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Abstract

Heat is generated and vibrational energy is dissipated when damped structures are excited. In certain applications, the
associated increase in temperature is moderate but affects the performance of resonant vibrators and linear analysis is
expected to provide insight. In this paper, lumped and distributed systems with losses are modelled and heat generation due
to harmonic excitation is studied. The internal loss is modelled as hysteretic damping. First, a lumped mass-spring with loss
represented by a complex spring constant is analysed. Analytical expressions for the frequency at which the maximum
power is dissipated and the maximum power dissipated are derived. Next, a long, thin, viscoelastic rod with hysteretic
damping represented by a complex Young’s modulus is analysed. It is harmonically excited at one end and two different
boundary conditions at the other end are considered. It is seen from the linear analysis that heat generation is spatially
non-uniform and will affect the temperature distribution. Analytical expressions for the frequency at which the maximum
power is dissipated and the maximum power dissipated are derived for a rod fixed at one end and excited at the other. It is
also noted that frequency at which maximum power is dissipated increases as loss increases. The effect of loss factor on the
dissipated power is also studied and numerical results are presented.
© 2007 Published by Elsevier Ltd.

1. Introduction

Heat is generated and vibrational energy is dissipated when damped structures are excited. The resulting
increase in temperature of the structure causes a change in its material properties. Therefore, there is a change
in the response of the structure to the excitation.

It is often sufficient to determine the steady-state response—by iteration—when the excitation is harmonic.
In the first step of the iteration, the heat generated is determined for an assumed temperature distribution and
corresponding material properties. In the second step, the temperature distribution corresponding to the heat
generated and thermal boundary conditions is determined. The iteration is stopped when the assumed
temperature distribution in the first step is nearly equal to that computed in the second step. Linear analysis
can be used in the first step when the material properties corresponding to the temperature distribution are
nearly independent of spatial position even when there is a moderate increase in the average steady-state
temperature. Some types of piezoelectric ceramics with electrical insulators—that are also good thermal
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insulators—at the ends are examples of such structures. In this paper, linear analysis is used to determine the
non-uniform heat generated in a rod.

Lumped, damped oscillators in steady state, linear motion are discussed in several books [1-3]. In viscous
damping, the damping force is in phase with and proportional to the velocity. The heat generated per cycle is
proportional to frequency and the square of the amplitude of the response but this is contrary to observations
in viscoelastic materials [4]. When the damping force is in phase with velocity but proportional to
displacement, the heat generated per cycle is independent of frequency but proportional to the square of the
amplitude of the response. Muravskii [5], in a recent paper, states that the discovery of several engineering
materials with frequency-independent damping was first reported in 1927 and provides several references to
earlier work. This type of damping can be modelled using a complex spring constant. It is known as hysteretic
damping, solid damping, or structural damping when the constant is assumed to be independent of frequency,
temperature, etc. [2].

Distributed, damped structures can also be modelled using complex material properties. Several types of
stress—strain relations such as stress proportional to strain as in elastic materials, strain rate as in viscous
materials, a weighted sum of strain and strain rate as in viscoelastic materials, and other generalised ones can
be modelled using complex material properties [6,7].

Steady state as well as transient analyses of distributed, damped structures have been reported in literature.
Frequency-dependent material properties should be used in both cases to avoid violation of the
Kramers—Kronig relations or causality condition. Material properties that are frequency-dependent are also
temperature-dependent. However, it can be assumed that the damping is hysteretic if the properties are nearly
independent of frequency in the neighbourhood of the frequency at which steady-state analysis is done and
nearly independent of temperature in the neighbourhood of the average temperature of the rod. This
approximation—used in this paper—makes it possible to analytically investigate heat generated in a
viscoelastic rod using linear governing equations. However, when transient analysis is of interest, it is usually
more convenient to use a stress—strain relation defined in the time domain.

