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Abstract

This paper seeks to outline a novel coupled helicopter rotor-fuselage model and a new partition-iteration solution

philosophy to predict structural response and rotor blade vibration loads. Based on a two-dimensional quasi-steady

aerodynamics model, non-inertial coordinates and beam element with five nodes and 15 degrees of freedom (dofs) are first

used to establish the aeroelastic differential equations of rotor blade vibration motion to describe exactly various

inhomogeneities of the rotor blade including the longitudinal variation of its axial force. Three rigid body freedoms are

subsequently allowed at the root of the rotor blade to describe the different hub connections, through which, the mixed

truss girder-beam model of the fuselage structure is combined with the aeroelastic model of the rotor blade and the

helicopter coupled rotor-fuselage model is established. The new partition-iteration solving philosophy is developed to

allow solution of the periodic response of the nonlinear coupled multi-freedom dynamic system. Finally, the new model

and its solution were used to compute some vibration loads of a helicopter model, and the obtained results have a good

agreement with those of previous works.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

As is well known, the highly complex and unsteady aerodynamic loads on helicopter blades cause significant
elastic blade vibration motions, which, in turn, changes the aerodynamic and structural loading along the
blade. Thus, the analysis of helicopter vibration and blade loads taking into account the aero-elastic
interaction has become a fascinating problem and a challenge in rotorcraft research, and the topic has been
received much attention for several decades [1,2]. To investigate the vibration problem of helicopter blades,
the rotating beams were first used to model helicopter blades through adequate and necessary simplification
and approximation. In general, the engineering beam theory is used in determining the approximate free
vibration response [3–7]. Friedmann and Straub [8] formulated, linearized and discretized the equations of
blade motion using a local Galerkin method of weighted residuals to result in a finite element formulation of
the aeroelastic problem based on a finite-element method of variable order. Sivaneri and Chopra [9], Thakkar
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

[CF] damp matrix of fuselage
E Young’s modulus
{fHF(t)} force vector on hub of fuselage
ff̄ F ðtÞg other force vector on fuselage
[KF] stiffness matrix of fuselage
[MF] mass matrix of fuselage
R0 inertial coordinate system of Oh0

Xh0Yh0Zh0 with the origin fixed at the
center of the hub

R1 coordinate system of OhXhYhZh, the
inertial coordinates system R0 rotated
by an angle of ot around the axis of Zh0

R2 coordinate system of OfXfYfZf, the co-
ordinates system R1 rotated by an angle
of (b0+b) around the axis of Yh with the
origin fixed at the flap hinge

R3 coordinate system of OlXlYlZl, the co-
ordinates system R2 rotated by an angle
of x around the axis of Zf with the origin
fixed at the lag hinge

R4 coordinate system of OfXfYfZp, the co-
ordinates system R3 rotated by an angle
of yp around the axis of Xl with the origin
fixed at the variable-pitch hinge

R5 coordinate system of OsXsYsZs, the co-
ordinates system R4 rotated by an angle
of x0 around the axis of Zl with the origin
fixed at the sweepback hinge

R6 coordinate system of P0XZx without
flexure

R7 coordinate system of P00X
0Z0x0 with flex-

ure
S Gauss integral coordinates with an inter-

val of [�1,1]
Tij coordinate transformation matrix
u axial displacement
v lag displacement
w flap displacement
m Poisson’s ratio
y pre-torsion angle
f elastic torsion angle
O angular velocity
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and Ganguli [10] implemented Hamilton’s principle as a variational principle to obtain a finite-element
representation for the analysis of rotor blade. Bauchau and Hong [11] applied the finite-element method in
time to analyze response and stability of beams undergoing large deflections and rotations, basing their
work on Floquet’s theory. Celi and Friedmann [12,13] described, respectively, the methods to formulate
the aeroelastic stability and response problem for helicopter rotor blades, using an implicit aerodynamic
and structural formulation based on a combination of a finite-element model of blade and a quasilineari-
zation solution technique. Crespo Da Silva [14] established a nonlinear partial differential equations of rotor
blade vibration motion by taking into account the geometrical nonlinearities and analyzed the dynamic
stability of vibration motion. In order to reduce vibration load at the rotor hub causing helicopter vibration,
Ganguli and El-Sinawi et al. [15–17] used a rotating flexible beam to model the rotor blade for an aeroelastic
analysis based on finite elements and the optimum approaches for rotor blade design were investigated and
discussed.

