried out by the authors [11–17], aimed at comparing the dissipative properties of MPD systems
with those of other generic (classical and nonclassical) damping systems.

Specific reference is now made to civil building structures equipped with additional viscous damping
devices. However, the results that will be obtained may be easily extended to mechanical systems of similar
characteristics.

Firstly, this section presents results (in terms of floor responses and damper forces) obtained for Rayleigh
damping systems. Secondly, the dissipative properties of the MPD and the SPD systems will be compared with
those of other ‘‘optimised’’ (in their damping efficiency) systems of added viscous dampers obtained using
numerical algorithms.

All results are developed with reference to the 6-storey shear-type structural system of Fig. 7a, which is
characterised by values of mass and lateral stiffness which do not vary along the building height. At each
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storey, the lateral stiffness1 of the vertical elements connecting one floor to the adjacent one is equal to
ki ¼ k ¼ 4� 107 N=m and the floor mass (see footnote 1) is equal to mi ¼ m ¼ 0:8� 105 kg. Interstorey height
is equal to 3.0m. The periods of vibration of the structure are given in Table 1. Internal damping is neglected
and the set (see footnote 1) value c̄ considered herein is equal to 9:0� 106 N s=m.

As far as Rayleigh damping systems are only concerned, Fig. 8 shows si as functions of parameter g. si

being the square root of the mean square response [19] (that coincides with the standard deviation for
stochastic inputs with zero mean value), of the ith storey displacement of the structure subjected at the base to
a white noise acceleration. The white noise considered has the following characteristics: band-limited between
0 and ō ¼ 60 rad=s, stationary, Gaussian with zero mean and characterised by constant power spectral density
of amplitude A2 ¼ 0:144m2=s3.2

Inspection of Fig. 8 shows that, among all Rayleigh damping systems, the MPD system (characterised by
g ¼ 0 and represented in Fig. 7b) represents the optimum solution as far as minimising si is concerned, whilst
the SPD system (characterised by g ¼ 1 and represented in Fig. 7c) provides the worst solution. The curves
siðgÞ of Fig. 8 are extremely smooth and feature an almost horizontal tangent at g ¼ 0, so that systems
characterised by g values close but not equal to zero still show very low values for si. This clearly indicates the
‘‘robustness’’ of the dissipation efficiency of MPD systems.

Note that, under the equal ‘‘total size’’ constraint, given that, for the structure examined, mi ¼ m and
ki ¼ k, 8i ¼ 1; . . . ; 6, it turns out that all dampers are equal in size for both MPD and SPD systems
(cj ¼ c̄=6 ¼ 1:5� 106 N s=m, 8j). Therefore, the only difference between these two systems is the actual
placement of the viscous devices. The results of Fig. 8 thus highlight the prime importance of damper
placement to achieving dissipative effectiveness. Basically, in the class of structures characterised by a
Rayleigh damping system, the conventional arrangement of dampers between adjacent storeys (characteristic
of the SPD system) is that which provides least dissipation efficiency. On the other hand, dampers placed in
such a way as to connect each storey to a fixed point, typical of the MPD system proposed herein, provide
maximum damping efficiency.

Fig. 9 shows the sum, S, of the standard deviations of the forces exerted through all dampers (under the
stochastic white noise acceleration of above) as function of parameter g. Inspection of this figure clearly
indicates that, from an engineering point of view, the sum of the forces exerted through all dampers is
1These specific values k, m and c̄ are selected for the sake of comparison with other research results regarding the optimal placement of

added viscous dampers that are available in literature [3].
2These values have been chosen so that standard deviation of acceleration at the base of the structure supplied by this stochastic process

is equal to 0.3g.
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Table 1

Periods of vibration of the reference structure (s)

T1 T2 T3 T4 T5 T6

1.166 0.396 0.247 0.188 0.159 0.145
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Fig. 7. The reference 6-storey shear-type structure: (a) as it is, (b) equipped with the MPD system and (c) equipped with the SPD system.
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substantially the same for all damper systems and, therefore, the superior performances offered by the MPD
system with respect to the SPD system do not come at the expense of larger forces exerted through the
dampers, but are due to its intrinsic physical properties [17] recalled in Section 4.2.

As far as nonclassical damping systems are concerned, Fig. 10 shows the si profiles as obtained for
the reference structure equipped with the following systems of added viscous dampers (all obtained under the
equal ‘‘total size’’ constraint):
�
 SPD system;

�
 TAK system;
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�
 GIOIS system;

�
 MPD system;

�
 GIOFP system;

�
 GIOFREE system.
The TAK system is identified as ‘‘optimal’’ in the research works of Izuru Takewaki [3]. This system is
characterised by an IS-placement. The size of the dampers is determined through inverse problem approach
so that the sum of amplitudes of the transfer functions of interstorey drifts evaluated at the undamped
fundamental natural frequency is minimised.



