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Abstract

This paper seeks to outline a novel coupled helicopter rotor-fuselage model and a new partition-iteration solution
philosophy to predict structural response and rotor blade vibration loads. Based on a two-dimensional quasi-steady
aerodynamics model, non-inertial coordinates and beam element with five nodes and 15 degrees of freedom (dofs) are first
used to establish the aeroelastic differential equations of rotor blade vibration motion to describe exactly various
inhomogeneities of the rotor blade including the longitudinal variation of its axial force. Three rigid body freedoms are
subsequently allowed at the root of the rotor blade to describe the different hub connections, through which, the mixed
truss girder-beam model of the fuselage structure is combined with the aeroelastic model of the rotor blade and the
helicopter coupled rotor-fuselage model is established. The new partition-iteration solving philosophy is developed to
allow solution of the periodic response of the nonlinear coupled multi-freedom dynamic system. Finally, the new model
and its solution were used to compute some vibration loads of a helicopter model, and the obtained results have a good
agreement with those of previous works.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

As is well known, the highly complex and unsteady aerodynamic loads on helicopter blades cause significant
elastic blade vibration motions, which, in turn, changes the aerodynamic and structural loading along the
blade. Thus, the analysis of helicopter vibration and blade loads taking into account the acro-elastic
interaction has become a fascinating problem and a challenge in rotorcraft research, and the topic has been
received much attention for several decades [1,2]. To investigate the vibration problem of helicopter blades,
the rotating beams were first used to model helicopter blades through adequate and necessary simplification
and approximation. In general, the engineering beam theory is used in determining the approximate free
vibration response [3—7]. Friedmann and Straub [§] formulated, linearized and discretized the equations of
blade motion using a local Galerkin method of weighted residuals to result in a finite element formulation of
the aeroelastic problem based on a finite-element method of variable order. Sivaneri and Chopra [9], Thakkar
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Nomenclature Ry coordinate system of O/X;Y,Z,, the co-
ordinates system Rj rotated by an angle
[CH damp matrix of fuselage of 0, around the axis of X; with the origin
E Young’s modulus fixed at the variable-pitch hinge
{fur(t)} force vector on hub of fuselage Rs coordinate system of O,X,Y,Z,, the co-
{f (1)} other force vector on fuselage ordinates system R, rotated by an angle
[KF] stiffness matrix of fuselage of &, around the axis of Z,; with the origin
[Mr] mass matrix of fuselage fixed at the sweepback hinge
Ry inertial coordinate system of Oy Rg coordinate system of PyXné without
X0 YnoZno with the origin fixed at the flexure
center of the hub R coordinate system of PyX'n'¢" with flex-
R, coordinate system of O0,X,Y,Z;,, the ure
inertial coordinates system R, rotated S Gauss integral coordinates with an inter-
by an angle of w, around the axis of Z, val of [—1,1]
R, coordinate system of OqX,Y,Z; the co- Ty coordinate transformation matrix
ordinates system R; rotated by an angle u axial displacement
of (Bo+ p) around the axis of Y, with the v lag displacement
origin fixed at the flap hinge w flap displacement
R; coordinate system of O,X;Y,Z,, the co- u Poisson’s ratio
ordinates system R, rotated by an angle 0 pre-torsion angle
of ¢ around the axis of Zwith the origin 10) elastic torsion angle
fixed at the lag hinge Q angular velocity

and Ganguli [10] implemented Hamilton’s principle as a variational principle to obtain a finite-element
representation for the analysis of rotor blade. Bauchau and Hong [11] applied the finite-element method in
time to analyze response and stability of beams undergoing large deflections and rotations, basing their
work on Floquet’s theory. Celi and Friedmann [12,13] described, respectively, the methods to formulate
the aeroelastic stability and response problem for helicopter rotor blades, using an implicit aerodynamic
and structural formulation based on a combination of a finite-element model of blade and a quasilineari-
zation solution technique. Crespo Da Silva [14] established a nonlinear partial differential equations of rotor
blade vibration motion by taking into account the geometrical nonlinearities and analyzed the dynamic
stability of vibration motion. In order to reduce vibration load at the rotor hub causing helicopter vibration,
Ganguli and El-Sinawi et al. [15-17] used a rotating flexible beam to model the rotor blade for an aeroelastic
analysis based on finite elements and the optimum approaches for rotor blade design were investigated and
discussed.