However, in above aeroelastic analysis of helicopter rotor blade [3–17], the influence of fuselage on
vibration motion of rotor blade has not been taken into account. In reality, fuselage motion is known to have
an influence on hub loads [18,19]. Coupled rotor-fuselage models are therefore needed to investigate the rotor-
fuselage interaction and many researchers have proposed various methods. Rutkowski [20] investigated the
effect of rotor/fuselage coupling on vibration predictions using a simplified structural model of a helicopter in
hover according to a two degree-of-freedom (dof) beam finite element. Hsu and Peter [21] developed a new
impedance-matching method by the matching of rotor and fuselage impedances for coupled rotor/fuselage
vibration analysis. Kunz [22] implemented the impedance-matching method to solve the equations of motion
for a uniform elastic blade, the hub-load equations and the fuselage equations of motion for a fully coupled
rotor-fuselage vibration model to obtain the blade and fuselage responses, as well as the hub loads. Stephens
and Peter [23] presented an iterative method and a fully coupled method to analyze the response of a rotor-
body system. Cribbs et al. [24] derived a set of dynamic equations of motion for a rotor-fuselage system and
the solution was obtained by using the harmonic balance technique. Bauchau et al. [25] used a floating frame
approach to formulate the coupled rotor-fuselage system with finite motions and analyzed the response by
means of the component mode synthesis method.
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It is interesting to note in the above reviews that a large number of researches are grouped according to
some important issues such as rotor blade vibration, coupled rotor/fuselage vibration and solving the coupled
differential equations of rotor-fuselage motion. There is however lack of knowledge about the integral coupled
rotor/fuselage vibration model in hover and forward flight by means of a nonlinear flexible multi-body, multi-
freedom dynamic representation based on the finite-element method and the partition-iteration method to
yield a direct solution of the nonlinear coupled differential equations, which is the focus of this paper.
2. The rotor blade differential equations of vibration motion and their solutions

2.1. The coordinate system

The coordinate systems adopted for the fuselage and blade model are shown in Figs. (1–3). The equations of
motion for the rotor blade and fuselage are formulated in the coordinate systems of R1 and R0, respectively.
The transformation matrix between R1 and R0 is

T10½ � ¼

cosot sinot 0

� sinot cosot 0

0 0 1

2
64

3
75. (1)
Fig. 1. Coordinate system for helicopter modeling.

Fig. 2. Coordinate system for blade modeling.
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Fig. 3. Coordinate system for beam element of rotor blade with and without flexion.
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Fig. 4. Degrees-of-freedom and nodes of beam element of rotor blade.
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2.2. Element and interpolating function

In order to describe the quadratic variation of the centrifugal inertial force in the axial direction, the
cubic interpolating function is adopted for the axial displacement, which results in an axial strain
with a quadratic variation. Four axial displacement nodes are allocated, one at each of the two ends and
two interior nodes within the element. A similar quadratic axial variation also appears in the angle of
torsion, with three torsion nodes being allocated, one at each end and one at the center of the element. In
addition, the cubic interpolating function is adopted for the transverse flexural displacement of v and w.
Consequently, the beam element has 15 dofs and five nodes (shown in Fig. 4) [10,13]. From Fig. 4, it is
observed that nodes 1 and 2 have six dofs each. Nodes 3 and 4 have only one axial displacement freedom, and
node 5 has one torsional freedom. The interpolating expressions of u, v, w and f are listed, respectively, in
Appendix A.
2.3. Elastic potential energy

The fundamental assumptions are made for the analysis as follows [10]:
(i)
 Mid-line of a plate segment does not deform in its own plane, or the in-plane warping of the cross-section
is neglected;
(ii)
 the normal stress in the contour direction, sZZ is neglected relative to the normal axial stress sxx; and

(iii)
 rotor blade is a long slender beam and hence the uniaxial stress assumptions can be made;

sZZ ¼ szz ¼ tZz ¼ 0.
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According to the theory of beams with small strain and moderately large deflection [10,13] and nonlinear
continuum mechanics [26], the Green’s strain tensor in curvilinear coordinates of R6 can be derived as
�xx ¼ u0 þ
1

2
v0
2
þ w0

2
� �

þ v00 x sin yþ fð Þ � Z cos yþ fð Þ½ �

� w00 Z sin yþ fð Þ þ x cos yþ fð Þ½ � þ y0f0 þ
1

2
f02

� �
Z2 þ x2
� �

,

�xZ ¼ �
1

2
f0x ¼ �Zx,

�xx ¼
1

2
f0Z ¼ �xx. ð2Þ

The variational formulations of the elastic strain energy density and elastic strain energy can be obtained as

de ¼ �xx �xZ �xx

h i
Ā d�xx d�xZ d�xx

h iT
. (3)

From Eq. (3), the variational formulation of elastic strain energy is then obtained as

dU ¼

ZZ
A

dedA ¼ V̄x du0 þ v0dv0 þ w0dw0ð Þ þ M̄z dv00 þ w00dfð Þ. (4)