ARTICLE IN PRESS
T. Trombetti, S. Silvestri / Journal of Sound and Vibration 302 (2007) 486–526500
The GIOIS, GIOFP and GIOFREE systems are identified as ‘‘optimal’’ making use of genetic algorithms
[9,20–26], as already done in previous research works carried out by the authors [15,16]. The basic
characteristics of the GA here adopted can be summarised as follows:
�

Ta

Va

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
population: 30 individuals;

�
 mutation choice: 18%;

�
 elitism choice: 18%;

�
 number of iteration: 150.
The GIOIS is the system characterised by ‘‘optimal’’ sizing for the IS-placement.
The GIOFP is the system characterised by ‘‘optimal’’ sizing for the FP-placement.
The GIOFREE system is obtained imposing no constraint upon damper placement so that all possible

damper positions can be considered (i.e. dampers may connect adjacent storeys, nonadjacent storeys and
storeys to a fixed point). The size of the dampers is determined in order to minimise the average of the
standard deviations of the interstorey drift angles of the structure subjected to the white noise input
acceleration described before [15,16].

Table 2 provides the values of the damping coefficients for the various damping systems considered with
reference to the notation of Fig. 7.

Note that the GIOFP and the GIOFREE systems are identical. This is a further indication that FP-
placement is capable of providing superior dissipative properties. In the next part of this section, reference will
be made to the GIOFP system only.

Inspection of Fig. 10 shows that both the systems characterised by an FP-placement (MPD and GIOFP)
lead to storey responses which are much smaller (up to 4 times) than those obtained for systems characterised
by an IS-placement (SPD, TAK and GIOIS).

Fig. 11 shows the averages, mS, over 40 historically recorded earthquake ground motions all scaled to the
same peak ground acceleration (PGA) of 0.3g (where g represents the gravity acceleration), of the sums of
the maximum forces exerted through all dampers as obtained for the reference structure equipped with the
following systems of added viscous dampers: SPD, TAK, GIOIS, MPD and GIOFP systems.

Inspection of this figure clearly indicates that, again, from an engineering point of view, the sum of the
forces exerted through all dampers is substantially the same for all damper systems and, therefore, the superior
performances offered by the MPD system (and, in general, by systems characterised by FP-placement) with
respect to the SPD system (and, in general, to systems characterised by traditional IS-placement) do not come
at the expense of larger forces exerted through the dampers, but are due to its intrinsic physical properties [17]
recalled in Section 4.2.

Basically, the selected results here presented illustrate how systems characterised by the innovative fixed-
point damper placement (as it is the case of the MPD system) leads to damping efficiency which is far superior
ble 2

lues of the damping coefficients (� 106N s/m) for the various damping systems considered with reference to the notation of Fig. 7

SPD TAK GIOIS MPD GIOFP GIOFREE

— — — 1.5 1.02 1.02

— — — 1.5 1.53 1.53

— — — 1.5 1.70 1.70

— — — 1.5 1.70 1.70

— — — 1.5 1.53 1.53

— — — 1.5 1.53 1.53

1.5 4.80 3.79 — — 0

1.5 4.20 3.32 — — 0

1.5 0 1.89 — — 0

1.5 0 0 — — 0

1.5 0 0 — — 0

1.5 0 0 — — 0
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to that offered by the traditional damper placements which see dampers placed between adjacent storeys (as it
is the case of the SPD system).

5. Applicability of the MPD systems

As recalled in the previous section, the MPD system and, in general, damper systems characterised by FP-
placement, lead to good damping performances. However, the issue of how to implement FP-placement in real
shear-type systems still needs to be addressed.

In the following analyses, MPD systems will be taken as reference of the performances offered by the class
of damper systems characterised by FP-placement (Figs. 12a, b, d and e) and SPD systems will be taken as
reference of the performances offered by the class of damper systems characterised by IS-placement (Figs. 12c
and f).

With reference to the schematic representation of Figs. 12a and d, a ‘‘direct implementation’’ of the MPD
system (that leads to a damping matrix which corresponds to an exact MPD matrix, if damper sizing is chosen
appropriately) can be obtained using the ground as fixed point. This is achieved by placing dampers so that
they connect each mass to the ground.

With reference to the schematic representation of Figs. 12b and e, an ‘‘indirect implementation’’ of the
MPD system can be obtained using a ‘‘support’’ shear-type system as fixed point. This is achieved by placing
dampers so that they connect the shear-type system to be damped (‘‘reference’’ shear-type system) to a
‘‘support’’ shear-type system (which must be characterised by a large, ideally infinite, stiffness).

6. Direct implementation of the MPD systems

For shear-type mechanical systems, the direct implementation of the MPD system should pose no problems
if enough space is available.