Linear viscoelastic rod theory has been used in earlier studies. For example, Snowdon [8] studied rods
excited at one end and with various boundary conditions at the other end. Pritz [9] studied rods with a mass at
one end and specified displacement at the other end and, very recently, Giirgdze and Zeren [10] determined the
eigencharacteristics of such rods. Buchanan [11] used linear equations to model viscoelastic rods and
experimentally determine their complex Young’s modulus. Tauchert [12] also used linear theory to analyse a
rod undergoing torsional oscillations due to a specified shear-strain distribution. He computed the
temperature distribution using Fourier series. Day [13] used linear equations to investigate thin plates. He
showed that, in some cases with thermal excitation, the same final temperature distribution is obtained even if
thermoelastic coupling is neglected in the energy equation.

The work presented in this paper is organised as follows. First, a lumped oscillator (mass-spring system)
with hysteretic damping represented by complex stiffness is analysed. Expressions are derived for the
frequency at which maximum power is dissipated (heat is generated) and the maximum power. Then, the rate
at which heat is generated in a long, thin, viscoelastic rod is computed using two methods. The assumption
that damping is hysteretic makes it possible to derive analytical expressions for the frequency at which
maximum heat is generated and for the non-uniform distribution of heat generated along the length of the rod
for different boundary conditions. Numerical results are presented to illustrate the spatial distribution of the
heat generated and the effect of loss factor on the total rate at which heat is generated.

Heat generated due to vibration of damped structures is of interest because it is one of the reasons for the
failure of piezoelectric ceramic transducers [14].

2. A lumped oscillator

Consider a lumped mass-spring system excited by a harmonic force, () = Fel’ as shown in Fig. 1. It is
convenient to assume that F is real and independent of frequency. The displacement, u(f) = U(w)e!®’, of the
mass is

U(w)e”" = Fel”' /[K — w*M], (1)
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Fig. 1. A mass-spring system with hysteretic damping excited by a harmonic force.

where ¢ denotes time, w is the angular frequency of excitation, K is the constant stiffness of the spring, and
M is the mass. Eq. (1) is valid for a lossless system but can be used to analyse a system with internal losses or
damping by assuming that the stiffness is complex and is expressed as K = K’ +jK” where K’ and K" denote
the real and imaginary parts, respectively.

Only the real parts of the complex quantities used in Eq. (1) have physical significance. However, it is
convenient to use the complex representation. For example, the velocity, v(¢), of the mass is expressed by using
Eq. (1) as

V(w)e” = joFe® /[K — w*M]. )

The incremental work done in driving the system is

dw(z) = Re(f (1)) d[Re(u(2))], (€)

and the power input to the system, averaged over one period, is

T T
() :% /0 dw(z) :% /0 Re(f(1))Re(u(2)) dt, (4a)

where T is the period of the excitation. This power is dissipated in the form of heat. It is easily seen that

F’K'w»

H(w) = . (4b)
2 [(K’ — M) + K”z}
The average dissipated power can also be expressed as
() = |F||V(w)| cos(0)/2, (5a)
where
0 =tan"'[(K' — Mw?)/K"], (5b)

is the phase angle between Re[f(¢)] and Re[v(?)].

The average dissipated power can also be determined by an alternative graphical approach that is useful
when it is experimentally determined. It is seen from Egs. (3) and (4a) that Il(w) is proportional to the areca
under the curve of Re[u(?)] vs. Re[f(?)]. These curves, also known as hysteresis loops, are shown in Fig. 2 for
the case where M = 1 and K = (1+,0.3)/(2n)>. Loops are shown at frequencies of 0.8, 1, and 1.2Hz and
correspond to below resonance, nearly resonance, and above resonance frequencies.