Transformation of Eq. (4) gives

dU ¼

ZZ
A

dedAd ¼ �M̄y dw00 � v00dfð Þ þ GJf0df, (5)

where Ā, V̄ x, M̄y, M̄z and J are the section properties and defined in Appendix B.
Furthermore, one has Z

l

dx

ZZ
A

de dA ¼
X15
i¼1

QEe

i dqi, (6)

where the superscript Ee represents elastic potential energy, and QEe

i represents the generalized elastic force
corresponding to the nodal freedom of q1; q2; :::; q15

� �
. Thus, the tangential elastic matrix can be obtained

through the differentiation of QEe

i with respect to the nodal coordinate:

KEe

ij ¼
qQEe

i

qqj

¼
q

qqiqqj

Z
l

dx

ZZ
A

dedA ¼ KEe

ji i; j ¼ 1; 2; 3; . . . ; 15ð Þ. (7)

2.4. Kinetic energy
At an arbitrary point P(x, Z, x) on the blade with a sweepback deformation, the radius vector from the hub
is

~rp ¼ b0
~ixh þ d0

~ixf þ a0
~ixl þ s0~ixp þ xþ u; v;wð Þ ~ixs;~iys;~izs

� 	T
þ o; Z; xð Þ ~ix0 ;~iZ0 ;~ix0

� 	T
¼ xp; yp; zp

� �
~ixh;~iyh;~izh

� 	T
ð8Þ

with

ðxpo; ypo; zpoÞ ¼ ðb0; 0; 0Þ þ ðd0; 0; 0ÞT21 þ ða0; 0; 0ÞT32T21 þ ðs0; 0; 0ÞT43T32T21 þ ðxþ u; v;wÞT54T43T32T21,

xpZ; ypZ; zpZ

� �
¼ 0; 1; 0ð ÞT75T54T43T32T21,

xpx; ypx; zpx

� �
¼ 0; 0; 1ð ÞT75T54T43T32T21,

where Tij (i ¼ 1, 2,y, 7; j ¼ 1, 2,y, 4) are coordinate transformation matrixes and are defined in Appendix C.
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It is therefore possible to obtain the kinetic energy of an element of beam with the mass rdV at the point P:

dT ¼
1

2
rdV _x2

p þ _y2
p þ _z

2
p

� �
. (9)

The variation of the kinetic energy is

dT ¼ d
ZZZ

V

dT ¼ �

Z
l

dx

ZZ
A

rdSðQ̄
Tx

i þ Q̄
Ty

i þ Q̄
TZ

i Þdqe
i , (10)

where the superscript T represents kinetic energy and is listed in Appendix D.

In order to evaluate the contributions of Q̄
Tx

i in the linearized equation, substituting qe
i þ Dqe

i , _q
e
i þ D _qe

i and

€qe
i þ D €qe

i into qe
i , _q

e
i and €qe

i in formulation of Q̄
Tx

i , respectively, and expanding the formulation into Taylor’s

series give

Q̄
Tx

i qe
i þ Dqe

i ; _q
e
i þ D _qe

i ; €q
e
i þ D €qe

i

� �
¼ €xp

qxp

qqe
i

þ
qxp

qqe
i

qxp

qqe
j

 !
D €qe

j þ 2
qxp

qqe
i

q _xp

qqe
j

 !
D _qe

j

ðIÞ ðIIÞ ðIIIÞ

þ
qxp

qqe
i

q €xp

qqe
j

þ €xp

q2xp

qqe
i qqe

j

 !
Dqe

j þ o D2
� �

.

ðIVÞ ð11Þ

The items (I), (II), (III) and (IV) in Eq. (11) yield the contributions of kinetic energy involving: the element
node force vector, element tangential mass matrix, damping matrix and stiffness matrix:

QTe

i ¼

Z
l

dx

ZZ
A

dA €xp

qxp

qqe
i

þ €yp

qyp

qqe
i

þ €zp

qzp

qqe
i

� �
, (12)

MTe

ij ¼

Z
l

dx

ZZ
A

dA
qxp

qqe
i

qxp

qqe
j

þ
qyp

qqe
i

qyp

qqe
j

þ
qzp

qqe
i

qzp

qqe
j

 !
, (13)

CTe

ij ¼

Z
l

dx

ZZ
A

dA 2
q _xp

qqe
i

qxp

qqe
j

þ
qyp

qqe
i

q _yp

qqe
j

þ
qzp

qqe
i

q_zp

qqe
j

 !
, (14)

KTe

ij ¼

Z
l

dx

ZZ
A

dA
qxp

qqe
i

q €xp

qqe
j

þ €xp

q2xp

qqe
i qqe

j

 !"

