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Abstract

The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate

frequency–amplitude relations for a conservative nonlinear oscillatory system in which the restoring force has an irrational

form. This system corresponds to the motion of a mass attached to a stretched wire. Two procedures are used to

approximately solve the nonlinear differential equation. In the first, the differential equation is rewritten in a form

that does not contain the square-root expression, while in the second the differential equation is solved directly.

The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the

first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set

of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for

the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one

are demonstrated and discussed. The discrepancy between the second approximate frequency and the exact one never

exceeds 2.2%.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Consider the motion of a particle of mass m attached to the centre of a stretched elastic wire [1] of coefficient
of stiffness equal to k. The length of the elastic wire when any force is applied to it is 2a. We assume that the
movement of the particle is one-dimensional and this is constrained to move only in the horizontal x direction.
As we can see in Fig. 1, the ends of the wire are fixed a distance 2d a part. Length d can be major or equal to a.
If d ¼ a the wire is not stretched for x ¼ 0 and there is no tension in each part of it. However, if d4a the wire
is stretched for x ¼ 0 and the tension in each part of the wire is k(d–a). The equation of motion is given by the
following nonlinear differential equation [1,2]:

m
d2x

dt2
þ 2kx�

2kaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
þ x2

p ¼ 0 (1)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Mass attached to a stretched wire.
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with initial conditions

xð0Þ ¼ x0 and
dx

dt
ð0Þ ¼ 0. (2)

Two dimensionless variables y and t can be constructed as follows:

y ¼ dx and t ¼

ffiffiffiffiffiffi
2k

m

r
. (3)

Substituting these dimensionless variables into Eq. (1) gives

d2y

dt2
þ y�

lyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p ¼ 0; 0olp1 (4)

with initial conditions

yð0Þ ¼ A and
dy

dt
ð0Þ ¼ 0. (5)

In Eqs. (4) and (5) we have defined the following parameters:

A ¼
x0

d
and l ¼

a

d
. (6)

As 0papd it follows that 0olp1.
Eq. (4) is an example of a conservative nonlinear oscillatory system in which the restoring force has an

irrational form [1,2] and this system and has the first integral

1

2

dy

dt

� �2

þ V ðyÞ ¼ EX0, (7)

where E is the ‘‘total energy’’ of the nonlinear oscillator and the potential function has the irrational form [1]

V ðyÞ ¼ 1
2
y2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
þ l. (8)

All the motions corresponding to Eq. (4) are periodic [1]; the system will oscillate within symmetric bounds
[�A, A], and the angular frequency and corresponding periodic solution of the nonlinear oscillator are
dependent on the amplitude A.

For large x, and for 0olp1, Eq. (4) approximates that of a linear harmonic oscillator

d2y

dt2
þ y ¼ 0 for yb1 and 0olp1, (9)



ARTICLE IN PRESS
A. Beléndez et al. / Journal of Sound and Vibration 302 (2007) 1018–10291020
so, for large A, we have oE1. For small x, and for 0olo1, the equation of motion also approximates that of
a linear oscillator

d2y

dt2
þ ð1� lÞy ¼ 0 for y51 and 0olo1 (10)

and o �
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

for small A. However, for small y, and for l ¼ 1, Eq. (4) approximates that of a truly
nonlinear oscillator

d2y

dt2
þ

1

2
y3 ¼ 0 for x51 and l ¼ 1 (11)

and o tends to zero when A decreases. Consequently, the angular frequency o increases from
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

to 1 as
the initial value of y(0) ¼ A increases.

It is difficult to solve nonlinear differential equations and, in general, it is often more difficult to get an
analytic approximation than a numerical one for a given nonlinear oscillatory system [1,3]. There are many
approaches for approximating solutions to nonlinear oscillatory systems. The most widely studied
approximation methods are the perturbation methods [4]. The simplest and perhaps one of the most useful
of these approximation methods is the Lindstedt–Poincaré perturbation method, whereby the solution is
analytically expanded in the power series of a small parameter. To overcome this limitation, many new
perturbative techniques have been developed. Modified Lindstedt–Poincaré techniques [5], homotopy
perturbation method [6] or linear delta expansion [7–9] are only some examples of them. A recent detailed
review of perturbation methods can be found in Ref. [10].