When analytical expressions are known for the force and displacement, the area under the loop can be
analytically determined. Eq. (1) can then be rearranged to obtain

o' + (Mw? — K)f = K’ f’z, (6)
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Fig. 2. Hysteresis loops of a mass-spring system with hysteretic damping excited with 1 N force at below resonance, nearly resonance, and
above resonance at frequencies of 0.8 (dotted line), 1.0 (solid line), and 1.2 (dashed line) Hz, respectively.

where o = (K'—Mw?)*+ K"?, ' = Re[u(f)] and f = Re[f(r)] = Fcos wt. Squaring both sides of Eq. (6) and
rearranging yields

2?20 M — K'Yl f + [(sz _ K'Y+ KPP - PR =0, 0

Eq. (7) represents a rotated ellipse in the (¢, f) plane. The major and minor axes coincide with the
coordinate axes when it is rotated by an angle ¢ = 0.5tan™'[B/(4—C)] where 4, B and C are the coefficients of
W2, uf and f/2, respectively, in Eq. (7). It is noted that ¢ = 0 at w®> = K'/M, i.e., the major and minor axes
coincide with the coordinate axes at the corresponding frequency. In Fig. 2, this occurs at 1 Hz. The major axis
lies in the first and third quadrants at lower frequencies and in the second and fourth quadrants at higher
frequencies. The area can be expressed in terms of the coefficients in Eq. (7).

The rate at which heat is generated by the system is 4/T where A4 is the area of the ellipse. 4 is easily
determined using standard formulae. It is shown later that both approaches yield the same numerical values
for the average heat generation rate. When there is no loss K’ is zero, the major and minor axes are zero and
power is also zero.

The angular frequency, wp, at which IT is maximum is also the frequency at which Re(V(w) = |V(w)|cos(6)
IS maximum, i.e., when

dRe(V) (K — Ma?)? + K"” — 2K — M) (—2Mw)o
do (K/ _ sz)Z + K//Z

where it is assumed that the stiffness is independent of frequency in the neighbourhood of wp/27. Assuming
that the denominator is not zero and equating the numerator of the above equation to zero yields

0, )

/ /2 72
w%:Ki 4K + 3K , ©)
IM
where only the positive square root is considered because it yields a real frequency. When K" is zero, the above
equation is not valid because it reduces to w% = K’/ M and the denominator of Eq. (9) is also zero at the same
frequency and the assumption regarding the denominator is violated. In fact, as observed earlier, IT is zero at
all frequencies when K" is zero.
It is useful to relate wp to other frequencies that can be easily measured. The angular frequency wj at which
| V(w)| is maximum is

/2 72

, VK?+K
= 10
w7y Vi ( )
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Similarly, the angular frequencies wy and w4 at which the magnitudes of displacement and acceleration are
maximum, respectively, are found to be

wl =K/M, (11)
and
K/2+K//2
O) == (12)
It is seen from Eqs. (9)—(12) that
Oy<opg<oy<wy. (13)

The maximum rate at which heat is generated by the system, IT,,,y, is determined by substituting @ = wy in
Eq. (4b). This yields

My ~ FX)(K' /M) 2K, (14)

when (4K"* 4 3K"%)"> ~ 2K'(1 + 35%/8) where n = K”/K' and K" <K'. It is of interest to note that IT.y
increases when K” decreases because the amplitude of vibration increases. Further, w ~ K'/M when n<1
and nearly corresponds to the frequency at which the axes of the ellipse coincide with the coordinate axes.

3. Rod with hysteretic damping

Consider a viscoelastic rod of cross-sectional area o and length L. The density of the rod is p and internal
losses are represented by complex Young’s modulus, ¥ = Y’ +jY”. The rod is driven by a frequency-
independent harmonic stress (L, f) = ©(L, w)e!! at one end. Two different boundary conditions at the other
end are considered. The non-uniform heat generated in the rod is of interest.

The average power input to the system is equal to the rate at which heat is generated and is determined using
two approaches. In the first approach, it is determined by considering the force and displacement at the drive-
point, as was done in the previous section. In the second approach, it is determined by integrating the local
work done over the length of the rod.