þ
qyp

qqe
i

q €yp

qqe
j

þ €yp

q2yp

qqe
i qqe

j

 !
þ

qzp

qqe
i

q€zp

qqe
j

þ €zp

q2zp

qqe
i qqe

j

 !#
, ð15Þ

where i,j ¼ 1, 2,y, 18.
Eqs. (12)–(15) are obtained in implicit forms through the Gauss integral. For the beam element on the blade

without a sweepback deformation, substituting s0 ¼ 0 and T43 ¼ I3� 3 into Eqs. (12)–(15) gives the

contributions of Q̄
Tx

i in linearized equation. By analogy with the aid of Eqs. (11)–(15), one can obtain the

contributions of Q̄
Ty

i and Q̄
Tz

i in linearized equation.

2.5. Non-inertial force

Letting F̄ I represent the non-inertial force of unit mass at an arbitrary point P(x, Z, x), the virtual work of
the non-inertial force is then

dW I ¼ Q̄
I

i dqe
i , (16)
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where subscript I represents a non-inertial force

Q̄
I

i ¼ � ax
h ; a

y
h; a

z
h

� �
þ 2 _xp; _yp; _zp

� �
wh½ � þ xp; yp; zp

� �
wh½ � wh½ � þ wah½ �ð Þ

n o qxp

qqe
i

;
qyp

qqe
i

;
qzp

qqe
i

� �T

,

here wh½ � and wah½ � are transformation matrixes and are defined in Appendix E.
Using the same method as in the above section and Eq. (16), the element node force vector, gyroscopic

matrix and tangential stiffness matrix respectively are found to be

QIe

i ¼

Z
l

dx

ZZ
A

Q̄
I

i dA, (17)

GIe

ij ¼

Z
l

dx

ZZ
A

qQ̄
I

i

q _qe
j

dA, (18)

KIe

ij ¼

Z
l

dx

ZZ
A

qQ̄
I

i

qqe
j

dA, (19)

where i, j ¼ 1, 2,y, 18.

2.6. Aerodynamic force

Based on the two-dimensional quasi-steady aerodynamic model [27], the velocity of the airflow relative to
the sectional elastic center can be written as

V̄ ae ¼ V x
ae;V

y
ae;V

z
ae


 �
īx; īy; īz

� 	T
(20)

where V x
ae;V

y
ae;V

z
ae


 �
is transformation matrix and is defined in Appendix F.

For the aerodynamic force shown in Fig. 5, one has

U ¼ �VZ
ae;

_h ¼ Vx
ae:

(
(21)

The lift, drag and moment respectively can be expressed thus

L ¼
1

2
raab2U _aþ raabU _hþUaþ

b

2
� xa

� �
_a

� 

, (22)

D ¼ rabCd0
U2, (23)

M ¼
1

2
raab2U

b

2
� xa

� �
_aþ raabU

b

2
þ xa

� �
_hþUaþ

b

2
� xa

� �
_a

� 

(24)
Fig. 5. Aerodynamic force.
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and the virtual work done by the aerodynamic force F̄ A and moment M̄A is

dW A ¼ F̄Adr̄p þ M̄Adā ¼ Q̄
A

i dqe
i , (25)

where the superscript and subscript A represent aerodynamic force, and

Q̄
A

i ¼ 0; 0;Lð Þ þ 0;�D; 0ð ÞTT
a

� 	
T75T54T43T32T21ð Þ

qxp0

qqe
i

;
qyp0

qqe
i

;
qzp0

qqe
i

� 
T
þM

qa
qqe

i

.

Again, using the same method as in the above section and using Eq. (25), the element generalized force,
tangential damping matrix and tangential stiffness matrix resulting from aerodynamic forces are given
respectively

QAe

i ¼

Z
l

Q̄
A

i dx, (26)

CAe

ij ¼

Z
l

qQ̄
A

i

q _qe
j

dx, (27)

KAe

ij ¼

Z
l

qQ̄
A

i

qqe
j

dx, (28)

where i; j ¼ 1; 2; . . . ; 18.

2.7. Kinetic equations of rotor blade

Due to the complexity of the rotor motion, it is more convenient for the non-inertial coordinate system to be
adopted to characterize the rotor blade motion in the coupled rotor-fuselage analysis. Simultaneously, the
rigid body freedoms of flap, lag and variable-pitch can be applied more realistically and effectively to describe
the rotor motion. Moreover, the rotor blade can be discretized to have two generalized coordinates to quantify
its elastic freedom. The equations of motion can be derived by means of the Hamilton principle:Z tn

t0

d U � Tð Þ � dW½ �dt ¼ 0. (29)

Substituting Eqs. (5), (10), (16) and (25) into Eq. (29), as well as preserving the independent dofs gives a
nonlinear partial differential equation:

QT
i €q; _q; q; tð Þ þQE

i qð Þ þQI
i _q; q; tð Þ þQA

i _q; q; tð Þ þQC
i _q; q; tð Þ ¼ 0, (30)

where i ¼ 1; 2; . . . ; n; the superscripts T, E, I, A and C represent, respectively, the contributions of kinetic
energy, elastic potential energy, non-inertial force, aerodynamic force and control-operation input. The
solution of Eq. (30) involves the periodic solution of the rotor aero-elastic response.