The harmonic balance method is another procedure for determining analytical approximations to the
periodic solutions of differential equations by using a truncated Fourier series representation [1,11–17]. This
method can be applied to nonlinear oscillatory systems where the nonlinear terms are not small and no
perturbation parameter is required.

Since the restoring force is an odd function of y, the periodic solution y(t) has the following Fourier series
representation [15]:

yðtÞ ¼
X1
n¼0

h2nþ1 cos½ð2nþ 1Þot� (12)

which contains only odd multiples of ot. The purpose of the harmonic balance method is to approximate the
periodic solution of Eq. (4) by a trigonometric polynomial

yðtÞ �
XN

n¼0

b2nþ1 cos½ð2nþ 1Þot� (13)

and determine both the coefficients b2n+1 and the angular frequency as a function of A.
The main objective of this paper is to solve Eq. (4) by applying the first-order harmonic balance method,

and to compare the approximate frequency obtained with the exact one and with another approximate
frequency obtained applying the harmonic balance method to the same oscillatory system but rewriting Eq. (4)
in a way suggested previously by Mickens [1]. The approximate frequency derived here is more accurate and
closer to the exact solution. The errors in the resulting frequency are reduced and the maximum relative error
is less than 2.2% for all values of A and for the limiting case l ¼ 1. We will see that the errors decrease when l
decreases and are as low as 0.58% for l ¼ 0.9 or 0.062% for l ¼ 0.5, for the complete range of oscillation
amplitudes, including the limiting cases of amplitude approaching zero and infinity.

2. Solution method

Eq. (4) can be rewritten in a form that does not contain the square-root expression [1]

ð1þ y2Þ
d2y

dt2
þ y

� �2

¼ l2y2. (14)



ARTICLE IN PRESS
A. Beléndez et al. / Journal of Sound and Vibration 302 (2007) 1018–1029 1021
It is possible to solve Eq. (14) by applying the harmonic balance method. Following the lowest-order
harmonic balance method, a reasonable and simple initial approximation satisfying the conditions in Eq. (5)
would be

yðtÞ ¼ A cos ot. (15)

The angular frequency of the oscillator is o, which is unknown and to be determined. The corresponding
period of the nonlinear oscillation is given by T ¼ 2p/o. Both the periodic solution y(t) and frequency o (thus
period T) depends on A. Substituting Eq. (15) into Eq. (14), then expanding and simplifying the resulting
expression gives

ð�o2 þ 1Þ2 1þ
3A2

4

� �
� l2

� �
þ ðhigher�order harmonicsÞ ¼ 0. (16)

From Eqs. (9)–(11) and (16), the solution for o is

o1ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l 1þ 3

4A
2

� ��1=2q
(17)

which is valid for the whole range of values of l (0olp1). The approximate frequency in Eq. (17) is more
accurate than the approximate frequency obtained in Ref. [1].

As we pointed out in the introduction, the main objective of this paper is to solve Eq. (4) instead of Eq. (14)
by applying the harmonic balance method. Substitution of Eq. (15) into Eq. (4) gives

�Ao2 cos otþ A cos ot�
lA cos otffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ot
p ¼ 0. (18)

The power-series expansion of y=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
is

yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p ¼ yþ
X1
n¼1

ð�1Þn
ð2n� 1Þ!

22n�1n!ðn� 1Þ!
y2nþ1. (19)

Substituting Eq. (19) into Eq. (18) and taking into account Eq. (15) gives

�o2 cos otþ cos ot� l cos ot� l
X1
n¼1

ð�1Þn
ð2n� 1Þ!

22n�1n!ðn� 1Þ!
A2n cos2nþ1ot ¼ 0. (20)

The formula that allows us to obtain the odd power of the cosine is

cos2nþ1 ot ¼
1

22n

2nþ 1

n

� �
cos otþ

2nþ 1

n� 1

� �
cos 3otþ � � � þ

2nþ 1

0

� �
cos ½ð2nþ 1Þot�

	 

. (21)

Substituting Eq. (21) into Eq. (20) gives

�o2 þ 1� l
X1
n¼0

c2nþ1A2n

" #
cos otþ ðhigher�order harmonicsÞ ¼ 0, (22)

where the coefficients c2n+1 are given by

c1 ¼ 1 (23)

and

c2nþ1 ¼ ð�1Þ
n ð2n� 1Þ!ð2nþ 1Þ!