For shear-type structural systems, in order to obtain a direct implementation of the MPD systems, it is
necessary to introduce dissipative braces of considerable length. At the present time, the following
technological solutions can be envisaged to overcome the length problem:
�
 use of the so-called ‘‘mega braces’’ of the Taylor Devices Company, already employed (though not
following an exact MPD scheme) for the Chapultepec Tower (best known as Torre Major and shown in
Fig. 13) in Mexico City. In this building, the dampers connect floors which are 2 storeys apart;
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�
 use of the so-called ‘‘unbonded braces’’ [27] of the Nippon Steel Corporation, already employed (though
not following an exact MPD scheme) for the Osaka International Conference Centre [28], shown in
Fig. 14a, and the retrofit of the Wallace F. Bennett Federal Building in Salt Lake City [29], shown in
Fig. 14b;

�
 use of prestressed steel cables coupled with silicon dampers as proposed in the SPIDER European research

project [30] whose schematic representation can be seen in Fig. 15.

In both the Chapultepec Tower and the Osaka International Conference Centre, the dampers connect floors
which are 2 or 3 storeys apart and therefore the up to date technology is readily available to successfully
implement direct MPD systems for building structures up to 3 storeys high.

It must be noticed that, for civil building structures, direct implementation requires specific building details
to be studied and addressed which may prove to be expensive (such as the long connections for the bracing
system and the passage of the bracing system through the floors).
7. Indirect implementation of the MPD systems

For both shear-type mechanical and structural systems, indirect implementation should be deeply
investigated in order to assess if it is capable of providing damping effects which are similar to those offered by
the direct implementation. Without loss of generality, the following parametric study is carried out with
specific reference to shear-type structural systems, nonetheless all the results may be easily extended to shear-
type mechanical systems.

Indirect implementation of the MPD system does not require specific dampers and expensive building
details, but simply places traditional viscous dampers so that they connect the reference structure to
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Fig. 13. The Chapultepec Tower (best known as Torre Major) in Mexico City: (a) under construction and (b) schematic representation of

the ‘‘mega-braces’’ of Taylor Devices Company.

Fig. 14. (a) Osaka International Conference Centre, (b) Wallace F. Bennett Federal Building.
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a ‘‘support’’ structure. This damper placement allows to obtain a dynamic system characterised by an exact
MPD matrix, only if the ‘‘support’’ structure is infinitely stiff. Given that this is hardly physically feasible, the
performances obtained by such systems cannot be the same of those obtained with the direct implementation
of the MPD system. To address this issue, the authors have carried out an extensive parametric study varying
the ratio between the lateral stiffness of the support and the reference structures. Given that the reference
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Fig. 15. Schematic representation of the damping cables of the SPIDER research project.
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structure and the ‘‘support’’ structure can be either two adjacent buildings or two portions of the same
building, this parametric study has been developed with reference to the following two cases:
�
 Case 1: insertion of dampers between two adjacent structures characterised by different dynamic properties;

�
 Case 2: insertion of dampers between a frame structure and a very stiff lateral-resisting element, such as the

conventional concrete cores of the stairs/elevator typically found in r.c. constructions (Fig. 16a) or the
bracing systems typical of steel structures (Fig. 16b).

It must be noticed that the coupling with viscous dampers of two structures has been investigated in
recent research works [31–37] (even though not recognising it as an indirect implementation of the MPD
system).

In the forthcoming Sections 7.1 and 7.2, the dynamic properties of the systems of cases 1 and 2 are studied
individually.
7.1. Insertion of dampers between two adjacent structures characterised by different dynamic properties (case 1)

Let us consider the two structures represented in Fig. 17, where R denotes the reference structure and
S denotes the support structure, both characterised by the same total number of storeys. The reference
structure R considered in this illustrative example is the 6-storey shear-type structure described in Section 4
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(characterised by floor masses mi ¼ m, 8i and storey lateral stiffnesses ki ¼ k, 8i). Twelve different support
structures S are considered in this parametric study, each one characterised by
�

Ta

Va

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12
floor masses mS equal to mS ¼ rmm,

�
 storey lateral stiffnesses kS equal to kS ¼ rkk.
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Fig. 17. (a) Reference structure R. (b) Support structure S.
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ble 3

lues of rm, rk and rT ¼ T1;S=T1;R for case 1

rm rk rT

0.75 2 0.612

0.75 5 0.387

0.75 10 0.274

0.75 20 0.194

1.00 2 0.707

1.00 5 0.447

1.00 10 0.316

1.00 20 0.224

1.50 2 0.866

1.50 5 0.548

1.50 10 0.387

1.50 20 0.274
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where rm and rk are given in Table 3. Table 3 also gives the ratio, rT , between the fundamental period, T1;S, of
each support structure S and the fundamental period, T1;R, of the reference structure R.

Note that the 12 support structures considered can be divided into three groups, each one characterised by
the same rm: S1 through S4 are characterised by rm ¼ 0:75, S5 through S8 are characterised by rm ¼ 1:00, and
S9 through S12 are characterised by rm ¼ 1:50.

