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Abstract

For two different chaotic systems, which have the drive system with unknown parameters and the response system with

known parameters, a unified mathematical expression for the controller and adaptive laws of parameters is proposed to

realize complete synchronization and parameters estimation. The suggested method proves to be globally and

asymptotically stable by means of the invariance principle of differential equations and the control technique of partial

system states. The synchronizations between Lorenz system and Liu system, hyperchaotic Chen system and hyperchaotic

new system are taken as two illustrative examples to demonstrate the effectiveness of this method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, the investigation of chaos synchronization has attracted a lot of attention due to its
great potential applications in secure communication, chemical reactions, and biological systems [1]. Chaos
synchronization refers to a process wherein two (or many) chaotic systems (either equivalent or
nonequivalent) adjust a given property of their motion to a common behavior due to coupling or forcing.
So far, a wide variety of approaches have been proposed for the synchronization of chaotic systems that
include adaptive control [2], observer-based control [3], variable structure control [4], backstepping control [5],
active control [6], nonlinear control [7], and so on. However, most of the methods mentioned above are
designed to synchronize two identical chaotic systems with known parameters. In fact, in many practical
worlds such as laser array, biological systems and cognitive processes, it is hardly the case that the structure of
drive and response systems can be assumed to be identical. Moreover, the parameters of some systems cannot
be exactly known a priori, and the effect of these uncertainties will destroy the synchronization and even break
it. Therefore, it is essential to investigate synchronization of two different chaotic systems in the presence of
unknown parameters [8,9].

On the other hand, an interesting application of chaos synchronization is to estimate parameters of a system
from time series when complete information about parameters is hard to receive. Recently, a lot of effort has
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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been devoted to it; for example, in Ref. [10] an adaptive controller with parameters identification is designed to
synchronize a class of chaotic systems with unknown parameters, and in Ref. [11] an approach of adaptive
synchronization and parameter identification is proposed to study an uncertain Rössler hyperchaotic system.
But as some researches [12–14] show that there exist incorrect statements and problematic proofs in several
papers about parameters estimation, parameters estimation based on synchronization is worth being further
investigated.

Motivated by the above discussions, in this paper, we will consider the complete synchronization and
parameters estimation of different chaotic systems when parameters of drive and response systems are
unknown and known, respectively. Different from previous study [8], a unified mathematical expression for
the controller and parameters update law is designed based on the invariance principle of differential
equations [15] and the control technique of partial system states [16]. With this method, chaos synchronization
and parameters identification can be achieved simultaneously. Two illustrative examples are presented to show
the effectiveness of the proposed scheme.

2. Design of the general method

Let a chaotic system be given as

_x ¼ f ðxÞ þ F ðxÞŷ, (1)

where x 2 Rn is the state vector, f ðxÞ 2 Rn, F ðxÞ 2 Rn�m. ŷ 2 Rm is the unknown parameter vector. And let
O � Rn be a bounded closed set that contains the whole attractor of Eq. (1). Relation (1) represents the drive
system, and the response system with a controller U 2 Rn is introduced as follows:

_y ¼ gðyÞ þU , (2)

where y 2 Rn, gðyÞ 2 Rn. Suppose y is defined on a bounded set S, and S � O.
The goal is to design a controller U with an adaptive parameter vector ~y, which is able to synchronize the

states of both the drive and the response systems and, meanwhile, identify the unknown parameter vector ŷ via
~y. If we define the error vector as e ¼ y� x, the dynamic equation of synchronization error can be expressed as

_e ¼ gðyÞ � f ðxÞ � F ðxÞŷþU . (3)

Hence, the objective of synchronization is to make limt!1keðtÞk ¼ 0.
For convenience, the notation G40 denotes that G is a positive definite matrix, while I denotes an identity

matrix. Also, the following assumptions are introduced.

Assumption 1. Suppose there exists a row transformation D that can make De ¼
M

N

� �
, and furthermore,

under the transformation D,

DF ðxÞ ¼
F 1ðxÞ

F 2ðxÞ

" #
and DðgðyÞ � gðxÞÞ ¼

�AM þ pðM;N;x; yÞ

wðM ;N; x; yÞ

" #
, (4)

where M ¼ ½ei1 ; ei2 ; . . . ; eis
�T 2 Rs and N ¼ ½eisþ1

; eisþ2
; . . . ; eisþq

�T 2 Rqðsþ q ¼ nÞ, F 1ðxÞ 2 Rs�m, F2ðxÞ 2 Rq�m,
A 2 Rs�s. p and w are two functions satisfying pð0; 0; 0; 0Þ ¼ 0 and wð0; 0; 0; 0Þ ¼ 0.