2.8. Solutions of the differential equation of motion

Using the improved quasi-linearization method [12,13], one can obtain the periodic response of the multi-
dof system arising from the finite element discretization. Direct linearization of the nonlinear governing
equation (30) leads to an ordinary differential equation of a periodic system in the form:

Mij qk tð Þ
� 	

D €qk
j þ Cij _q

k tð Þ; qk tð Þ; t
� 	

D _qk
j þ Kij _q

k tð Þ; qk tð Þ; t
� 	

Dqk
j ¼ Qk

i tð Þ, (31)

where i ¼ 1; 2; . . . ; n, superscript k represents the kth step of iteration,

Qk
i tð Þ ¼ QT

i €qk tð Þ; _qk tð Þ; t
� 	

þQE
i qk tð Þ
� 	

þQI
i _qk tð Þ; qk tð Þ; t
� 	

þQA
i _qk tð Þ; qk tð Þ; t
� 	

þQC
i _qk tð Þ; qk tð Þ; t
� 	

.
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The approximate solution of the (K+1)th step iteration is

qkþ1 tð Þ ¼ qk tð Þ þ Dqk tð Þ,

_qkþ1 tð Þ ¼ _qk tð Þ þ D _qk tð Þ,

€qkþ1 tð Þ ¼ €qk tð Þ þ D €qk tð Þ.

If the required precision is satisfied, at the kth step of iteration, then the approximate solution at the (K+1)th
step can be regarded as the nonlinear periodic solution.

3. The partition-iteration solution for the coupled rotor-fuselage analysis

The fuselage structure can be modeled as a mixed truss girder-beam model (shown in Fig. 6), and the
equation of motion of the fuselage in terms of the coordinate R0 can be established as

MF½ � €uFf g þ CF½ � _uFf g þ KF½ � uFf g ¼ f HF tð Þ

 �

þ f̄ F tð Þ

 �

. (32)

Using Eq. (32) as an analogy, the periodic response of fuselage subjected to f HF tð Þ

 �

and ff̄ F ðtÞg can be solved
in a coupled rotor-fuselage analysis, by means of the improved quasi-linearization method [12,13].

The complexity of the differential equation of motion of the helicopter coupled rotor-fuselage system and
the difficulty of solving it requires the following new philosophy of partition-iteration to determine the
dynamic response of the whole helicopter system: (1) The whole helicopter system is partitioned into several
simple and independent subsystems. These subsystems should satisfy force equilibrium and deformation
compatibility at the interface between each pair of subsystems. (2) The iterative method is used to find the
dynamic response of each subsystem. For the coupled rotor-fuselage analysis, the whole helicopter system is
partitioned into the subsystems of rotor and fuselage, and then the improved quasi-linearization method can
be used to solve the solution of each subsystem. The specific procedures are as follows.
(a)
 The differential equations of motion of the rotor blade are established in the non-inertial coordinate
system of R1, and the non-inertial characteristics are determined from the acceleration vectors ax

h ; a
y
h; a

z
h

� �
and the transformation matrix [T10] between the coordinates R1 and R0. The angular velocity matrix [wh]
and angular acceleration matrix [wah] can be derived from [T10].
(b)
 For a given state of hub motion, the improved quasi-linearization method yields the aero-elastic response
of the rotor through solution of the nonlinear dynamic equations of the rotor; the periodic force ff HF ðtÞg

to the hub from the root of blade can be calculated.

(c)
 The periodic response of the fuselage is analyzed when ff HF ðtÞg and the foundation motion are given.

(d)
 The response at the junction of the rotor and fuselage is compared with the given foundation motion. If it

is inconsistent, then the just-calculated periodic response should be applied as the new foundation motion
of the rotor system. Procedures (a)–(c) should be repeated, until the periodic responses of the junction
resulting from two consecutive iterations are approximately the same.
Fig. 6. Model of fuselage structure.
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It is worth noting that during above solution, the coupled trim has not been used, i.e. the rotor-fuselage and
trim equations have not been solved simultaneously, so the aeroelastic effects due to such interactions are

neglected.

4. Verifying examples
Example 1. A rotating beam is shown in Fig. 7, and has the following parameters: density r ¼ 0.113 kg/m,
length L ¼ 0.508m, flexural rigidity EIy ¼ 2.446Nm2 and EIz ¼ 36.27Nm2, nondimensional rotational speed

l ¼ O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rl4=EJ

q
. Calculated results for different frequencies are shown in Tables 1 and 2 and are compared

with results from Refs. [3,11]. Very close agreement is seen, implying that the beam element in this paper is
valid and rational for dynamic analysis.
Fig. 7. Rotating beam.