However, in above aeroelastic analysis of helicopter rotor blade [3-17], the influence of fuselage on
vibration motion of rotor blade has not been taken into account. In reality, fuselage motion is known to have
an influence on hub loads [18,19]. Coupled rotor-fuselage models are therefore needed to investigate the rotor-
fuselage interaction and many researchers have proposed various methods. Rutkowski [20] investigated the
effect of rotor/fuselage coupling on vibration predictions using a simplified structural model of a helicopter in
hover according to a two degree-of-freedom (dof) beam finite element. Hsu and Peter [21] developed a new
impedance-matching method by the matching of rotor and fuselage impedances for coupled rotor/fuselage
vibration analysis. Kunz [22] implemented the impedance-matching method to solve the equations of motion
for a uniform elastic blade, the hub-load equations and the fuselage equations of motion for a fully coupled
rotor-fuselage vibration model to obtain the blade and fuselage responses, as well as the hub loads. Stephens
and Peter [23] presented an iterative method and a fully coupled method to analyze the response of a rotor-
body system. Cribbs et al. [24] derived a set of dynamic equations of motion for a rotor-fuselage system and
the solution was obtained by using the harmonic balance technique. Bauchau et al. [25] used a floating frame
approach to formulate the coupled rotor-fuselage system with finite motions and analyzed the response by
means of the component mode synthesis method.
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It is interesting to note in the above reviews that a large number of researches are grouped according to
some important issues such as rotor blade vibration, coupled rotor/fuselage vibration and solving the coupled
differential equations of rotor-fuselage motion. There is however lack of knowledge about the integral coupled
rotor/fuselage vibration model in hover and forward flight by means of a nonlinear flexible multi-body, multi-
freedom dynamic representation based on the finite-element method and the partition-iteration method to
yield a direct solution of the nonlinear coupled differential equations, which is the focus of this paper.

2. The rotor blade differential equations of vibration motion and their solutions
2.1. The coordinate system

The coordinate systems adopted for the fuselage and blade model are shown in Figs. (1-3). The equations of
motion for the rotor blade and fuselage are formulated in the coordinate systems of R; and Ry, respectively.

The transformation matrix between R; and Ry is

coswt sinwt 0

[Ty]= | —sinwt coswt O0]. (1)
0 0 1
Zho
Q
/ Xho
Yho
ho h h
’ ’/s'zt
Yy, Xio
T Oh

Fig. 1. Coordinate system for helicopter modeling.

Zp

hub@

pitching linkage
shaft

' ho+h,.cosQt+h,sinQ ¢

Fig. 2. Coordinate system for blade modeling.
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Fig. 4. Degrees-of-freedom and nodes of beam element of rotor blade.

2.2. Element and interpolating function

In order to describe the quadratic variation of the centrifugal inertial force in the axial direction, the
cubic interpolating function is adopted for the axial displacement, which results in an axial strain
with a quadratic variation. Four axial displacement nodes are allocated, one at each of the two ends and
two interior nodes within the element. A similar quadratic axial variation also appears in the angle of
torsion, with three torsion nodes being allocated, one at each end and one at the center of the element. In
addition, the cubic interpolating function is adopted for the transverse flexural displacement of v and w.
Consequently, the beam element has 15 dofs and five nodes (shown in Fig. 4) [10,13]. From Fig. 4, it is
observed that nodes 1 and 2 have six dofs each. Nodes 3 and 4 have only one axial displacement freedom, and
node 5 has one torsional freedom. The interpolating expressions of u, v, w and ¢ are listed, respectively, in
Appendix A.

