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Abstract

The paper is concerned with a classical problem of reflection of a high-frequency (longitudinal or transverse) wave,
generated by a point source located in the elastic medium, by a free non-plane smooth boundary surface of this medium.
For the investigation of this problem, we develop a method founded on the estimate of reflection integrals by the two-
dimensional stationary phase method. The proposed approach permits derivation of the amplitude of reflected
longitudinal and transverse waves in explicit form. The amplitudes of the reflected waves are defined by principal
curvatures, by Gaussian curvature of the boundary surface at the point of specular reflection, by the distance from the
source and receiver to the point of specular reflection, by direction of the incident wave, and by elastic moduli.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we study the problem of reflection by an arbitrarily shaped smooth boundary surface of
the elastic body, in the case when a (longitudinal or transverse) elastic wave falls to the boundary from a point
source placed in the medium. The process is assumed to be harmonic in time: u(x,y,z,?) =
Refu(x, y, z) exp(—iwt?)], and the boundary of the elastic body is stress-free. Here u is the displacement vector.

Practical applications of this theoretical problem are urgent, first of all, in ultrasonic testing of materials.
Assume a void defect located in an elastic sample. A standard method of detection is an insonification of the
defect by high-frequency ultrasonic waves of various incidence. To adequately estimate how the reflected
amplitude is connected with geometry of the flaw, one should develop analytical formulas for these
amplitudes. This is well described in the case of plane reflecting surfaces [1,2], and the main goal of the present
paper is to extend the classical results to the case of non-plane surfaces.

In the two-dimensional case a solution to this problem was obtained in Ref. [1]. In the three-dimensional
scalar acoustic problem an explicit-form high-frequency representation for the acoustic pressure, in the case of
a single reflection from an arbitrary smooth surface, can be found in Refs. [2,3].
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In the present work, we propose a method to study reflection of longitudinal and transverse waves by the
boundary surface of a linear homogeneous isotropic elastic body, which is founded upon the estimate of
reflection integrals by the two-dimensional stationary phase method. All over below we imply that the
boundary conditions on the reflecting surfaces correspond to zero normal and tangential stresses.

2. Spherical incident wave of longitudinal type: p—p reflection

First of all, let us give a general representation of the solution in terms of boundary integrals, which will be
used below for all types of wave reflections and wave transformations.

Let a point source xy in the elastic medium generate a spherical high-frequency wave, which is incident to a
boundary surface. It is known [2] that the amplitude of the reflected high-frequency wave at the point x is
defined by the direction of incidence and by a small vicinity S of the point y* of specular (mirror) reflection on
the boundary surface. Therefore, with increasing frequency the amplitude of the reflected wave can be
obtained in frames of geometrical ray theory.

If the ray xo—y—x is reflected from the surface S, (y € S) only once (see Fig. 1), then the displacement vector
in the wave, reflected from the free surface, is determined by the following integral [4]:

) = [T ) ds,. 0P 60 = U000+ U0,

uh L& (&) o123
Jp (y’x)__4npwzayk@yj< R > (j=1.2.3).
1 oikiR 2 /eikR
®) ) 1) — 22 B
Uj.x (y: x) - 4ﬂfp(})2 |‘5k]ks R + aykayj ( R ) . R |y X|,
au® .
T,[UX (y, x)] = 2u i + 20 - div(U®) + un x curl(U®). (1)

Here UX(y, x), Ty[U(k)(y, x)], k = 1,2,3 are Green’s tensors of displacement and stress, respectively, u(y) is the
vector of full displacement field on the boundary surface, p is the mass density, 4, 4 are the Lame¢ coefficients,
k, =w/cp,ky = w/c; are the longitudinal and transverse wavenumbers, and c,,c, are the respective wave
speeds, n is the outward normal to the surface S at the point y, dy; is the Kronecker delta.

Let us assume that the incident wave is determined by a harmonically oscillating point force applied at the
point x¢. This force may generate a spherical wave, which in the direction of propagation q = (y — x¢)/|y — Xo|

Fig. 1. Reflection of the longitudinal wave from a non-plane surface.
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can be both longitudinal and transverse:
. eikp R . ek Ro
ulpl’l(, — QR—Oq’ u;ﬂC — Q RO
where vector q; is perpendicular to q. Here Q is the modulus of projection of the applied point force in
direction q = {—cosa, —cosf§, —cosy}, in the case of longitudinal incident wave, and q; = {—cotycosa,
—cotycos f3,siny}, in the case of transverse incident wave.

Let us consider p—p reflection of the incident longitudinal p-wave, given by the first expression in Eq. (2), its
p—s transformation to the transverse s-wave will be considered in Section 3. Let us relate a small vicinity of the
point y* € S to the right Cartesian coordinate system OX|X,X3, which are determined by the unit normals
and by the tangents to the curvature lines of the surface at the point y* € S. In the chosen coordinate system
the unit normal n to the surface at the point y* has the coordinates n = {0,0, 1}.