The equation of motion for the rod is expressed in terms of the displacement, u, as

Q%u(x, t) _ Q2 %u(x, f)

o oz (1)

where

c=Y/p. (15b)

3.1. Rod fixed at x = 0 and driven at x = L

Consider the rod shown in Fig. 3. Solving Egs. (15a) and (15b) and applying the boundary conditions yields
(L, w)el!
u(e, 1) = kY cos(kl)

where k = w/c. Expressions for the velocity and strain are easily obtained when the Young’s modulus is
independent of frequency.

sin(kx), (16)

i —— ¢ (L, w)el!

x=0 x=L

Fig. 3. Harmonically excited 1-D rod.
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Consider the first approach. The time-averaged rate at which heat is generated in the rod is obtained by
using Eq. (5a) and expressed as

(w) = % /0 ! Re[t(1)]Re[v(L, H)]dt = T*(L, w)A[j(1/ Y p)** tan(kL)| cos(9)/2, (17)

where v(x, 7) is the velocity and 9 = tan'[Im(V (L, ®))/Re(V (L, ))].

The angular frequency, wy, at which the dissipated power is maximum and the maximum dissipated power
are of interest. The prescribed stress is independent of frequency and it is, therefore, seen from Eq. (17) that
there is a local maximum in the power when Re(V (L, ®)) is maximum. After defining j/Y> = g+ jh it is seen
that wy is obtained by solving

sin(2k/L)+jsinh(2k”L)} —0 (18)

=77 " R i
2095 dw ¢ [(g h) cos(2k'L) + cosh(2k" L)
In the lossless case, wy is the angular frequency at which kL = n/2. Therefore, it is assumed that 2k’'L

is a little less than 7 at w;; because of Eq. (12). Further, it is assumed 2k” L <1 because losses are small. Then,
Eq. (18) reduces to

d (L, o) d [ gn }
—Il(w) ~ ——————Re : =0, 19
dw (@) 2p% do |(n—2k'L)* + 2K"L)? (19
and is solved to obtain
mh
op=——"—5. 20
11 2Lp1/2(g2 + h2) ( )
After defining n = Y”/Y” and using
Y/0.5 Y” Y/145
0.5 _ A . 2
J/Y =9 +Jh 2(y/2 + Y//Z) +J Y/2 + Y//2 (1 + 0517 )’ (21)
it is seen that
10.5
~ T 1 +0.257%) 22)
Wi ~ TpOS( +0.2577), (
and
2 2 L Y/O.S
M ~ 2T 0052, < (23)
npY Y
where, as in the lumped oscillator, IT,,,, is large when the loss Y’ is small.
In the second approach, the time-averaged rate at which heat is generated is expressed as
L /T
ds(x, ¢
M(w) =2 / / Re[z(x, 7)]Re [M} drdy, (24a)
T Jo 0 df
where
L ejwt
w(x, 1) = Ys(x,1) = %cos(kx), (24b)

is the stress. The integral over time in Eq. (24a) is easily performed to obtain

L
H(w) =« /0 O(x, w)dx, (25a)
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where

|cos(kx)‘2 cos(¢)

0x. ) = (L. w)]j/ Y] ;
2|cos(kL)|

(25b)
is the time-averaged rate at which heat is generated per unit volume and ¢ = tan~!(Y’/Y”) is the phase angle
between stress and strain rate. It is seen by comparing Egs. (15a), (15b), (24b), and (25b), that maximum heat
is generated at the locations at which stress is maximum and displacement is minimum.

The integral over x in Eq. (25a) is analytically determined to obtain

AT (L, w)w cos(¢) [k’ sinh(2k" L) + k" sin(2k'L)]
8K'k"V Y'”? + Y [cosh*(K'L) — sin*(K'L)]
and, as expected, is in agreement with the result in Eq. (17).

The rate of heat generation, Q(x, ), is of interest because it is required to determine the temperature
distribution.