2.3. Elastic potential energy

The fundamental assumptions are made for the analysis as follows [10]:

(1) Mid-line of a plate segment does not deform in its own plane, or the in-plane warping of the cross-section
is neglected;
(ii) the normal stress in the contour direction, g,, is neglected relative to the normal axial stress o,; and
(ii1) rotor blade is a long slender beam and hence the uniaxial stress assumptions can be made;
Opy = Orc =Ty = 0.

nm nt
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According to the theory of beams with small strain and moderately large deflection [10,13] and nonlinear
continuum mechanics [26], the Green’s strain tensor in curvilinear coordinates of R4 can be derived as

ey = U +% (v/z + w’2> + v"[¢sin(0 4 ¢) — ncos(0 + ¢)]
—w'[nsin(0 + $) + Ecos(0 + P)] + (0%/5’ + % ¢/2> (n*+ &),
L,
Exn = —Eff) ¢= Enxs
bxg = %(b’n = . (2)
The variational formulations of the elastic strain energy density and elastic strain energy can be obtained as
de = [sxx - sxg}/l{ésm- Sowy ] . (3)
From Eq. (3), the variational formulation of elastic strain energy is then obtained as

oU = /ﬁeéA = V(0 + V60 + wow') + M.(50" + w'd). 4)
A

Transformation of Eq. (4) gives

SU = //5e5A5 = —M,(ow" — v"5¢) + GJP'd¢, ©)
A

where A, V,, M,, M. and J are the section properties and defined in Appendix B.
Furthermore, one has

/]dx //&’dA = 1251 Qf"éqi, (6)
g pn

where the superscript E, represents elastic potential energy, and Qf" represents the generalized elastic force
corresponding to the nodal freedom of (g,,4s,...,q;5). Thus, the tangential elastic matrix can be obtained
through the differentiation of Qf with respect to the nodal coordinate:

E 007 0 E
Kjo=—1 =—/dx//5edA:Kﬁf (i,j=1,2,3,...,15). (7)
' Oq;  04,9q; J; g

2.4. Kinetic energy

At an arbitrary point P(x, 7, &) on the blade with a sweepback deformation, the radius vector from the hub

is
Py = boias + dotes + @it + Sotep + (8 + 1 0,0) [Tess Tyss 1] + (027, O [Furniyn ]
= (xpaypazp) [thi}h@hf ()

with

(Xpo» Ypor Zpo) = (b0, 0,0) + (do, 0,0)T21 + (a0,0,0)T32T21 + (50,0,0)Ta3T32T21 + (x + 4, v, W) T54Ta3T32T 21,

(xpﬂ’ypnazpn) =(0,1,0)T75T54T43T32T 1,

(xpéaypz:azp:f> =(0,0,1)T75Ts54T43T3T>1,

where T; 1= 1,2, ...,7;j= 1,2, ...,4) are coordinate transformation matrixes and are defined in Appendix C.
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It is therefore possible to obtain the kinetic energy of an element of beam with the mass pd V" at the point P:

1 ) . .
dT:zpdV(xf,+yI2,+zf,).

The variation of the kinetic energy is

OT = 5[//& =— /1 dx //p ds(0]" + 0" + 0] %)s¢..
V A

©)

(10)

where the superscript 7" represents kinetic energy and is listed in Appendix D.

In order to evaluate the contributions of Q

d; + Ag; into ¢f, ¢{ and §; in formulation of Q[
series give

_ . 0x, Ox, Ox
Qi (qt+Aql’qz+qu’qz+Aq')_xp < ‘ :

0x, 0x, i
q )qu + (2 3¢ aqj)qu

in the linearized equation, substituting ¢; + Agf{, ¢7 + Ag; and

, respectively, and expanding the formulation into Taylor’s

oq¢ '\ d¢¢ d¢¢
(I) (1) (110)
dx, 0%, a’x,
+<6q§’ 6qj+xpa o )Aq/—i-o(A ).
av) (11)

The items (I), (II), (III) and (IV) in Eq. (11) yield the contributions of kinetic energy involving: the element
node force vector, element tangential mass matrix, damping matrix and stiffness matrix:

0 0 0
/dx/dA(xp xp+ pazp-i- pazp)

dx, 0x, Oy, Oy
Mir":/dx/dA AT At
v I : (6 ¢ aq/ 0q¢ aq/

ayp 6yp
oq; Oqf

azx,,
* 0q¢dqs

0x, Ox
T, p Yp
et /M/M4a%
Kl = / dx / | (&2 %%

oq¢ aq]

N 6y]: f)y‘Z
9q; 0qj

where ij=1,2,...,18.