Assumption 2. There exist G40 and H ¼ diag[hj]40, j ¼ 1,y,q, such that

MTGpðM ;N;x; yÞ þNTHwðM ;N ;x; yÞpMTfM þNTHcN, (5)

where f is a symmetric matrix satisfying that GAþ ATG � 2f40, c ¼ diag½cj�, j ¼ 1,y,q.

Remark 1. Note that choosing an appropriate A is very important in Assumption 1. From the authors’
experience, �A is often taken as a stable matrix (whose real parts of eigenvalues are all negative). The systems
satisfying Assumption 2 include the majority of typical chaotic systems such as Lorenz system, Chen system,
Chua’s Oscillator, Unified chaotic system, etc. The reader can see Ref. [16] for detailed proofs. In examples, we
will give the proofs of inequality (5) for other chaotic systems.
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Theorem 1. If we choose a diagonal matrix � ¼ diag½�i� 2 Rn�n and a vector function ~y 2 Rm such that the

following two conditions are satisfied:
(1)
 if ei is an element of N, namely ei 2 feisþ1
; eisþ2

; . . . ; eisþq
g, then _�i ¼ �bie

2
i , bi40; otherwise �i � 0.
(2)
 ~y is updated according to the law

_~y ¼ �
F1

F2

" #T
GM

HN

� �
, (6)
then with the controller

U ¼ f ðxÞ � gðxÞ þ F ðxÞ~yþ �e, (7)

The error dynamical system (3) is globally asymptotically stable at the origin, i.e., the drive system (1) and

response system (2) are globally synchronized asymptotically.

Proof. Let y ¼ ~y� ŷ, �̄ ¼ diag½�isþ1
; �isþ2

; . . . ; �isþq
�. Substituting Eq. (7) in to Eq. (3), the error system can be

rewritten as

_e ¼ gðyÞ � gðxÞ þ F ðxÞyþ �e. (8)

Under the transformation D, we get

_M ¼ �AM þ pðM ;N; x; yÞ þ F 1y,
_N ¼ wðM ;N; x; yÞ þ F 2yþ �̄N. ð9Þ

Construct a Lyapunov function in the form of

V ¼MTGM þNTHN þ yTyþ
Xq

j¼1

hj

bisþj

�isþj
þ L

� �2
, (10)

where L is a constant bigger than maxfjcij; i ¼ 1; . . . ; qg, i.e. L4maxfjcij; i ¼ 1; . . . ; qg. Differentiating V

with respect to time t,

_V ¼MTG �AM þ pðM;N;x; yÞ þ F 1yð Þ þ �AM þ pðM ;N; x; yÞ þ F1yð Þ
TGM

þ 2NTH wðM;N;x; yÞ þ F2yþ �̄Nð Þ þ 2yT _y� 2
Xq

j¼1

hj

bisþj

ð�isþj
þ LÞbisþj

N2
j

¼ �MTðGAþ ATGÞM þ 2MTGpðM ;N ;x; yÞ þ 2NTHwðM ;N; x; yÞ

þ 2yT FT
1 GM þ 2yTFT

2 HN � 2yT
F 1

F 2

" #T
GM

HN

" #
þ 2NTH �̄N

� 2
Xq

j¼1

hjð�̄j þ LÞN2
i

p�MTðGAþ ATG � 2fÞM � 2NTHðLI � cÞNp0. ð11Þ

In inequality (11), we have used Assumption 2 and the condition L4maxfjcij; i ¼ 1; . . . ; qg. It is obvious
that _V ¼ 0 if and only if ei ¼ 0, i ¼ 1; 2; . . . ; n: According to the well-known LaSalle invariance principle [15],
the trajectories of the error dynamical system, starting with arbitrary initial values, converge asymptotically to
the largest invariant set E ¼ fðe; y; �Þ : e ¼ 0; y ¼ y0; � ¼ �0g contained in _V ¼ 0 as t!1, which implies that
the two systems (1) and (2) are globally synchronized asymptotically. &

Remark 2. From the above proof, one knows that y will approach a constant vector y0 when synchronization
is achieved. Therefore, if y0 ¼ 0, then ~y will adapt itself to the unknown parameter vector ŷ, which implies that
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synchronization-based parameter estimation can be realized. Note that, from Eq. (8), on the largest invariant
set E, it is easy to get the following equation:

F ðxÞy0 ¼ 0. (12)

Because x is a chaotic time series, FijðxÞð1pipn; 1pjpmÞ are varying with time and usually have no

relations with each other. These cause y0 ¼ 0 to be the unique solution of Eq. (12). Thus, chaotic behavior
plays an important role in this type of parameters estimation.