24n�1ðn!Þ2ðn� 1Þ!ðnþ 1Þ!
for nX1. (24)

For the lowest-order harmonic to be equal to zero, it is necessary to set the coefficient of cosot equal to
zero in Eq. (22), then

o ¼ 1� l
X1
n¼0

c2nþ1A2n

 !1=2

. (25)
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In order to obtain the value of
P1

n¼0c2nþ1A2n in Eq. (25) we consider the following relations:

ð2n� 1Þ!

22n�1ðn� 1Þ!
¼ 1=2
� �

n
;
ð2nþ 1Þ!

22nn!
¼ 3=2
� �

n
; ðnþ 1Þ! ¼ ð2Þn, (26)

where (a)n is the Pochhammer symbol [18]

ðaÞn ¼ aðaþ 1Þ � � � ðaþ n� 1Þ. (27)

Taking into account Eqs. (23), (26) and (27), it is possible to write
P1

n¼0c2nþ1A2n as follows:

X1
n¼0

c2nþ1A2n ¼
X1
n¼0

1=2
� �

n
3=2
� �

n

ð2Þn

ð�A2Þ
n

n!
¼ 2F1

1

2
;
3

2
; 2;�A2

� �
, (28)

where 2F 1 a; b; c; zð Þ is the hypergeometric function [18]

2F 1 a; b; c; zð Þ ¼
X1
n¼1

ðaÞnðbÞn
ðcÞn

zn

n!
. (29)

Substituting Eq. (28) into Eq. (25) gives

o2ðAÞ ¼ 1� l2F1
1
2
; 3
2
; 2;�A2

� �� �1=2
, (30)

which is the angular frequency obtained applying the first-order harmonic balance method directly to Eq. (4).

3. Results and discussion

In this section, we illustrate the accuracy of the proposed approach by comparing the approximate
frequencies o1(A) and o2(A) obtained in this paper with the exact frequency oe(A). The exact angular
frequency is calculated as follows. Integrating Eq. (4) and using the initial conditions in Eq. (5), we arrive at

1

2

dy

dt

� �2

þ
1

2
y2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
¼

1

2
A2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
. (31)

The exact frequency can then be derived as follows:

oeðAÞ ¼
p
2

Z 1

0

Ad uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð1� u2Þ � 2lð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2u2

p
Þ

q
2
64

3
75
�1

. (32)

For small values of the amplitude A it is possible to take into account the following approximation, which is
valid for 0olo1:

oeðAÞ �
p
2

Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

1ffiffiffiffiffiffiffiffiffiffiffi
1� l
p �

lð1þ u2Þ

8ð1� lÞ3=2
A2 �

l½2ðl� 4Þu2 þ ð5l� 8Þð1þ u4Þ�

128ð1� lÞ5=2
A4 � � �

 !" #�1
(33)

and the following frequency for l ¼ 1

oeðAÞ �
p
2

Z 1

0

2 duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þð1þ u2Þ

p 1

A
þ � � �

� �" #�1
. (34)

The power-series expansions of the exact angular frequency, oe, are

oeðAÞ �
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

þ
3l

16
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p A2 þ

3lð33l� 40Þ

1024ð1� lÞ3=2
A4 þ � � � for 0olo1 (35)

and

oeðAÞ �
p

4Kð�1Þ
Aþ � � � ¼ 0:59907Aþ � � � for l ¼ 1, (36)
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where K(m) is the complete elliptical integral of the first kind [19]

KðmÞ ¼

Z 1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ ð1�mz2Þ

p . (37)

For small values of A it is also possible to do the power-series expansion of the approximate angular
frequencies o1 (Eq. (17)) and o2 (Eq. (30)). In this way, the following equations can be obtained:

o1ðAÞ �
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

þ
3l

16
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p A2 þ

3lð30l� 36Þ

1024ð1� lÞ3=2
A4 þ � � � for 0olo1, (38)

o2ðAÞ �
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

þ
3l

16
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p A2 þ

3lð34l� 40Þ

1024ð1� lÞ3=2
A4 þ � � � for 0olo1 (39)

and

o1ðAÞ �

ffiffi
3
8

q
Aþ � � � ¼ 0:61237Aþ � � � for l ¼ 1, (40)

o2ðAÞ �

ffiffi
3
8

q
Aþ � � � ¼ 0:61237Aþ � � � for l ¼ 1. (41)

As can be seen, in the expansions of the angular frequencies for 0olo1, o1 (Eq. (38)) and o2 (Eq. (39)), the
first two terms are the same as the first two terms of the equation obtained in the power-series expansion of the
exact angular frequency, oe (Eq. (35)). If we compare the third terms in Eqs. (38) and (39) with the third term
in the series expansion of the exact frequency oe (Eq. (35)), we can see that the third term in the series
expansions of o2 (Eq. (39)) is more accurate than the third term in the expansion of o1 (Eq. (38)). On the other
hand, if we compare the angular frequencies for l ¼ 1 (Eqs. (36), (40) and (41)), we can see that the relative
error is 2.2% for A-0.