. a yp aZp aZp
MR @qf@c]j) * (a‘]i g5 +

(12)
0z, Oz,
e | (13)
0q; qu>
0z, 0z
4+ P 14 14 (14)
0q; %)
6221,
1
P @fﬁq,)] ( 5)

Egs. (12)—(15) are obtained in implicit forms through the Gauss integral. For the beam element on the blade

without a sweepback deformation, substituting so =
. . ~T,
contributions of Q;"

oy =T, AT.. .. . .
contributions of Q;” and Q; “in linearized equation.

2.5. Non-inertial force

0 and T4 = 13,3 into Egs.

(12)—(15) gives the

in linearized equation. By analogy with the aid of Egs. (11)—(15), one can obtain the

Letting F; represent the non-inertial force of unit mass at an arbitrary point P(x, #, &), the virtual work of

the non-inertial force is then

SW, = 0!8,

(16)
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where subscript I represents a non-inertial force

o, ) 6_)

Q#?{@ﬁ%%)+4@mﬂﬂwu+Qﬁm@ﬂwmwyuwm}Qfﬁfﬁf

here [wy] and [w,;] are transformation matrixes and are defined in Appendix E.
Using the same method as in the above section and Eq. (16), the element node force vector, gyroscopic
matrix and tangential stiffness matrix respectively are found to be

¢:/m/@M, (17)
! A

=1

Gl =/dx/ 9i 44, (18)
I aq/
/)8
=1

ng/@x/ 9i 4. (19)
1 5 aqj'

where i,j=1,2,...,18.

2.6. Aerodynamic force

Based on the two-dimensional quasi-steady aerodynamic model [27], the velocity of the airflow relative to
the sectional elastic center can be written as

ae’

Vae = { | VZ(;: VZg} [fx, lTyy lT:]T (20)

where { V2, V2,, VZ,} is transformation matrix and is defined in Appendix F.

For the aerodynamic force shown in Fig. 5, one has

U=- VZe’
h="V¢, @n
The lift, drag and moment respectively can be expressed thus
1 .
L:Epaaszdc+paabU[h+ Ua + <g—x1>o’c], (22)
D =p,bCy U?, (23)
M = %puab2U<g - x1>o'c + paabU<§ + xa> [h + Ua + (g — x(Z)o't} (24)

M o

h

Fig. 5. Aerodynamic force.
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and the virtual work done by the aerodynamic force ¥4 and moment M 4 is
5WA = FAéfp + MAéO-( = Qféqf, (25)
where the superscript and subscript A represent acrodynamic force, and

6xpo 6ypo aZl’o ! M%
0q¢ * 0q¢  Oqt og¢”

Q? = [(0,0,L) 4+ (0, —D,0)T, |(T7s T54T43T32T21)[

Again, using the same method as in the above section and using Eq. (25), the element generalized force,
tangential damping matrix and tangential stiffness matrix resulting from aerodynamic forces are given
respectively

0 = / 0/'dx, (26)
!
0]
Cie = / "L dx, 27
i 04 (27)
=A
30"
A,
i.‘ f— é d_X’ (28)
’ 1 9g;

where i,j = 1,2,...,18.
2.7. Kinetic equations of rotor blade

Due to the complexity of the rotor motion, it is more convenient for the non-inertial coordinate system to be
adopted to characterize the rotor blade motion in the coupled rotor-fuselage analysis. Simultaneously, the
rigid body freedoms of flap, lag and variable-pitch can be applied more realistically and effectively to describe
the rotor motion. Moreover, the rotor blade can be discretized to have two generalized coordinates to quantify
its elastic freedom. The equations of motion can be derived by means of the Hamilton principle:

/ "IS(U — T)— 6Wdt = 0. (29)

Substituting Egs. (5), (10), (16) and (25) into Eq. (29), as well as preserving the independent dofs gives a
nonlinear partial differential equation:

05 (d,q.9.1) + QF(q) + 01(¢.4.0) + Q4. 4. 0) + OF (4,9, 1) = 0, (30)

where i = 1,2,...,n; the superscripts 7, E, I, A and C represent, respectively, the contributions of kinetic
energy, elastic potential energy, non-inertial force, aerodynamic force and control-operation input. The
solution of Eq. (30) involves the periodic solution of the rotor aero-clastic response.