Let us study here in more detail the p—p reflection. In this case the coordinates of the displacement vector in
the reflected p-wave are

(k) (k) aU(k)
() = / / [uZ( )u,,,(y>+ <2u 5 +/1dlvU(")>u3(y)] ds,. (3)

m

9, Ro=1[y—xol, 2)

The representations derived below give the leading asymptotic terms of respective formulas at high
frequencies.
In order to asymptotically estimate integral (3) as k, — oo, let us use the following asymptotic

representations:
iky ek R 1
divu® 1+0
WU, 0, x) = 47rpw2 R dy, + k,
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Here {— cosa, —cos f3,cosy} are direction cosines of vector y — X.
Now, by substituting Eq. (4) to Eq. (3), we obtain
OR elk R
P =t / #0) 5 - 4.
oR\?
D(y) = —ul(y) + uz(y) 2u a7, + A|u3(y). (5
3

Let us pass to a spherical coordinate system (r, 0, ) with the center at the point y*. The components of the
displacement vector can be written as follows:

eikpR X
/ /S P(y) = dS), uf(x) =0, u(x)=0,

ul (x) =

4drnpw?

d(y) = —2u[cos auy () + cos fur(»)] cos y + (2pcos® y + Duz(y). (6)

When estimating asymptotics of Kirchhoff’s integral in formula (6), the components of the full displacement
field ux(y), kK = 1,2,3 under the integral should be taken as a solution to a local problem on reflection of a
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plane incident p-wave from a plane boundary of the elastic half-space (see, for instance, Ref. [5]):

2
1—@sin2 Vos(y) | ™ =1,2
k2 YV ops ”mp(y): m=1,2,

s

ks

Up(y) = |1+ Vpp(y) — m

(y) = [1 = Vpp(y) — tan y ¥ ps (0] (v), (7)
where V,, and V), are the coefficients of p—p reflection and p—s transformation [5]:

_4cotycoty; — (1 —cot?y)’ - _4coty(l — cotzyl)

= s =
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z=4cotycoty, + (1 —cotzyl)z. (8)

By substituting Eqgs. (7) and (2) into Eq. (6), we come to the following integral representation of the radial
displacement:

2

Qik; : , ks K
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P

If we substitute relations (8) into the integrand of the last expression, we can analytically prove that the
complex structure arising there can be simplified as

2 k 2
L —sin2y | —siny(1 + V,,) +-— |1 — L sin’yV
2 PP 2 ps
2k kp ke
kZ
+ k—; —25sin%y |[— cosy(1 — Vipp) +siny V] p =cosylV,,. (10)
P

The obtained equality allows us to derive the following basic representation for uﬁ”)(x), after taking non-
oscillating functions of the integrand (in the high-frequency approximation) out of the sign of the integral:

U () = Q17/§ pCOSY |, p(y*)// o 4,

=ly—xXol+ly—xl, Lo=Iy"—xol, L=Iy"—x| (11)

Ray representation can be obtained from Eq. (11), by using a multidimensional stationary phase method [6].
In the introduced coordinate system with the center at the point y*, arbitrary point y € S from a vicinity of y*
has locally the coordinates y = {As;, Asy, —0.5[k1(As1)2 +k2(Asz)2]}, where Asy, Asp, are small differentials
along the curvature lines, k; = 1/R; and k, = 1/R, are principal curvatures, R; and R, are principal
curvature radii of the surface S at the point y* € S, [k1(As1)* + k»(As»)?] is the second quadratic form of the
surface at the point y*, if one relates the surface to the curvature lines.

Let us apply the cosine theorem to triangles xo—y*—y and x—y*—y:

Ixo — yI* = L2 + |As|* — 2Lo|As| cos(x0y* V"),

|x — y> = L? + |As|> — 2L|As| cos(xy* " y*p). (12)

By calculating the scalar product of the vector {cosa,cosf},cosy} (the unit vector in direction x¢ — y*)
with the vector As= {Asl,Asz,—O.S[kl(Asl)2 +k2(Asz)2]}, and the scalar product of the vector
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{— cosa, —cos f§,cosy} (the unit vector in direction x — y*) with the vector As, we can deduce

|As| cos(x0y™ V) = 0.5[k1(As)* + ka(As2)*]cosy + As| cos o+ As, cos f,

|As| cos(xy*"V*y) = 0.5[k1(As1)* + ka(As2)*] cosy — Asy cos o — As, cos f. (13)

If we neglect the terms of smaller orders compared with (Asl)z, AsiAs,, (Asz)z, then formula (12) leads to
the representations

|xog — y| = Lo — Asy cosa — Asy cos f + O.S(Lglsin2 o + ki cosy)(As;)?
— Lgl cosa cos fAs1As; + 0.5(L5l sin’  + k; cos 7)(As)?,