Now we are going to obtain an asymptotic representation for large amplitudes. We consider the expression
for the exact frequency oe (Eq. (32)) and we do the change A ¼ 1/B. For large amplitudes (A-N) we have
B-0. Taking this into account, and doing the power-series expansion of the result for small values of B,
we obtain

oeðAÞ ¼
p
2

Z 1

0

Ad uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð1� u2Þ � 2lð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2u2

p
Þ

q
2
64

3
75
�1

¼
p
2

Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 � 2lBð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ u2

p
Þ

q
2
64

3
75
�1

�
p
2

Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p �

lB

ð1þ uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p þ

3l2B2

2ð1þ uÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p þ � � �

 !
du

" #�1
. ð42Þ

The power-series expansion for the exact frequency for small values of B (large values of A) is

oeðAÞ �
p
2

p
2
þ lBþ l2B2 þ � � �


 ��1
� 1�

2l
pA
�

2ðp� 2Þl2

p2A2
þ � � �

¼ 1�
0:63662l

A
�

0:23134l2

A2
þ � � � . ð43Þ

Substituting A ¼ 1/B in o1 (Eq. (17)) and o2 (Eq. (30)) and doing the power-series asymptotic expansions
for small values of B (large values of A) using the MATHEMATICA program, it is easy to obtain the
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following approximations valid for large amplitudes:

o1ðAÞ � 1�
lffiffiffi
3
p

A
�

l2

6A2
þ � � � ¼ 1�

0:57735 l
A

�
0:16667 l2

A2
þ � � � , (44)

o2ðAÞ � 1�
2l
pA
�

2l2

p2A2
þ � � � ¼ 1�

0:63662 l
A

�
0:20264 l2

A2
þ � � � . (45)

As we can see, in the expansion of the angular frequency o1 for large amplitudes (Eq. (44)), only the first
term is the same as the first term of the equation obtained in the power-series expansion of the exact frequency,
oe (Eq. (43)). However in the expansion of the angular frequency o2 (Eq. (45)), the first two terms are the
same as the first two terms of the equation obtained in the power-series expansion of the exact frequency, oe

(Eq. (44)). These results confirm the fact that o2 is a better approximation to the exact frequency oe than the
approximate frequency o1, not only for small amplitudes but also for large values of the amplitude of
oscillation.

From Eqs. (43)–(45) and for 0olp1, it is easy to obtain the following expressions:

lim
A!1

oeðAÞ ¼ lim
A!1

o1ðAÞ ¼ lim
A!1

o2ðAÞ ¼ 1 (46)

and

lim
A!1

o1

oe

¼ lim
A!1

o2

oe

¼ 1. (47)

From Eqs. (35), (38) and (39) it is easy to see that

lim
A!0

oeðAÞ ¼ lim
A!0

o1ðAÞ ¼ lim
A!0

o2ðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

(48)

and

lim
A!0

o1

oe

¼ lim
A!0

o2

oe

¼ 1 (49)
A
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Fig. 2. Relative error for approximate frequencies o1 (J) and o2 (K) and for l ¼ 0.
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Fig. 4. Relative error for approximate frequencies o1 (J) and o2 (K) and for l ¼ 0.9.
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Fig. 3. Relative error for approximate frequencies o1 (J) and o2 (K) and for l ¼ 0.5.
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for 0olo1, while from Eqs. (36), (40) and (41), the following relation is satisfied:

lim
A!0

o1

oe

¼ lim
A!0

o2

oe

¼ 1:0222 (50)

for l ¼ 1.
In Figs. 2–5 we have plotted the percentage error of approximate frequencies o1 and o2, calculated using

Eqs. (17) and (30), respectively, for 0.1pAp1000 and four different values of the parameter l ¼ 0.1, 0.5, 0.9
and 1. In these figures, the percentage errors were calculated using the following equation:

Relative error of oj ð%Þ ¼ 100
oj � oe

oe

����
����; j ¼ 1; 2. (51)
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Table 1

Maximum relative error in the approximate frequencies o1 and o2 for different values of l

l Maximum relative error

of o1 (%)

A1 Maximum relative error

of o2 (%)

A2

0.01 0.0099 2.98 0.000013 2.06

0.1 0.10 2.89 0.0014 2.03

0.2 0.22 2.79 0.0065 1.96

0.3 0.35 2.69 0.017 1.86

0.4 0.50 2.57 0.034 1.77

0.5 0.67 2.47 0.062 1.67

0.6 0.87 2.30 0.11 1.55

0.7 1.1 2.14 0.18 1.42

0.8 1.4 1.93 0.31 1.26

0.9 1.9 1.67 0.58 1.02

0.99 2.6 1.20 1.5 0.54

0.999 2.7 1.09 1.9 0.31

0.9999 2.7 1.07 2.1 0.17

1 2.7 1.07 2.2 0.00

A1 and A2 are the values of A for which the relative error in o1 and o2, respectively, is maximum.

A. Beléndez et al. / Journal of Sound and Vibration 302 (2007) 1018–10291026
Table 1 includes the maximum relative errors for o1 and o2 and for values of l between 0.1 and 1. To obtain
the values included in Table 1 we plotted the relative error as a function of A and we chose the maximum value
of the relative error for each l. As we can see in Table 1, for a fixed value of A the relative error increases when
l increases. Figs. 2–5 and Table 1 indicate that Eq. (30) is more accurate than Eq. (17) and can provide
excellent approximations to the exact frequency for small as well as large oscillation amplitudes. From Table 1
we can conclude that the relative errors for the approximate frequency o1 are lower than 2.7% for 0olp1;
while for o2 these errors are lower than 2.2% for the same range of values of l. However, we can see that the
approximate frequency o1 is less accurate than o2. For example, for l ¼ 0.9 the maximum relative error in o2

is as low as 0.58%, while the relative error in o1 is 1.9%. Figs. 2–5 and Table 1 show that o2 gives excellent
approximate frequencies for small as well as large values of oscillation amplitude A and for the whole range of
values of l.
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At this point it is necessary to answer the following questions: (a) why does substitution of Eq. (15) into
Eq. (14) not give the same result as substitution of Eq. (15) into Eq. (4)?, and (b) why does application of the
first-order harmonic balance method to Eq. (4) give a more accurate frequency than application of the method
to Eq. (14)? To answer these questions we substitute Eq. (15) into Eq. (14) again. This substitution gives

ð1þ A2cos2otÞð�o2 þ 1Þ2cos2ot ¼ l2cos2ot (52)

If we divide this equation by cosot we obtain

ð1þ A2 cos2 otÞð�o2 þ 1Þ2 cos ot ¼ l2 cos ot, (53)

which can be written as follows:

½ð�o2 þ 1Þ2 � l2� cos otþ A2ð�o2 þ 1Þ2 cos3ot ¼ 0. (54)

This equation includes only two odd powers of cosot, cosot and cos3ot, and then there are only two
contributions to the coefficient of the first harmonic cosot, which are 1 from cosot and 3/4 from cos3ot.
Therefore, substituting Eq. (15) into Eq. (14) produces only the first harmonic, cosot, and the third harmonic,
cos 3ot,

ð�o2 þ 1Þ2 1þ 3
4
A2

� �
� l2

� �
cos otþ 1

4
ð�o2 þ 1Þ2A2 cos 3ot ¼ 0. (55)

Setting the coefficient of cosot equal to zero gives

ð�o2 þ 1Þ 1þ 3
4
A2

� �1=2
� l ¼ 0, (56)

which gives the approximate frequency o1 in Eq. (17).
Now we consider Eq. (20) again. This equation can be written as follows:

ð�o2 þ 1� lÞ cos ot� l
X1
n¼1

c2nþ1A
2n cos2nþ1 ot ¼ 0. (57)

This equation includes all odd powers of cosot, which are cos2n+1ot with n ¼ 0; 1; 2; . . . ;1, and then there
are infinite contributions to the coefficient of the first harmonic cosot, that is, 1 from cosot, 3/4 from cos3ot,

5/8 from cos5ot,y, 2�2n
2nþ 1

n

� �
from cos2n+1ot, and so on. Therefore, substituting Eq. (15) into Eq. (4)

produces the infinite set of higher harmonics, cos ot; cos 3ot; . . . ; cos ½ð2nþ 1Þot�, and so on. Similar
phenomenon occurred in Ref. [16] for the Duffing-harmonic oscillator.