2.8. Solutions of the differential equation of motion

Using the improved quasi-linearization method [12,13], one can obtain the periodic response of the multi-
dof system arising from the finite element discretization. Direct linearization of the nonlinear governing
equation (30) leads to an ordinary differential equation of a periodic system in the form:

M [d“(0]AG) + Cyld (), 4" (0, 1| AGS + Ky [d" (1), ¢ (0, 1] Agf = OF (), (31)
where i = 1,2,...,n, superscript k represents the kth step of iteration,
010 = o [¢"(0,d" (). 1] + OF [d“ )] + O] [d"(1). 4" (1), 1]
+ 0§ (1), (), 1] + OF [ (1), ¢ (1), 1].
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The approximate solution of the (K+ 1)th step iteration is

¢ = () + A,
¢ = ¢ () + Ad ),
0 = G (1) + AGE ().

If the required precision is satisfied, at the kth step of iteration, then the approximate solution at the (K+ 1)th
step can be regarded as the nonlinear periodic solution.

3. The partition-iteration solution for the coupled rotor-fuselage analysis

The fuselage structure can be modeled as a mixed truss girder-beam model (shown in Fig. 6), and the
equation of motion of the fuselage in terms of the coordinate R, can be established as

[M pliir} + [Crliir} + [Kel{ur} = {f ur(0)} + {frD}. (32)

Using Eq. (32) as an analogy, the periodic response of fuselage subjected to { f HF(I)} and {f ()} can be solved
in a coupled rotor-fuselage analysis, by means of the improved quasi-linearization method [12,13].

The complexity of the differential equation of motion of the helicopter coupled rotor-fuselage system and
the difficulty of solving it requires the following new philosophy of partition-iteration to determine the
dynamic response of the whole helicopter system: (1) The whole helicopter system is partitioned into several
simple and independent subsystems. These subsystems should satisfy force equilibrium and deformation
compatibility at the interface between each pair of subsystems. (2) The iterative method is used to find the
dynamic response of each subsystem. For the coupled rotor-fuselage analysis, the whole helicopter system is
partitioned into the subsystems of rotor and fuselage, and then the improved quasi-linearization method can
be used to solve the solution of each subsystem. The specific procedures are as follows.

(a) The differential equations of motion of the rotor blade are established in the non-inertial coordinate
system of R;, and the non-inertial characteristics are determined from the acceleration vectors (a;j, a;;, az)
and the transformation matrix [77o] between the coordinates R; and R,. The angular velocity matrix [wy,]
and angular acceleration matrix [w,;,] can be derived from [T}).

(b) For a given state of hub motion, the improved quasi-linearization method yields the aero-elastic response
of the rotor through solution of the nonlinear dynamic equations of the rotor; the periodic force {f 7(#)}
to the hub from the root of blade can be calculated.

(c¢) The periodic response of the fuselage is analyzed when {f ;z(¢)} and the foundation motion are given.

(d) The response at the junction of the rotor and fuselage is compared with the given foundation motion. If it
is inconsistent, then the just-calculated periodic response should be applied as the new foundation motion
of the rotor system. Procedures (a)—(c) should be repeated, until the periodic responses of the junction
resulting from two consecutive iterations are approximately the same.

Fig. 6. Model of fuselage structure.
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It is worth noting that during above solution, the coupled trim has not been used, i.e. the rotor-fuselage and
trim equations have not been solved simultaneously, so the aeroelastic effects due to such interactions are
neglected.