The parametric study is carried out for the following dynamic systems (structures+equal ‘‘total size’’
ensemble of additional dampers):
�

Fig

for

Fig

for
structure R with no added viscous dampers (and null internal damping), referred to as R-UND dynamic
system, as per Fig. 17a;

�
 structure R equipped with the SPD system, referred to as R-SPD dynamic system, as per Fig. 7c and

Table 2;
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�
 structure R equipped with the MPD system (direct implementation), referred to as R-MPD dynamic
system, as per Fig. 7b and Table 2;

�
 structure S with no added viscous dampers (and null internal damping), referred to as S-UND dynamic

system, as per Fig. 17b;

�
 indirect implementation of the MPD system. The indirect implementation is obtained placing the same

dampers of the R-MPD dynamic system between the corresponding storey of structure R and structure S,
as per Fig. 18 and Table 2. This dynamic system will be referred to as RS-MPD-I dynamic system. The
response of structure R is referred to as the response of R-MPD-I dynamic system and the response of
structure S is referred to as the response of S-MPD-I dynamic system.
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Note that, due to the equal ‘‘total size’’ constraint and the properties of the structure, each damper of the
ensemble of 6 dampers inserted in the R-SPD, R-MPD and RS-MPD-I dynamic systems is characterised by a
damping coefficient cj equal to c̄=6 ¼ 1:5� 106 N� s=m.

The response of the above dynamic systems is numerically computed under the effects of 40 historically
recorded earthquake ground motions. Out of these, 30 are far-field records and 10 near-field records; all
records are scaled to the same PGA value of 0.3g.

For structure R, for each earthquake, taking as reference the maximum shear developed by the R-SPD
dynamic system at each ith storey, the following storey response ratios can be computed:

ðriÞR�UND ¼
ðVmax�iÞR�UND

ðVmax�iÞR�SPD
, (32)
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(—B—) covR�MPD�I for S3, (—J—) covR�MPD�I for S4, (—K—, green) covR�UND, and (—K—, blue) covR�MPD, as computed for

structure R.
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Fig. 26. Profiles of the coefficient of variation of the response ratio averages: (—,—) covR�MPD�I for S5, (—n—) covR�MPD�I for S6,

(—B—) covR�MPD�I for S7, (—J—) covR�MPD�I for S8, (—K—, green) covR�UND, and (—K—, blue) covR�MPD, as computed for

structure R.
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ðriÞR�MPD ¼
ðVmax�iÞR�MPD

ðVmax�iÞR�SPD
, (33)

ðriÞR�MPD�I ¼
ðVmax�iÞR�MPD�I

ðVmax�iÞR�SPD
, (34)

where ðVmax�iÞR�UND, ðVmax�iÞR�SPD, ðVmax�iÞR�MPD and ðVmax�iÞR�MPD�I denote the maximum shear at the
ith storey developed, respectively, by the R-UND, R-SPD, R-MPD and R-MPD-I dynamic systems.
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Fig. 27. Profiles of the coefficient of variation of the response ratio averages: (—,—) covR�MPD�I for S9, (—n—) covR�MPD�I for S10,

(—B—) covR�MPD�I for S11, (—J—) covR�MPD�I for S12, (—K—, green) covR�UND, and (—K—, blue) covR�MPD, as computed for

structure R.
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Fig. 28. Profiles of the coefficient of variation of the response ratio averages: (—,—) covS�MPD�I for S1, (—n—) covS�MPD�I for S2,

(—}—) covS�MPD�I for S3 and (—J—) covS�MPD�I for S4, as computed for structure S.
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For structure S, for each earthquake, taking as reference the maximum shear developed by the S-UND
dynamic system at each ith storey, the following storey response ratio can be computed:

ðriÞS�MPD�I ¼
ðVmax�iÞS�MPD�I

ðVmax�iÞS�UND

, (35)

where ðVmax�iÞS�UND and ðVmax�iÞS�MPD�I denote the maximum shear at the ith storey developed, respectively,
by the S-UND and S-MPD-I dynamic systems.

The means of the response ratios given by Eqs. (32)–(35), for all 40 earthquakes considered, are referred to,
respectively, as mR�UND, mR�MPD, mR�MPD�I and mS�MPD�I. The coefficients of variations of the response ratios
given by Eqs. (32)–(35), for all 40 earthquakes considered, are referred to, respectively, as covR�UND,
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Fig. 29. Profiles of the coefficient of variation of the response ratio averages: (—,—) covS�MPD�I for S5, (—n—) covS�MPD�I for S6,

(—}—) covS�MPD�I for S7 and (—J—) covS�MPD�I for S8, as computed for structure S.
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Fig. 30. Profiles of the coefficient of variation of the response ratio averages: (—,—) covS�MPD�I for S9, (—n—) covS�MPD�I for S10,

(—}—) covS�MPD�I for S11 and (—J—) covS�MPD�I for S12, as computed for structure S.
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covR�MPD, covR�MPD�I and covS�MPD�I. In general, mR and covR will be, respectively, used to indicate the means
and the coefficients of variation of a generic response ratio given by Eqs. (32)–(34).