Remark 3. In comparison with previous methods for chaos synchronization of different systems [8,9,17,18],
the present method has the following advantages: (1) it is a general method based on the rigorous mathematics
proofs, (2) it can judge which linear feedback terms can be omitted and, therefore, it is relatively simple, (3) the
linear feedback strength ei is adaptive, which does not require to be determined a priori, (4) the problem of
parameters estimation is strictly demonstrated, and it is shown this method can successfully recover all
unknown parameters of a given chaotic system.

3. Examples

In this section, two examples and corresponding numerical simulations are given to illustrate the
validity of the proposed method. In Example 1, synchronization and parameters estimation between Lorenz
system with unknown parameters and Liu system are discussed. Because of having more complex dynamic
behaviors than chaotic systems, hyperchaotic systems can enhance the security of the messages to be
transmitted in secure communication. In Example 2, synchronization of hyperchaotic Chen system with
unknown parameters and a new hyperchaotic system is considered, and the corresponding parameters are
identified.

Example 1. Consider Lorenz system with unknown parameters as the drive system

_x1 ¼ ŷ1 x2 � x1ð Þ,

_x2 ¼ ŷ2x1 � x2 � x1x3,

_x3 ¼ �ŷ3x3 þ x1x2, ð13Þ

and the response system is the controlled Liu system [19]

_y1 ¼ 10ðy2 � y1Þ,

_y2 ¼ 40y1 � y1y3 þU ,

_y3 ¼ �2:5y3 þ 4y2
1. ð14Þ

Rewrite system (13) and system (14) in the form of Eqs. (1) and (2) as follows:

_x ¼ f ðxÞ þ F ðxÞŷ, (15)

where

f ðxÞ ¼

0

�x2 � x1x3

x1x2

2
64

3
75; F ðxÞ ¼

x2 � x1 0 0

0 x1 0

0 0 �x3

2
64

3
75; ŷ ¼ ŷ1; ŷ2; ŷ3

h iT
,

is the unknown parameter vector.

_y ¼ gðyÞ þU , (16)
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where

gðyÞ ¼

10ðy2 � y1Þ

40y1 � y1y3

�2:5y3 þ 4y2
1

2
64

3
75.

We choose the row transformation

D ¼

1 0 0

0 0 1

0 1 0

2
64

3
75,

such that

DðgðyÞ � gðxÞÞ ¼

�10e1 þ 10e2

�2:5e3 þ 4ðx1 þ y1Þe1

40e1 � ðy1e3 þ e1x3Þ

2
64

3
75 and DF ðxÞ ¼

F1ðxÞ

F2ðxÞ

" #
¼

x2 � x1 0 0

0 0 �x3

0 x1 0

2
64

3
75. (17)

Comparing Eq. (17) with Eq. (4), one can see that

A ¼
10 0

0 2:5

" #
; M ¼ ½e1; e3�

T; N ¼ ½e2�
T; pðM ;N;x; yÞ ¼

10e2

4ðx1 þ y1Þe1

" #

wðM;N;x; yÞ ¼ 40e1 � ðy1e3 þ e1x3Þ; F1ðxÞ ¼
x2 � x1 0 0

0 0 �x3

" #
; F 2ðxÞ ¼ 0 x1 0

� �
.

Furthermore, choosing

aXmaxfjx1j; jy1jg; bXmaxfjx3jg; G ¼
a2 0

0 1

" #
; H ¼ 1,

we have

MTGpðM;N ;x; yÞ þNTHwðM ;N; x; yÞ

¼ 4ðx1 þ y1Þe1e3 þ ½10a2 þ ð40� x3Þ�e1e2 � y1e2e3

p4a 2ae21 þ
1

2a
e23

� 	
þ ½10a2 þ ð40� x3Þ�e1e2 � y1e2e3

pMTfM þNTcN,

where

f ¼
9a2 0

0 2:2

" #
; c ¼

ð10a2 þ bþ 40Þ2 þ 5a4

4a2

� �
; and GAþ ATG � 2f40.