4. Verifying examples

Example 1. A rotating beam is shown in Fig. 7, and has the following parameters: density p = 0.113 kg/m,
length L = 0.508 m, flexural rigidity EI, = 2.446 N m? and EL = 36.27 N m?, nondimensional rotational speed

A=/ pl* /EJ. Calculated results for different frequencies are shown in Tables 1 and 2 and are compared

with results from Refs. [3,11]. Very close agreement is seen, implying that the beam element in this paper is
valid and rational for dynamic analysis.

Q
z
/ pa EJ
I X
L |
Fig. 7. Rotating beam.
Table 1
Flap frequencies (rad/s)
A w
First-order frequency Second-order frequency
Ref. [3] Ref. [11] This work Ref. [3] Ref. [11] This work

0 63.40 63.40 63.38 397.49 397.71 396.97

2 74.64 74.66 74.58 407.96 407.96 407.42

4 100.77 100.81 100.67 437.91 43791 437.29

6 132.80 132.87 132.68 483.74 484.10 482.96

8 167.03 167.10 166.87 541.29 541.84 540.35
10 202.08 202.26 201.95 606.98 608.06 606.02
12 237.63 237.63 237.43 678.43 680.77 677.41
Table 2
Lag frequencies (rad/s)
A w

First-order frequency
Ref. [3] Ref. [11] This work

0 244.19 244.38 244.09

2 251.56 251.21 251.44

4 270.72 269.27 270.64

6 296.08 293.71 296.18

8 323.44 319.97 323.94

10 350.66 345.59 351.96

12 376.91 369.90 379.44
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Example 2. A simple nonlinear periodic system is shown in Fig. 8. In Ref. [28], the periodic responses of this
system under axial and transverse loads were discussed, having been obtained from the equivalent beam
model. The parameters used in the calculation were as: flexural rigidity EI = 3.7201 x 10° Nm?, density
m = 6.8244kg/m, length L = 3.048m, elasticity ratio K, = 8.6123 x 10°N/M, transverse excitation load
) = Fi+ F>sin(Q,t+ ¢,), axial excitation load N, = N, + N,sin(t+¢,), here Fi=¢,=0, F, =
1.3348 x 10°N, @, = 281.13 rad/sec, Ny = ¢, =0, Ny =1.5808 x 105N, Q, = 281.13 rad/s.

In this work, a four element model of a beam with five-nodes has been used to calculate the lateral deflection
at mid-span. After only 90 time steps, the calculated results are obtained (shown in Fig. 9). From Fig. 9, it is
clear that complete agreement exists between them and the results of this work agree completely with that of
Ref. [28].

5. Application

The vibration loads in rotor blades in a coupled rotor-fuselage system in hovering and forward flight phases
are to be compared with those in system with only a single blade and those in a rotor blade system, but
without a fuselage. The coupled rotor-fuselage model shown in Fig. 10 is used in the vibration load analysis.

(1) Hovering phase
The parameters for calculation are as follows: 6, =0.1500rad, 6,.=0.2384 x 10~>rad, 0, =
—0.3316 x 10 %rad, Q =40.42rad/s, V= 0.00km/h, o= 0.00rad. Figs. 11(a) and (b) show the flap
flexibility and acceleration at the peak point of the rotor blade as they vary with azimuth angle. The lag
flexibility and acceleration at the peak point of the rotor blade, varying with azimuth angle, are shown in
Figs. 12(a) and (b). The flap flexibility and acceleration at the rotor blade midpoint, varying with azimuth

Y: v(x,0) "
L2

ELm,A V7774 K,
— E=SAAAA ,\%
/WIT Ni(®)

L

Fig. 8. Periodic system.

0.1220
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0.0610

0.0305

v (m)

0.0000

-0.0305

-0.0610

-0.0915

0.0 180.0 360.0
Qt (deg.)

Fig. 9. Lateral deflection at midspan.
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! L A L
0.0 :
180.0 1 360.0
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1160 | OSI==
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Fig. 11. Flap (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.
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Fig. 12. Lag (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.

= — — — - Single blade

0.0015

—_——— Rotarywing system

Rotor-fuselage system

0.0005 -~ RN

-0.0005
-0.0015

-0.0025 | Qt (deg.)