Table 1

Flap frequencies (rad/s)

l o

First-order frequency Second-order frequency

Ref. [3] Ref. [11] This work Ref. [3] Ref. [11] This work

0 63.40 63.40 63.38 397.49 397.71 396.97

2 74.64 74.66 74.58 407.96 407.96 407.42

4 100.77 100.81 100.67 437.91 437.91 437.29

6 132.80 132.87 132.68 483.74 484.10 482.96

8 167.03 167.10 166.87 541.29 541.84 540.35

10 202.08 202.26 201.95 606.98 608.06 606.02

12 237.63 237.63 237.43 678.43 680.77 677.41

Table 2

Lag frequencies (rad/s)

l o

First-order frequency

Ref. [3] Ref. [11] This work

0 244.19 244.38 244.09

2 251.56 251.21 251.44

4 270.72 269.27 270.64

6 296.08 293.71 296.18

8 323.44 319.97 323.94

10 350.66 345.59 351.96

12 376.91 369.90 379.44
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Example 2. A simple nonlinear periodic system is shown in Fig. 8. In Ref. [28], the periodic responses of this
system under axial and transverse loads were discussed, having been obtained from the equivalent beam
model. The parameters used in the calculation were as: flexural rigidity EI ¼ 3.7201� 105Nm2, density
m ¼ 6.8244 kg/m, length L ¼ 3.048m, elasticity ratio Kt ¼ 8.6123� 106N/M, transverse excitation load
F(t) ¼ F1+F2 sin(O1t+ft), axial excitation load Np ¼ Np1+Np2 sin(O2t+fa), here F1 ¼ ft ¼ 0, F2 ¼

1.3348� 106N, O1 ¼ 281.13 rad/sec, Np1 ¼ fa ¼ 0, Np2 ¼ 1.5808� 105N, O2 ¼ 281.13 rad/s.

In this work, a four element model of a beam with five-nodes has been used to calculate the lateral deflection
at mid-span. After only 90 time steps, the calculated results are obtained (shown in Fig. 9). From Fig. 9, it is
clear that complete agreement exists between them and the results of this work agree completely with that of
Ref. [28].

5. Application

The vibration loads in rotor blades in a coupled rotor-fuselage system in hovering and forward flight phases
are to be compared with those in system with only a single blade and those in a rotor blade system, but
without a fuselage. The coupled rotor-fuselage model shown in Fig. 10 is used in the vibration load analysis.
(1)
 Hovering phase

The parameters for calculation are as follows: y0 ¼ 0.1500 rad, y1c ¼ 0.2384� 10�2 rad, y1s ¼

�0.3316� 10�2 rad, O ¼ 40.42 rad/s, VF ¼ 0.00 km/h, aF ¼ 0.00 rad. Figs. 11(a) and (b) show the flap
flexibility and acceleration at the peak point of the rotor blade as they vary with azimuth angle. The lag
flexibility and acceleration at the peak point of the rotor blade, varying with azimuth angle, are shown in
Figs. 12(a) and (b). The flap flexibility and acceleration at the rotor blade midpoint, varying with azimuth
Fig. 8. Periodic system.

Fig. 9. Lateral deflection at midspan.
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Fig. 11. Flap (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.

Fig. 10. Coupled rotor-fuselage model.

Fig. 12. Lag (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.

Fig. 13. Flap (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.

J.J. Xiong, X. Yu / Journal of Sound and Vibration 302 (2007) 821–840832
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angle, are calculated and shown in Figs. 13(a) and (b). The lag flexibility and acceleration at the rotor
blade midpoint, varying with azimuth angle, are shown in Figs. 14(a) and (b). The flap, lag and variable
pitch angles, varying with azimuth angle, are shown respectively in Figs. 15(a)–(c). The periodic forces in
the X and Y directions, acting on the hub in the coordinate of R0, varying with azimuth angle, are shown in
Figs. 16(a) and (b). The periodic moments in the X and Y directions, acting on the hub in the coordinate of
R0, varying with azimuth angle, are shown in Figs. 17(a) and (b).
Fig. 14. Lag (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.

15. Flap (a) angle varying with azimuth angle, (b) lag angle varying with azimuth angle, and (c) pitch angle varying with azimuth

e.
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Fig. 16. Periodic forces in (a) X and (b) Y directions, acting on the hub in the coordinate of R0, varying with azimuth angle.

Fig. 17. Periodic moments in (a) X and (b) Y directions, acting on the hub in the coordinate of R0, varying with azimuth angle.

Fig. 18. Flap (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.