Therefore, Assumptions 1 and 2 are satisfied. According to Theorem 1, the controller is taken as

U ¼ f ðxÞ � gðxÞ þ F ðxÞ~yþ �e ¼

ð10� ~y1Þðx1 � x2Þ

ð~y2 � 40Þx1 � x2 þ �2e2

�4x2
1 þ x1x2 þ ð2:5� ~y3Þx3

2
64

3
75, (18)

and adaptive laws of parameters are chosen as

_�2 ¼ �b2e22; ðb240Þ, (19)
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_~y ¼ �
F 1

F 2

" #T
GM

HN

� �
¼

a2ðx1 � x2Þe1

�x1e2

x3e3

2
64

3
75. (20)

From Eq. (12), on the largest invariant set, we can get

ðx2 � x1Þy
0
1 ¼ 0; x1y

0
2 ¼ 0; x3y

0
3 ¼ 0, (21)

because xi (i ¼ 1, 2, 3) are chaotic time series, y0 ¼ ðy01; y
0
2; y

0
3Þ

T is zero vector, which indicates the true values of
ŷ can be estimated by Eq. (20).

In the simulations, we choose the unknown parameter vector ŷ ¼ ð10; 28; 8=3ÞT. Fig. 1(a)–(b) display phase
portraits of two chaotic attractors, from which we can take a ¼ 20, b ¼ 50. Under the initial conditions
xð0Þ ¼ ð�1; 1; 5ÞT, yð0Þ ¼ ð�0:9; 1:2; 6:3ÞT, ~yð0Þ ¼ ð0; 0; 0ÞT, �2ð0Þ ¼ 0, and the coefficient b2 ¼ 1, Figs. 2–4
show time evolution curves of errors, parameters e2 and y ¼ ~y� ŷ, respectively. Obviously, with time passing,
synchronization errors converge to zero, parameter e2 tends to a constant, and the fact that y tend to zero
implies ~y are able to approach the unknown parameters ŷ. These results show that the proposed scheme can be
effective to achieve chaos synchronization and parameters estimation.

Example 2. Consider hyperchaotic Chen system with unknown parameters as the drive system

_x1 ¼ ŷ1ðx2 � x1Þ þ x4,

_x2 ¼ ŷ2x1 � x1x3 þ ŷ3x2,

_x3 ¼ x1x2 � ŷ4x3,

_x4 ¼ x2x3 þ ŷ5x4, ð22Þ

and the response system is the controlled hyperchaotic new system [20]

_y1 ¼ 35ðy2 � y1Þ þ y2y3;

_y2 ¼ 25y1 � y1y3 � y2 � y4;

_y3 ¼ y1y2 �
8
3

y3;

_y4 ¼ 71:2y1 þ 0:5y2y3 þ y4:

þU (23)

Rewrite system (22) and system (23) in the form of Eqs. (1) and (2) as follows:

_x ¼ f ðxÞ þ F ðxÞŷ, (24)
Fig. 1. Phase portraits of chaotic attractors: (a) Lorenz system and (b) Liu system.
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Fig. 2. Time history of synchronization errors.

Fig. 3. Time evolution of adaptive parameter e2.

Fig. 4. Estimation errors y ¼ ~y� ŷ for parameters ŷ.
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where

f ðxÞ ¼

x4

�x1x3

x1x2

x2x3

2
6664

3
7775; F ðxÞ ¼

x2 � x1 0 0 0 0

0 x1 x2 0 0

0 0 0 �x3 0

0 0 0 0 x4

2
6664

3
7775; ŷ ¼ ŷ1; ŷ2; ŷ3; ŷ4; ŷ5


 �T
,

is the unknown parameter vector.

_y ¼ gðyÞ þU , (25)

where

gðyÞ ¼

35ðy2 � y1Þ þ y2y3

25y1 � y1y3 � y2 � y4

y1y2 �
8
3

y3

71:2y1 þ 0:5y2y3 þ y4

2
66664

3
77775.

We choose the row transformation

D ¼

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

2
6664

3
7775,

such that

DðgðyÞ � gðxÞÞ ¼

�e2 þ 25e1 � ðy1e3 þ e1x3Þ � e4

� 8
3 e3 þ y1e2 þ e1x2

35ðe2 � e1Þ þ x2e3 þ e2y3

71:2e1 þ 0:5ðy2e3 þ x3e2Þ þ e4

2
666664

3
777775 and

DF ðxÞ ¼
F 1ðxÞ

F 2ðxÞ

" #
¼

0 x1 x2 0 0

0 0 0 �x3 0

x2 � x1 0 0 0 0

0 0 0 0 x4

2
666664

3
777775. ð26Þ

Comparing Eq. (26) with Eq. (4), one can see that

M ¼ e2; e3½ �T; N ¼ e1; e4½ �T; A ¼
1 0

0 8
3

" #
,

pðM ;N ;x; yÞ ¼
25e1 � ðy1e3 þ e1x3Þ � e4

y1e2 þ e1x2

" #
; wðM ;N;x; yÞ ¼

35ðe2 � e1Þ þ x2e3 þ e2y3

71:2e1 þ 0:5ðy2e3 þ x3e2Þ þ e4

" #
.