(w) = (26)

3.2. Rod free at x = 0 and driven at x = L

The two coefficients in the solution to Egs. (15a) and (15b) are determined by satisfying the zero stress
boundary condition at x = 0 and the specified force condition at x = L. The displacement in the rod is then
expressed as

_ s COs(kx)
u(x, 1) = —1(L, w)e! 7stin(kl) , 27)
and expressions for strain, s(x, ¢), and stress, 7(x, t), are obtained using it.
The time-averaged rate of total heat generated, obtained using the first approach, is
T
(w) =% / Re(t(L, t))Re(v(L, 1))dt = 1*(L, w)A|j(1/ Y p)**/ tan(kL)| cos(¢),/2. (28)
0

In the second approach, the average rate at which heat is generated is obtained by using Eq. (24a) where
|sin(kx)|*
co

O(x, ) = (L, W)IJ/Y’wiz
2[sin(kL)|

s(). (29)

The integral over the length of the rod is then analytically determined to obtain
(L, w)Aw cos(¢) [k’ sinh(2k" L) — k" sin(2k'L)]
8K'K"\/ Y”? + Y" [cosh*(K"L) — cos*(K'L)]

It is shown, in the next section, that Egs. (28) and (30) yield the same results.

I(w) = . (30)

4. Numerical results and discussion

Some numerical results are shown to illustrate the effect of internal losses and the heat generated. The
viscoelastic rod has a length, L, of 100 mm and diameter of 10 mm. Its material properties are Y’ = 60 MPa,
n=0.3, and p = 1600 kg/m* and the amplitude of harmonic excitation is 100 kPa unless stated otherwise.

First, consider a rod fixed at x = 0 and excited at x = L. The average power input to the rod and converted
to heat is computed using Eqs. (17) and (26) and shown in Fig. 4. Both equations yield the same values at all
frequencies. The effect of the loss factor, #, on the average rate at which heat is generated in the
neighbourhood of the resonance frequency, wp/2n, is shown in Fig. 5. It is seen that wj; increases when 7
increases. The approximate values of w/2n computed using Eq. (22) are 484.4, 485.3, 489.0 and 495.0 Hz for
n = 0.05, 0.1, 0.2 and 0.3 respectively. These values are in good agreement with the values of 484.3, 484.8,
486.6, and 489.6 Hz obtained from Eq. (26). It is also seen that the average power at w; increases when 7
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0 0.5 1 1.5 2
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Fig. 4. Average power dissipated II(w) in a rod computed using two approaches. The rod is fixed at x = 0 and forced at x = L. Solid line:
Eq. (17); dots: Eq. (26).

Average power dissipated (W)

0.45 0.5 0.55 0.6
Excitation frequency (kHz)

o©
~

Fig. 5. Effect of loss factor, , on the average power dissipated in a rod fixed at x = 0 and forced at x = L. Solid line: 0.05; dashed line: 0.1;
dotted line: 0.2; dash-dot line: 0.3.

decreases. The approximate values of I1,,, computed using Eq. (23) are 32.30, 16.18, 8.15 and 5.50 W for
n =0.05, 0.1, 0.2, and 0.3, respectively. These values are in good agreement with the values 32.30, 16.19, 8.17
and 5.53 obtained using Eq. (26) and Fig. 5. A similar figure for a spring-mass system with hysteretic damping
is shown in Ref. [2].

The non-uniform heat generation rate is illustrated in Fig. 6 at various frequencies. The frequencies of 400,
490, 700, and 1470 Hz correspond to below first resonance, nearly first resonance, between first and second
resonance, and nearly second resonance frequencies. It is seen that maximum heat is generated at the fixed end
where stress is maximum for the first three frequencies. At the second resonance frequency, more heat is
generated at an interior point than at the fixed end.