Fig. 13.
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Flap (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.
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angle, are calculated and shown in Figs. 13(a) and (b). The lag flexibility and acceleration at the rotor
blade midpoint, varying with azimuth angle, are shown in Figs. 14(a) and (b). The flap, lag and variable
pitch angles, varying with azimuth angle, are shown respectively in Figs. 15(a)—(c). The periodic forces in
the X and Y directions, acting on the hub in the coordinate of R, varying with azimuth angle, are shown in
Figs. 16(a) and (b). The periodic moments in the X and Y directions, acting on the hub in the coordinate of
Ry, varying with azimuth angle, are shown in Figs. 17(a) and (b).
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______ Rotary system ’ —-+=-=- Rotary system
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- _ » N
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0.0010 T-147 ¢
-0.0015 0.0 180.0 360.0 294
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Fig. 14. Lag (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.
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Fig. 16. Periodic forces in (a) X and (b) Y directions, acting on the hub in the coordinate of R, varying with azimuth angle.
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Fig. 17. Periodic moments in (a) X and (b) Y directions, acting on the hub in the coordinate of Ry, varying with azimuth angle.
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Fig. 18. Flap (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.

(2) Forward flight phase

The parameters for calculation are as follows: 0, = 0.1367rad, 0,.= —0.9680 x 10~ 'rad, 0,,=
0.13326 x 10~ ' rad, Q = 40.42rad/s, Vy= 197.25km/h, o = 0.169 rad. The flap flexibility and acceleration
at the peak point of the rotor blade, varying with azimuth angle, are calculated and shown in Figs. 18(a) and
(b). The lag flexibility and acceleration at the peak point of the rotor blade, varying with azimuth angle, are
shown in Figs. 19(a) and (b). The flap flexibility and acceleration at the rotor blade midpoint, varying with
azimuth angle, are calculated and shown in Figs. 20(a) and (b). The lag flexibility and acceleration at the rotor
blade midpoint, varying with azimuth angle, are shown in Figs. 21(a) and (b). The flap, lag and variable pitch
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Fig. 19. Lag (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.
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Fig. 21. Lag (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.

angles, varying with azimuth angle, are shown, respectively, in Figs. 22(a)—(c). The periodic forces in the X and
Y directions, acting on the hub in the coordinate of Ry, varying with azimuth angle, are shown in Figs. 23(a)
and (b). The periodic moments in the X and Y directions, acting on the hub in the coordinate of Ry, varying
with azimuth angle, are shown in Figs. 24(a) and (b).

From Figs. 11 to 24, it is apparent that the maximum relative deviation between the vibration loads of a
rotor blade in a coupled rotor-fuselage system and those in a rotor blade system without fuselage is less than
10%. The calculated vibration loads in a rotor blade in a coupled rotor-fuselage system are very close to those
in a rotor blade system without fuselage. In particular the calculated results for the hovering phase are nearly
coincident. The efforts in this paper have a good agreement with those in literature [24].
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Fig. 24. Periodic moments in (a) X and (b) Y directions, acting on the hub in the coordinate of Ry, varying with azimuth angle.

However, there exist obvious differences between the calculated vibration loads in the coupled rotor-
fuselage system and those in the system with only a single rotor blade. This implies the vibration loads of the
rotor blade are more heavily influenced by the elastic behavior of the shafting bearing, than by the elastic
behavior of the fuselage.

6. Closure

The focus of this paper has been to present an integral and new nonlinear coupled helicopter rotor-fuselage
aeroelasticity model with many dof and a novel partition-iteration method to solve the structural response and
the vibration loads of rotor blades. The applicability of the new model and solution method has been shown
for a helicopter coupled rotor-fuselage system for estimating the vibration load in rotor blade.
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Appendix A. Shape function