The plots of mR�MPD�I as obtained for the case of structures S1, S2, S3 and S4 used as support structures in
the RS-MPD-I dynamic system (all characterised by rm ¼ 0:75) are represented in Fig. 19, which also plots
mR�UND and mR�MPD as reference values. Inspection of Fig. 19 indicates that, for the dynamic system composed
of the reference structure R and the support structure S1 (characterised by rk ¼ 2), the indirect
implementation of the MPD system leads to a response ratio average mR which is smaller (�50% to
�70%) than that of the R-UND dynamic system, but still larger (+60% to +100%) than that of the R-SPD
dynamic system. On the other hand, for the dynamic systems composed of the reference structure R and the
support structures S2, S3 and S4 (characterised, respectively, by rk ¼ 5, 10 and 20), the indirect
implementation of the MPD system leads to a response ratio average mR which is smaller than that of the
R-SPD dynamic system. Note that for the dynamic system which uses S4 as support structure, mR�MPD�I is



ARTICLE IN PRESS

k

m k

m k

m k

m

m k

k

m mL

mL

mL

mL

mL

mL

kL

kL

kL

kL

kL

kL

mL

mL

mL

mL

mL

mL

kL

kL

kL

kL

kL

kL

LF

k

mk

mk

mk

m

mk

k

m LF

axially inextensible
a b

Fig. 31. (a) Frame structure F and lateral-resisting element L. (b) FL structural system.

Table 4

Values of rm, rk and rT ¼ T1;L=T1;F for case 2

rm rk rT

L1 0.02 5 0.063

L2 0.02 10 0.045

L3 0.02 20 0.032

L4 0.02 50 0.020

L5 0.05 5 0.100

L6 0.05 10 0.071

L7 0.05 20 0.050

L8 0.05 50 0.032

L9 0.10 5 0.141

L10 0.10 10 0.100

L11 0.10 20 0.071

L12 0.10 50 0.045
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Fig. 32. (a) FL-SPD dynamic system. (b) FL-MPD dynamic system. (c) FL-MPD-I dynamic system.
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comparable to mR�MPD. In summary, these results indicate that, for systems characterised by rm ¼ 0:75, the
indirect implementation of the MPD system:
�
 allows to obtain a seismic response of the reference structure R which is smaller than that of the same
structure equipped with the SPD system, for structures characterised by a stiffness ratio rk larger than 5;

�
 allows to obtain a seismic response of the reference structure R which is similar to that of the same structure

equipped with the MPD system, for structures characterised by a stiffness ratio rk larger than 20.
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Fig. 33. Profiles of response ratio averages (green) mFL�UND, (blue) mFL�MPD and (black) mFL�MPD�I: (a) L1, (b) L2, (c) L3 and (d) L4.
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The plots of mR�MPD�I, as obtained for the case of structures S5, S6, S7 and S8 used as support structures in
the RS-MPD-I dynamic system (all characterised by rm ¼ 1:00), mR�UND and mR�MPD are not reported here for
sake of conciseness but are available in the online version of this article as Electronic Fig. 20. Inspection of
these plots indicates that, for the dynamic system composed of the reference structure R and the support
structure S5 (characterised by rk ¼ 2), the indirect implementation of the MPD system leads to a response
ratio average mR which is smaller (�35% to �65%) than that of the R-UND dynamic system, but
substantially larger (+80% to +150%) than that of the R-SPD dynamic system. For the dynamic system
composed of the reference structure R and the support structure S6 (characterised by rk ¼ 5), the indirect
implementation of the MPD system leads to a response ratio average mR which is similar to that of the R-SPD
dynamic system. On the other hand, for the dynamic systems composed of the reference structure R and the
support structures S7 and S8 (characterised, respectively, by rk ¼ 10 and 20), the indirect implementation of
MPD system leads to a response ratio average mR which is smaller than that of the R-SPD dynamic system.
Note that, as in the above previous case, for the dynamic system which uses S8 as support structure, mR�MPD�I
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Fig. 34. Profiles of response ratio averages (green) mFL�UND, (blue) mFL�MPD and (black) mFL�MPD�I: (a) L5, (b) L6, (c) L7 and (d) L8.
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is comparable to mR�MPD. In summary, these results indicate that, for systems characterised by rm ¼ 1:00, the
indirect implementation of the MPD system:
�
 allows to obtain a seismic response of the reference structure R which is smaller than that of the same
structure equipped with the SPD system, for structures characterised by a stiffness ratio rk larger than 10;

�
 allows to obtain a seismic response of the reference structure R which is similar to that of the same structure

equipped with the MPD system, for structures characterised by a stiffness ratio rk larger than 20.