J.J. Xiong, X. Yu / Journal of Sound and Vibration 302 (2007) 821–840834
(2)
 Forward flight phase
The parameters for calculation are as follows: y0 ¼ 0.1367 rad, y1c ¼ �0.9680� 10�1 rad, y1s ¼

0.13326� 10�1 rad, O ¼ 40.42 rad/s, VF ¼ 197.25 km/h, aF ¼ 0.169 rad. The flap flexibility and acceleration
at the peak point of the rotor blade, varying with azimuth angle, are calculated and shown in Figs. 18(a) and
(b). The lag flexibility and acceleration at the peak point of the rotor blade, varying with azimuth angle, are
shown in Figs. 19(a) and (b). The flap flexibility and acceleration at the rotor blade midpoint, varying with
azimuth angle, are calculated and shown in Figs. 20(a) and (b). The lag flexibility and acceleration at the rotor
blade midpoint, varying with azimuth angle, are shown in Figs. 21(a) and (b). The flap, lag and variable pitch
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Fig. 19. Lag (a) flexure and (b) acceleration at the peak point of rotor blade varying with azimuth angle.

Fig. 20. Flap (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.

Fig. 21. Lag (a) flexure and (b) acceleration at the midpoint of rotor blade varying with azimuth angle.
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angles, varying with azimuth angle, are shown, respectively, in Figs. 22(a)–(c). The periodic forces in the X and
Y directions, acting on the hub in the coordinate of R0, varying with azimuth angle, are shown in Figs. 23(a)
and (b). The periodic moments in the X and Y directions, acting on the hub in the coordinate of R0, varying
with azimuth angle, are shown in Figs. 24(a) and (b).

From Figs. 11 to 24, it is apparent that the maximum relative deviation between the vibration loads of a
rotor blade in a coupled rotor-fuselage system and those in a rotor blade system without fuselage is less than
10%. The calculated vibration loads in a rotor blade in a coupled rotor-fuselage system are very close to those
in a rotor blade system without fuselage. In particular the calculated results for the hovering phase are nearly
coincident. The efforts in this paper have a good agreement with those in literature [24].
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Fig. 22. Flap (a) angle varying with azimuth angle, (b) Lag angle z (rad) varying with azimuth angle, (c) Pitch angle y (rad) varying with

azimuth angle.

Fig. 23. Periodic forces in (a) X and (b) Y directions, acting on the hub in the coordinate of R0, varying with azimuth angle.

J.J. Xiong, X. Yu / Journal of Sound and Vibration 302 (2007) 821–840836
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Fig. 24. Periodic moments in (a) X and (b) Y directions, acting on the hub in the coordinate of R0, varying with azimuth angle.
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However, there exist obvious differences between the calculated vibration loads in the coupled rotor-
fuselage system and those in the system with only a single rotor blade. This implies the vibration loads of the
rotor blade are more heavily influenced by the elastic behavior of the shafting bearing, than by the elastic
behavior of the fuselage.
6. Closure

The focus of this paper has been to present an integral and new nonlinear coupled helicopter rotor-fuselage
aeroelasticity model with many dof and a novel partition-iteration method to solve the structural response and
the vibration loads of rotor blades. The applicability of the new model and solution method has been shown
for a helicopter coupled rotor-fuselage system for estimating the vibration load in rotor blade.
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Appendix A. Shape function

uðsÞ ¼ Nu1 ðsÞu1 þNu3ðsÞu3 þNu4 ðsÞu4 þNu2 ðsÞu2,

vðsÞ ¼ Nv1 ðsÞv1 þNv0
1
ðsÞv01 þNv2 ðsÞv2 þNv0

2
ðsÞv02,

wðsÞ ¼ Nw1
ðsÞw1 þNw0

1
ðsÞw01 þNw2

ðsÞw2 þNw0
2
ðsÞw02,

fðsÞ ¼ Nf1
ðsÞf1 þNf3

ðsÞf3 þNf2
ðsÞf2,

where

Nu1 ðsÞ ¼ ð1� sÞ½�10þ 9ðs2 þ 1Þ�=16; Nu2 ðsÞ ¼ ð1� sÞ½�10þ 9ðs2 þ 1Þ�=16;

Nu3 ¼ 9ð1� s2Þð1� 3sÞ=16; Nu4 ¼ 9ð1� s2Þð1� 3sÞ=16;

Nv1 ðsÞ ¼ ð1� sÞ2ð2þ sÞ=4; Nv0
1
ðsÞ ¼ lð1� sÞ2ðsþ 1Þ=8,

Nv2 ðsÞ ¼ ð1� sÞ2ð2� sÞ=4; Nv0
2
ðsÞ ¼ lð1þ sÞ2ðs� 1Þ=8,
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Nw1
ðsÞ ¼ Nv1 ðsÞ; Nw0