U(S) = Nu| (s)ul + NM3 (S)l/l3 + NLI4(S)M4 + Nuz (s)u23
U(S) = Nv] (S)Ul + Nt’] (3)0,1 + Nl/'g (S)DZ + NL'/Z (S)U/z»
W(S) = Nwl (S)Wl + Nw’] (S)Wll + NW2 (S)W2 + ]vw’2 (S)le»
() = Ny, (9)p1 + Ny, (5)P3 + Ny, (5)P,

where

Ny (s) = (1 —$)[=10+9(s> + 1D]/16, Ny (s) = (1 — 5)[—10 + 9(s> + 1)]/16,
Nuw =91 — 2)(1 — 35)/16, Ny, = 9(1 — $2)(1 — 35)/16,

Ny ()= (1 =52+ 9/4, Ny(s)= 11— 5 (s+1)/8,
Niy(s) = (1 = 82— 9)/4, Ny(s)=I(1+5)(s — 1)/8,
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Nw1 (S) = Nv| (S)9 Nw’l (S) = Nl//l (S)7 Nwz (S) = NUz (S)s Nw'2 (3) = Nb’z (S)

Ny, (s)=s(s —1)/2, Ng(s5)=(1—=5)1+5), Ny(s)=s(s+1)/2

Appendix B. Section properties

D 0 ¢ —n
A=A+ A+ 45, A = G , A,=DO| & 0 0 [,
G -7 0 0
0 0 0
_ , E(l —
Ay= 1|0 & —&n|.Dpo? D:%,
0 =& o

V.= DA [u +3 (u’2 + w/zﬂ — e,[1" cos(0 + ) + W sin(0 + )] + e[v” sin(0 + ¢) + w” cos( + )]

|
M, = DAe; [u’ + 3 (v’z + w’zﬂ + DJ,[v" sin(0 + ¢) — w” cos(0 + ¢)]

M. = —DAe, [u +% (0'2 n 14/2>] + DJ.[v" cos(0 + ) + " sin(0 + ¢)]

A:[/dr/dé, e,izlﬁdndé, egzl/édndf,
Jyzé/ézdndé, Jzzlﬁzdndf, Jzé/(é“rnz)dndé

where FE is elastic modulus and p is the Poisson ratio.

Appendix C. Coordinate transformation matrixes

cos(ﬁo + ﬁ) 0 Sin(ﬁo + ﬁ) cos¢ —siné 0]
Ty = 0 1 0 . Ty = |siné cosé 0],
—sin(By+B) 0 cos(By+ B) 0 0 1]
1 0 0 cosé  sinéy 0]
Ty= |0 cosl, sinG, | Tsy=|—sing cosé 0],
0 —sin6, cosd, 0 0 1
1 v w .
T75s = | —w'sin(0 + ¢) — v/ cos(0 + ¢) cos(0 + ¢) sin(0 + ¢)
—w'cos(0 4+ ¢) + v'sin(0 + ¢) —sin(0 + ¢) — v'w cos(0 + ¢p) cos(0 + ¢) |
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Appendix D. Kinetic and strain energy terms

; R X 0
o d(. x,,) . xﬁ:)’ép Xy (i=1,2,..,18),

T\ og) T e T oy
] d
T, . 0y .
in :yp—aq[le) (121,2,...,18),
o7 =2 (i=12...18)
i - paqf I R R ] )

where ¢, ¢5; and ¢y correspond respectively to flap, lag and variable-pitch, or 8, { and 0,.

Appendix E. Transformation matrixes

0 WZ - ‘V/}’l 0 W;h ~Wan
Z X Z X
= | —wp O Wi |y wal=|—Wa 0 Wan
X 4 X
W’Z —Wy 0 ‘/V()l ~Wan 0

Appendix F. Transformation matrixes

X 4 z X 2 Z - e 0x, ay 0z
(V;ze’ Vie’ V:w) = {(V02’ szg’ Vag) - (xPo’yPo’ Zl’o) [Wh]_qk ( aql;ej ’ aqlz“; ’ 6;{) }(T75 TsuTusT T2])T TI»
(VZ(;, Vﬁg, V(Zl(z,) = (VF cosop,0, —Vpsin O(F)[Tl()] -+ (0, 0, V,'),
o=0,+0+¢,
1 0 0
[T,]= |0 cos(0,+0+¢) sin(0,+0+¢)
0 —sin(0,+0+4¢) cos(0,+ 0+ ¢)
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