The plots of mR�MPD�I, as obtained for the case of structures S9, S10, S11 and S12 used as support structures in
the RS-MPD-I dynamic system (all characterised by rm ¼ 1:50), mR�UND and mR�MPD are not reported here for
sake of conciseness but are available in the online version of this article as Electronic Fig. 21. Inspection of
these plots indicates that the dynamic systems composed of the reference structure R and the support
structures S9 and S10 (characterised, respectively, by rk ¼ 2 and 5), the indirect implementation of the MPD
system leads to a response ratio average mR which is smaller than that of the R-UND dynamic system, but
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Fig. 35. Profiles of response ratio averages (green) mFL�UND, (blue) mFL�MPD and (black) mFL�MPD�I: (a) L9, (b) L10, (c) L11 and (d) L12.
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substantially larger than that of the R-SPD dynamic system. On the other hand, for the dynamic systems
composed of the reference structure R and the support structures S11 and S12 (characterised, respectively, by
rk ¼ 10 and 20), the indirect implementation of the MPD system leads to a response ratio average mR which is
smaller than that of the R-SPD dynamic system. Also in this case, for the dynamic system which uses S12 as
support structure, mR�MPD�I is comparable to mR�MPD. In summary, these results indicate that, for systems
characterised by rm ¼ 1:50, the indirect implementation of the MPD system:
�
 allows to obtain a seismic response of the reference structure R which is smaller than that of the same
structure equipped with the SPD system, for structures characterised by a stiffness ratio rk larger than 10;

�
 allows to obtain a seismic response of the reference structure R which is similar to that of the same structure

equipped with the MPD system, for structures characterised by a stiffness ratio rk larger than 20.

Inspection of Figs. 19–21 indicate that, in all three cases considered (rm ¼ 0:75, 1:00 and 1:50), when rm is
kept constant, with the increase of rk, the vibration reduction effect gets better and better. This could be
reasonably expected given that:
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�
 when rk tends to zero, the structure R of Fig. 18 tends to an undamped dynamic system;

�
 when rk tends to infinity, the structure R of Fig. 18 tends to a dynamic system characterised by an exact

MPD matrix (MPD system obtained with the FP-placement represented in Fig. 12e);

�
 systems characterised by an exact MPD matrix, as recalled in Section 4, provide higher dissipative efficiency

than systems characterised by an SPD matrix.

Fig. 22 plots for each storey mS�MPD�I as obtained for the case of structures S1, S2, S3 and S4 used as support
structures in the RS-MPD-I dynamic system. Fig. 23 (not reported here but available in the online version of
this article) plots for each storey mS�MPD�I as obtained for the case of structures S5, S6, S7 and S8 used as
support structures in the RS-MPD-I dynamic system. Fig. 24 (not reported here but available in the online
version of this article) plots for each storey mS�MPD�I as obtained for the case of structures S9, S10, S11 and S12

used as support structures in the RS-MPD-I dynamic system.
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Inspection of Figs. 22–24 indicates that, for all dynamic systems considered, the indirect implementation of
the MPD system leads to response ratio averages mS�MPD�I which are smaller than unity. This means that, as far
as the support structure S is concerned, the indirect implementation of the MPD system leads to an
improvement of its seismic response (with respect to that of the S-UND dynamic system).

The coefficients of variation of the response ratios for both R and S structures result to be within the range
0.4–0.8, as illustrated in Figs. 25–30 (Figs. 26, 27, 29 and 30 are not reported here but are available in the
online version of this article).

To sum up, taking into account both the results obtained for the mean and the coefficients of variations of
the response ratios, it can be deduced that, for adjacent structures characterised by similar masses (rm in the
range of 0.75–1.50):
�
 in order to obtain a reduction of the seismic response of the reference structure through the indirect
implementation of the MPD system which is superior to that obtainable through the implementation of the
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Fig. 38. Profiles of the coefficient of variation of the response ratios (green) covFL�UND, (blue) covFL�MPD and (black) covFL�MPD�I: (a) L9,

(b) L10, (c) L11 and (d) L12.
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equal ‘‘total size’’ SPD system, it is necessary that the support structure be characterised by lateral stiffness
which is, at least, roughly 10 times larger than that of the reference structure (which may prove to be an
unlikely condition);

�
 the support structures benefit in most cases by the introduction of an indirect MPD system.