1
ðsÞ ¼ Nv0

1
ðsÞ; Nw2

ðsÞ ¼ Nv2 ðsÞ; Nw0
2
ðsÞ ¼ Nv0

2
ðsÞ

Nf1
ðsÞ ¼ sðs� 1Þ=2; Nf3

ðsÞ ¼ ð1� sÞð1þ sÞ; Nf2
ðsÞ ¼ sðsþ 1Þ=2

Appendix B. Section properties

Ā ¼ A1 þ A2 þ A3; A1 ¼

D

G

G

2
664

3
775; A2 ¼ Dy0

0 x �Z

x 0 0

�Z 0 0

2
664

3
775,

A3 ¼

0 0 0

0 x2 �xZ

0 �xZ Z2

2
664

3
775 �Dy02; D ¼

Eð1� mÞ
ð1� mÞð1� 2mÞ

,

V x ¼ DA u0 þ
1

2
v0
2
þ w0

2
� �� 


� eZ v00 cos yþ fð Þ þ w00 sin yþ fð Þ½ � þ ex v00 sin yþ fð Þ þ w00 cos yþ fð Þ½ �

My ¼ DAex u0 þ
1

2
v0
2
þ w0

2
� �� 


þDJy v00 sin yþ fð Þ � w00 cos yþ fð Þ½ �

Mz ¼ �DAeZ u0 þ
1

2
v0
2
þ w0

2
� �� 


þDJz v00 cos yþ fð Þ þ w00 sin yþ fð Þ½ �

A ¼

ZZ
A

dZ dx; eZ ¼

ZZ
A

ZdZdx; ex ¼

ZZ
A

xdZdx,

Jy ¼

ZZ
A

x2 dZdx; Jz ¼

ZZ
A

Z2 dZdx; J ¼

ZZ
A

ðx2 þ Z2ÞdZdx

where E is elastic modulus and m is the Poisson ratio.

Appendix C. Coordinate transformation matrixes

T21 ¼

cos b0 þ b
� �

0 sin b0 þ b
� �

0 1 0

� sin b0 þ b
� �

0 cos b0 þ b
� �

2
664

3
775; T32 ¼

cos x � sin x 0

sin x cos x 0

0 0 1

2
664

3
775,

T43 ¼

1 0 0

0 cos yp sin yp

0 � sin yp cos yp

2
664

3
775; T54 ¼

cos x0 sin x0 0

� sin x0 cos x0 0

0 0 1

2
664

3
775,

T75 ¼

1 v0 w0

�w0 sin yþ fð Þ � v0 cos yþ fð Þ cos yþ fð Þ sin yþ fð Þ

�w0 cos yþ fð Þ þ v0 sin yþ fð Þ � sin yþ fð Þ � v0w0 cos yþ fð Þ cos yþ fð Þ

2
664

3
775.
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Appendix D. Kinetic and strain energy terms

Q̄
Tx

i ¼
d

dt
_xp

q _xp

q _qe
i

� �
� _xp

q _xp

q _qe
i

¼ €xp

qxp

qqe
i

i ¼ 1; 2; . . . ; 18ð Þ,

Q̄
Ty

i ¼ €yp

qyp

qqe
i

i ¼ 1; 2; . . . ; 18ð Þ,

Q̄
Tz

i ¼ €zp

qzp

qqe
i

i ¼ 1; 2; . . . ; 18ð Þ,

where qe
16, qe

17 and qe
18 correspond respectively to flap, lag and variable-pitch, or b, z and yp.

Appendix E. Transformation matrixes

wh½ � ¼

0 wz
h �w

y
h

�wz
h 0 wx

h

w
y
h �wx

h 0

2
64

3
75; wah½ � ¼

0 wz
ah �w

y
ah

�wz
ah 0 wx

ah

w
y
ah �wx

ah 0

2
64

3
75.

Appendix F. Transformation matrixes

Vx
ae;V

y
ae;V

z
ae

� �
¼ Vx0

ae ;V
y0
ae;V

z0
ae

� �
� xp0 ; yp0

; zp0

� �
wh½ �

�
� _qe

k

@xp0

@qe
k

;
@yp0

@qe
k

;
@zp0

@qe
k

� ��
T75T54T43T32T21ð Þ

TTT
a ,

Vx0
ae ;V

y0
ae;V

z0
ae

� �
¼ VF cos aF ; 0;�V F sin aFð Þ T10½ � þ 0; 0;Við Þ,

a ¼ yp þ yþ f,

Ta½ � ¼

1 0 0

0 cos yp þ yþ f
� �

sin yp þ yþ f
� �

0 � sin yp þ yþ f
� �

cos yp þ yþ f
� �

2
64

3
75.
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