Next, consider a rod free at x = 0 and excited at x = L. The average rate at which heat is generated is
computed using Egs. (28) and (30) and shown in Fig. 7. Again, as expected, both approaches yield the same
values at all frequencies. The non-uniform linear heat density is illustrated in Fig. 8 at various frequencies. The
frequencies of 700, 980, 1500, and 1960 Hz correspond to below first resonance, nearly first resonance, between
first and second resonance, and nearly second resonance frequencies. Here the heat generated is zero at x = 0
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Fig. 6. Heat generation rate Q(x,w) along the length of a rod driven at different frequencies. Rod fixed at x = 0 and forced at x = L.
Solid line: 400 Hz; dashed line: 490 Hz; dash-dot line: 700 Hz; dotted line: 1470 Hz.
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Fig. 7. Average power dissipated II(w) in a rod computed using two approaches. The rod is free at x =0 and forced at x = L.
Solid line: Eq. (28); dots: Eq. (30).
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Fig. 8. Heat generation rate Q(x, w) along the length of a rod driven at different frequencies. Rod free at x = 0 and forced at x = L.
Solid: 700 Hz; dashed: 980 Hz; dash-dot: 1500 Hz; dotted: 1960 Hz.
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because it is stress free. At low frequencies, a local maximum occurs close to x = L and shifts towards x = 0 as
the frequency increases. Two local maxima occur as the frequency approaches the second resonance frequency
and the second is greater than the first.

The numerical results are now used to draw general conclusions regarding the response of structures with
low internal losses. Consider first a rod driven harmonically at an angular frequency w, that is equal to wp;.
The latter is the angular frequency at which the rate of heat generation is maximum at the uniform initial
temperature. When the rod is excited, the increase in temperature causes a change in the material properties
and the angular frequency at which the rate of heat generation is maximum changes to wy. This frequency is
determined by iteration as explained earlier and is not equal to the drive frequency. Therefore, in the final or
steady-state condition only a moderate amount of heat is generated in the low-loss rod because of the
difference between w,; and wp,and the increase in temperature is also moderate.

Consider, next, a low-loss rod where Y’ increases with temperature. It is driven harmonically at an angular
frequency w, that is greater than wp;. When the rod is excited there is initially only a moderate increase in
temperature because of the difference between w, and wp;. However, the angular frequency, wy, at which the
rate of heat generation is maximum will increase and approach w, This will cause a further increase in
temperature and thermal runaway can occur. It can also occur if Y decreases with temperature and wy is less
than wp;. This illustrates the importance of knowing the relationship between the drive frequency and w; and
the effect of temperature on Y.

5. Conclusions

The heat generated in lumped and distributed linear systems is investigated. A lumped mass-spring system
with a complex spring constant and a one-dimensional (1-D) rod with complex Young’s modulus are analysed.
It is assumed that the complex constants are independent of frequency and temperature, i.e., hysteretic
damping is present. Analytical expressions are derived for the heat generation rate and are used to determine
maximum rate and the frequency at which it occurs. It is shown that the frequency increases when the
damping increases.

In the lumped system, it is shown that the frequencies at which damped displacement, heat generation rate,
damped velocity, and damped acceleration are maximum are in ascending order. This information is useful
because displacement, velocity, and acceleration are easily determined experimentally and can be used to
estimate or guide the search for the frequency at which maximum heat is generated. An expression for the
maximum heat generated is also derived.

A viscoelastic rod with hysteretic damping represented by a complex Young’s modulus is also analysed. The
rod is excited at one end and two different boundary conditions are considered at the other end. In the first
method, only the force and displacement at the driven end are used to determine the dissipated power. In the
second, an expression for the heat generation rate is derived and integrated over the length of the rod to
determine the total dissipated power. Heat generation rate is necessary to determine the temperature
distribution in the rod and is, therefore, of interest. The temperature distribution depends on the thermal
boundary conditions and can be analytically determined for certain cases.

Numerical results are presented to illustrate the total time-averaged power dissipated as a function of
frequency, the increase in the frequency at which maximum heat is generated when the loss factor is increased,
and the heat generation rate at various frequencies for two boundary conditions. The results are also used to
show that knowledge of various resonance frequencies and the effect of temperature on Young’s modulus can
be used to avoid thermal runaway by choosing the drive frequency.

Work on extending the methods presented here to study heat generation in piezoelectric vibrators is in
progress.
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