7.2. Insertion of dampers between a frame structure and a very stiff lateral-resisting element (case 2)

Let us now consider the frame structure (denoted as F) and the lateral-resisting element (denoted as L)
represented in Fig. 31a, both characterised by the same total number of storeys. By rigidly connecting F and L

at each storey leads to the structural system represented in Fig. 31b (denoted as FL structural system). The FL
structural system is representative of the common structural system in which a frame structure characterised
by a relatively small lateral stiffness (typically nonmoment-resisting frame) is laterally supported by a very stiff
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Fig. 39. Profiles of mFL�MPD�I (black continuous line), mFL�MPD�I þ sFL�MPD�I (black dashed line) and mFL�MPD�I þ 1:64sFL�MPD�I (black

dotted line): (a) L1, (b) L2, (c) L3 and (d) L4.
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lateral-resisting element (such as shear wall, concrete core, bracing system, etc.). The frame structure F

considered in this illustrative example is the 6-storey shear-type structure described in Section 4 (characterised
by floor masses mi ¼ m, 8i, and storey lateral stiffnesses ki ¼ k, 8i). Twelve different lateral-resisting elements
L are considered in this illustrative example, each one characterised by
�
 floor masses mL equal to mL ¼ rmm,

�
 storey lateral stiffnesses kL equal to kL ¼ rkk
where rm and rk are given in Table 4. For sake of completeness, Table 4 also gives the ratio, rT , between the
fundamental period, T1;L, of each lateral-resisting element L and the fundamental period, T1;F , of the frame
structure F.
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The parametric study is carried out for the following dynamic systems (structures+equal ‘‘total size’’
ensemble of additional dampers):
�
 structural system FL with no added viscous dampers (and null internal damping), referred to as FL-UND
dynamic system, as per Fig. 31b;

�
 structural system FL with the F structure equipped with SPD system, referred to as FL-SPD dynamic

system, as per Fig. 32a and Table 2;

�
 structural system FL with the F structure equipped with MPD system (direct implementation), referred to

as FL-MPD dynamic system, as per Fig. 32b and Table 2;

�
 indirect implementation of the MPD system. The indirect implementation is obtained placing the

same dampers of the FL-MPD dynamic system between the corresponding storey of structure F and
structure L, as per Fig. 32c and Table 2. This dynamic system will be referred to as FL-MPD-I dynamic
system.
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Note that, due to the equal ‘‘total size’’ constraint and the properties of the structure, each damper of the
ensemble of 6 dampers inserted in the FL-SPD, FL-MPD and FL-MPD-I dynamic systems is characterised by
a damping coefficient cj equal to c̄=6 ¼ 1:5� 106 N s=m.

The response of the above dynamic systems is numerically computed under the effects of 40 historically
recorded earthquake ground motions. Out of these, 30 are far-field records and 10 near-field records; all are
scaled to the same PGA value of 0.3g.

For each earthquake, taking as reference the maximum shear developed by the FL-SPD dynamic system at
each ith storey, the following storey response ratios can be computed:

ðriÞFL�UND ¼
ðVmax�iÞFL�UND

ðVmax�iÞFL�SPD
, (36)

ðriÞFL�MPD ¼
ðVmax�iÞFL�MPD

ðVmax�iÞFL�SPD
, (37)
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Fig. 42. (m)Response ratio at the base, ðr1ÞFL�MPD�I, as a function of the maximum base shear of the FL-SPD system, ðVmax�1ÞFL�SPD; (red

continuous line) least square fit regression line of the data and (red dotted lines) 50% confidence bounds: (a) L1, (b) L2, (c) L3 and (d) L4.
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ðriÞFL�MPD�I ¼
ðVmax�iÞFL�MPD�I

ðVmax�iÞFL�SPD
, (38)

where ðVmax�iÞFL�UND, ðVmax�iÞFL�SPD, ðVmax�iÞFL�MPD and ðVmax�iÞFL�MPD�I denote the maximum shear at
the ith storey developed, respectively, by the FL-UND, FL-SPD, FL-MPD and FL-MPD-I dynamic systems.

The means of the response ratios given by Eqs. (36)–(38), for all 40 earthquakes considered, are referred to,
respectively, as mFL�UND, mFL�MPD and mFL�MPD�I. The coefficients of variation of the response ratios given by
Eqs. (36)–(38), for all 40 earthquakes considered, are referred to, respectively, as covFL�UND, covFL�MPD and
covFL�MPD�I. The standard deviations of the response ratios given by Eq. (38), for all 40 earthquakes
considered, are referred to as sFL�MPD�I.

Figs. 33–35 (Figs. 34 and 35 only available in the online version of this article) show the results (in terms of
mFL�UND, mFL�MPD and mFL�MPD�I) obtained, respectively: in the case of lateral-resisting elements L1, L2, L3 and
L4, in the case of lateral-resisting elements L5, L6, L7 and L8, and in the case of lateral-resisting elements L9,
L10, L11 and L12. Figs. 36–38 (Figs. 37 and 38 only available in the online version of this article) show the
results (in terms of covFL�UND, covFL�MPD and covFL�MPD�I) obtained, respectively: in the case of lateral-
resisting elements L1, L2, L3 and L4, in the case of lateral-resisting elements L5, L6, L7 and L8, and in the case
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Fig. 43. (m) Response ratio at the base, ðr1ÞFL�MPD�I, as a function of the maximum base shear of the FL-SPD system, ðVmax�1ÞFL�SPD; (red

continuous line) least square fit regression line of the data and (red dotted lines) 50% confidence bounds: (a) L5, (b) L6, (c) L7 and (d) L8.
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of lateral-resisting elements L9, L10, L11 and L12. Figs. 39–41 (Figs. 40 and 41 only available in the online
version of this article) show the results (in terms of mFL�MPD�I, mFL�MPD�I þ sFL�MPD�I and mFL�MPD�Iþ

1:64sFL�MPD�I) obtained, respectively: in the case of lateral-resisting elements L1, L2, L3 and L4, in the case of
lateral-resisting elements L5, L6, L7 and L8, and in the case of lateral-resisting elements L9, L10, L11 and L12.