Substituting Eq. (21) into Eq. (20) and taking into account Eq. (28) gives

½�o2 þ 1� la1ðAÞ� cos ot� l
X1
n¼1

a2nþ1ðAÞ cos ½ð2nþ 1Þot� ¼ 0, (58)

where

a1ðAÞ ¼
X1
n¼0

c2nþ1A
2n ¼ 2F1

1
2
; 3
2
; 2;�A2

� �
(59)

and the coefficients a2n+1 for nX1 can be obtained taking into account Eqs. (24) and (25). Setting the
coefficient of cosot equal to zero gives

�o2 þ 1� l2F1
1
2
; 3
2
; 2;�A2

� �
¼ 0. (60)

This equation can be rewritten as follows:

ð�o2 þ 1Þ 2F1
1
2
; 3
2
; 2;�A2

� �� ��2h i1=2
� l ¼ 0. (61)

It can be seen that Eqs. (56) and (61) have the form

ð�o2 þ 1Þ f ðAÞð Þ
1=2
� l ¼ 0, (62)
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which allows the approximate frequency o to be determined in terms of the oscillation amplitude A

oðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l f ðAÞð Þ

�1=2
q

. (63)

From this equation we can conclude that application of the first-order harmonic balance method to Eqs. (4)
and (14) gives the same functional form for the approximate frequency o. The difference between these
approximate frequencies is the function f(A)

o1ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l 1þ 3

4
A2

� ��1=2q
and f ðAÞ ¼ 1þ 3

4
A2, (64)

o2ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l 2F 1

1
2
; 3
2
; 2;�A2

� ��2
 ��1=2r
and f ðAÞ ¼ 2F 1

1
2
; 3
2
; 2;�A2

� ��2
. (65)

We can do the following power-series expansion:

2F1
1
2
; 3
2
; 2;�A2

� ��2
¼ 1þ 3

4
A2 � 3

64
A4 þ 13

512
A6 þ � � � . (66)

Substituting Eq. (66) into Eq. (61), we have

ð�o2 þ 1Þ 1þ 3
4
A2 � 3

64
A4 þ 13

512
A6 þ � � �

� �1=2
� l ¼ 0. (67)

As can be seen, in this equation the first two terms in brackets are identical to the two terms in brackets in Eq.
(56); whereas powers A4;A6; . . . are due to the infinite set of higher harmonics in Eq. (20). Applying the
harmonic balance method to Eqs. (4) and (14) with higher harmonics, the two procedures will give more
accurate results [16]. In the limit in which we include all the harmonics, they must give us exactly the same
solution, since Eq. (14) is equivalent to Eq. (4).
4. Conclusions

The first-order harmonic balance method was used to obtain two approximate frequencies for a
conservative nonlinear oscillatory system in which the restoring force has an irrational form. The first
approximate frequency, o1, was obtained by rewriting the nonlinear differential equation in a form that does
not contain an irrational expression; while the second one, o2, was obtained by solving the nonlinear
differential equation containing a square-root expression approximately. We can conclude that formulas (17)
and (30) are valid for the complete range of oscillation amplitude, including the limiting cases of amplitude
approaching zero and infinity. Excellent agreement of the approximate frequencies with the exact one was
demonstrated and discussed and the discrepancy between the second approximate frequency, o2, and the exact
one never exceeds 2.2%. For example, the maximum relative error for this frequency is as low as 0.062% for
l ¼ 0.5 and all values of the amplitude A; while for the first approximate frequency, o1, this maximum relative
error is 0.67%, ten times more. The second approximate frequency, o2, derived here is the best frequency that
can be obtained using the first-order harmonic balance method, and the maximum relative error was
significantly reduced as compared with the first approximate frequency, o1. Finally, we discussed the reason
why the accuracy of the second approximate frequency, o2, is better than that of the first frequency, o1. This
reason is related to the number of harmonics that application of the first-order harmonic balance method
produces for each differential equation solved, two harmonics for the first case and the infinite set of
harmonics for the second one.
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