Furthermore, choosing aXmaxfjx2j; jy2jg, bXmaxfjx3j; jy3jg, G ¼ H ¼ I , we have

MTGpðM;N;x; yÞ þNTHwðM ;N; x; yÞ
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Fig. 5. Phase portraits: (a) hyperchaotic Chen system in (x1, x2,x3) space; and (b) hyperchaotic new system in (y1, y2, y3) space.

Fig. 6. Time history of synchronization errors.

S. Li et al. / Journal of Sound and Vibration 302 (2007) 777–788 785
¼ ð60� x3 þ y3Þe1e2 þ ð0:5x3 � 1Þe2e4 þ 2x2e1e3

þ 71:2e1e4 þ 0:5y2e3e4 � 35e21 þ e24

pMTfM þNTcN,

where

f ¼
0:5 0

0 1

� �
; c ¼

c1 0

0 c2

" #
,

with

c1 ¼ ð60þ 2bÞ2 þ 2a2 þ 0:6,

c2 ¼ ð0:5bþ 1Þ2 þ 0:125a2 þ 36:6.
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Fig. 7. Time evolution of adaptive parameters e1, e4.

Fig. 8. Estimation errors y ¼ ~y� ŷ for parameters ŷ.
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Therefore, Assumptions 1 and 2 are satisfied. According to Theorem 1, the controller is taken as

U ¼ f ðxÞ � gðxÞ þ F ðxÞ~yþ �e ¼

ð35� ~y1Þðx1 � x2Þ þ x4 � x2x3 þ �1e1

ð~y2 � 25Þx1 þ ð
~y3 þ 1Þx2 þ x4

8
3�

~y4
� �

x3

�71:2x1 þ ð
~y5 � 1Þx4 þ 0:5x2x3 þ �4e4

2
66664

3
77775, (27)
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and adaptive laws of parameters are chosen as

_�1 ¼ �b1e
2
1; _�4 ¼ �b4e

2
4 b140;b440
� �

, (28)

_~y ¼ �
F1

F2

" #T
GM

HN

� �
¼

ðx1 � x2Þe1

�x1e2

�x2e2

x3e3

�x4e4

2
6666664

3
7777775
, (29)

where the true values of unknown parameters ŷ ¼ ðŷ1; ŷ2; ŷ3; ŷ4; ŷ5Þ
T can be estimated by Eq. (29).

In the simulations, we choose the unknown parameter vector ŷ ¼ ð35; 7; 12; 3; 0:082ÞT. Fig. 5(a)–(b) display
phase portraits of two chaotic attractors, from which we can take a ¼ 40, b ¼ 50. Under the initial conditions
xð0Þ ¼ ð�3; 0; 0; 5ÞT, yð0Þ ¼ ð1; 5; 3; 17ÞT, ~yð0Þ ¼ ð23; 0; 0; 0; 0ÞT, �1ð0Þ ¼ 0, �4ð0Þ ¼ 0 and the coefficients b1 ¼ 1,
b4 ¼ 1, Figs. 6–8 show time evolution curves of synchronization errors, adaptive parameters e1, e4 and the
estimation errors of parameters ŷ, respectively. From Figs. 6–8 one can find that, as time increases,
synchronization errors converge to zero, parameters e1, e4 tend to constants, ~y are able to approach the
unknown parameters ŷ. These results show that chaos synchronization and parameters estimation can be
achieved simultaneously using the proposed method.

4. Conclusion

This paper studies synchronization and parameters estimation between two different chaotic systems. A
model concerning the drive system with unknown parameters and the response system with known parameters
is considered. Based on the invariance principle of differential equations and the control technique of partial
system states, a simple and general form of the controller is designed to realize synchronization. Because in
real applications the unknown parameters often need to be identified, the problem of parameters estimation is
also discussed. It is shown that parameter estimation and chaos synchronization can be achieved
simultaneously by the proposed method. Two illustrative examples are given to demonstrate the validity of
this technique, and numerical simulations are also given to show the effectiveness of the method.
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