Inspection of Figs. 33–35 shows that, for all dynamic systems considered, mFL�MPD�I is always substantially
smaller than unity and, in most cases, very close to mFL�MPD. The coefficients of variation of the response ratios
are within the range of 0.2–0.6 for all dynamic systems considered, as given in Figs. 36–38. Figs. 39–41 show
that, in all cases, mFL�MPD�I þ 1:64sFL�MPD�I is smaller than unity, thus indicating that, in a statistical
interpretation of the results obtained, the probability that ðVmax�iÞFL�MPD�I is larger than ðVmax�iÞFL�SPD is
very low (less than 5%). It is worth noting that, in the numerical analyses carried out, for all earthquakes and
all dynamic systems considered, at each storey, ðVmax�iÞFL�MPD�I turns out to be always smaller than
ðVmax�iÞFL�SPD.

Figs. 42–44 (Figs. 43 and 44 only available in the online version of this article) plot the response ratio at the
base, ðr1ÞFL�MPD�I, as a function of the maximum base shear of the FL-SPD dynamic system, ðVmax�1ÞFL�SPD,
as well as the least square fit regression line of the data (together with the 50% confidence bounds). Note that,
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Fig. 44. (m) Response ratio at the base, ðr1ÞFL�MPD�I, as a function of the maximum base shear of the FL-SPD system, ðVmax�1ÞFL�SPD; (red

continuous line) least square fit regression line of the data and (red dotted lines) 50% confidence bounds: (a) L9, (b) L10, (c) L11 and (d) L12.
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in all cases, the angular coefficient of the regression line is negative, thus indicating that the response ratio
ðr1ÞFL�MPD�I decreases with increasing of the total demand imposed by the seismic input upon the structure.

To sum up, the results indicate that the indirect implementation of the MPD system leads to a damping
efficiency which is (i) always larger than that provided by the implementation of the equal ‘‘total size’’ SPD
system (with the difference between the efficiencies of the two systems becoming larger and larger as the effects
of the earthquakes upon the structures become higher and higher) and (ii) very similar to (and, in some cases,
larger than) that provided by the direct implementation of the MPD system. This result opens the grounds for
a new conceptual design strategy: insertion of dampers between frames and lateral-resisting elements. An
illustrative example of such application is provided in a previous work by the authors [12].

8. Conclusions

This paper firstly recalls the fundamental properties of shear-type (either mechanical or structural) systems
characterised by a damping matrix proportional to the mass matrix (MPD) pointing out how these systems:
(a) display superior dissipative capacities (w.r.t. other systems which satisfy the here defined equal ‘‘total size’’
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constraint) and (b) are made up of dampers which connect each mass to a fixed point and are sized
proportionally to the corresponding mass.

Secondly, this paper investigates how such MPD systems can be obtained in actual civil building structures
through the use of additional (manufactured) viscous dampers. Two ways of implementing MPD systems are
herein identified: direct and indirect implementation. In the direct implementation of MPD systems dampers
connect each floor to the ground: this requires the use of bracing systems of large size (with all the issues
relative to the buckling phenomena). Nonetheless, few examples of application of such large-sized damper-
equipped bracing systems have been recently realised (even though not following an exact MPD system) and
are reported herein. In the indirect implementation of MPD systems dampers are placed between two adjacent
structures (a reference structure and a ‘‘support’’ structure). Depending on the type of the ‘‘support’’ structure,
two cases can be envisaged for this solution: (case 1) insertion of dampers between two adjacent structures
characterised by different dynamic properties and (case 2) insertion of dampers between a frame structure and
a very stiff lateral-resisting element often present in building structures designed for seismic areas. The
parametric studies developed by the authors and here presented indicate that, for case 1, indirect
implementation of MPD systems provides a good damping efficiency only if the two adjacent structures
are characterised by very different dynamic properties. On the other hand, for case 2, results indicate that, for
common building structures, in most cases, indirect implementation of MPD systems leads to good dissipative
properties (very similar to those offered by direct implementation of MPD systems). This last result opens new
ground for a novel way (between the frames and the lateral-resisting elements) for ‘‘optimal’’ insertion of
viscous dampers in building structures.

The findings, even though obtained with specific reference to coupled shear-type structural systems, may
give useful insight also into the effective addition of viscous dampers in coupled shear-type mechanical
systems.
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