Ix — y| = L + As; cosa + Asy cos 4 0.5(L ™ "'sin? o + k; cosy)(As)?
— L' cosocos fAsiAsy + 0.5(L"'sin? B + k> cos p)(As)*. (14)
Consequently,

@ = Lo+ L+ 0.5d1(As1)* + d12As1Asy 4 0.5d2(Asy)?,
dn = (L' 4+ L™ ")sin? o 4 2kj cosy, dip = —(Ly" + L") cosacos f,

dy = (Ly" + L™ ")sin® p 4 2k, cosy. (15)

Note that the first powers of As; and As, are not present in the phase ¢. This confirms that the point y* of
the direct ray reflection corresponds to a stationary value of the phase function ¢. The leading asymptotic
term of integral (11) is thus determined by the coefficients in front of (Asl)z, AsiAsy, (Asz)z, and can be derived
from Eq. (11) by using the two-dimensional stationary phase method [6], as follows:

explilk,(Lo + L) + n(0%" + 2)/4]}

LoLy/| det[DP™]]

where D(zpp) is the Hessian of the symmetric structure: dj = dj, i,j = 1,2, and 53”") = sgn[D(zpp)] is the

U (x) = QV,,(y*)cosy (16)

difference between the number of positive and negative eigenvalues of this symmetric matrix D(zpp) .
The final result is

OV, (v explilk,(Lo + L) + (33" + 2)/4]) a7

uf(x) = 2 2
kysin” o + ky sin”
cosy

\/ ’(L0 + L)y +2LyL(Ly + L) + 4L§L2K‘
Here K = kk», is the Gaussian curvature of the surface S at the point y*, and vector {— cosa, — cos f§, — cos y}
determines direction of the incident ray xy — »* in the chosen coordinate system.

In this formula one can outline the two simple particular cases. First of all, if k; = k, = 0 then the well-
known result for the reflection from a free plane boundary follows from (17)

explik,(Lo + L)]

P(x) = —0OV 18
uPx) = —QV,, O (18)
Another interesting case is related to a back reflection (when V,, = —1) in a far zone. In this case expression
(17) reduces to the form
NV RIR .
uP(x) = —0.501 X2 expli(2k, Lo + n6%" /4)]. (19)

2
Ly

It should also be noted that asymptotic estimate holds in the case when a (high-frequency) longitudinal
wave falls to a convex side of the boundary of elastic medium. If the wave is incident to a concave surface then
the principal curvatures k; and k, have to be taken negative.
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It is also noteworthy that formula (17) differs from analogous result for acoustic pressure p(x) in the
reflected wave of the scalar theory only by the reflection coefficient V,,, which is present in the elastic case.

3. Spherical incident wave of longitudinal type: p—s transformation

Let us study the transformation of the incident p-wave to the reflected s-one. In this case the Cartesian
coordinates of the displacement vector in the reflected s-wave ugf)(x), k =1,2,3 at the point x are

© au® aU"‘) aU“‘)
ud(x) = / / oty )+ 27 ()| dS,. (20)

In order to estimate this integral, let us apply the asymptotic representation of the following functions:

U™ _ OROR) OR ¢k 1
o= 5 5y 1 — m=1,2

OR —x
X=(x,x0,%3), y=0prn) 0ES) S 0T cosa,
1 r
a—R e b1 OR =BT8_ os 1 (kg > 00). (21)
0y, r 6 Vs
Here {— cosa;, —cos f;,cosy,} are direction cosines of vector x —y.
By substituting Eq. (21) to Eq. (20), we deduce
.03 2
Oy — kS 1-2 9R _ 26_R@_R 6R OR
W= | { [ &) [0 =25 5 00) 25 5 0)
OR ek
X 6_)}37 dSy (223)
. 2
o= ([ jeReR T (R L CROR
" )= dnpw? //{ 0y, 0 2u1(y)+ 0y, 1) = 0y, 05 us0)
aR gl
. 22
6y3 e ds, (22b)
. 2
©) iuk? OR OR
= 2
W= | { (Y[R 00+ 2] +2/1- (25| P
ei/ch
X ds,. (22¢)

Let us pass again to the spherical coordinate system (r, 0,) at the point y*. Then the components of the
displacement vector can be reduced to the form

() lﬂk 2
0 = s [ (meos2feos ) +cos y )

ik;R

— 2sin® 9, cos yyus()) 67 ds,, W) =0, W =0. (23)

Similarly to the case of p—p reflection, in the asymptotic estimate of the last integral we accept the
components of the displacement vector on the surface S in the form of Egs. (7)—(8).
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After substitution of Egs. (7)—(8) into Eq. (23) and taking into account the identity

k2
1— k—g sin” V()

N

. ks
—cos2y; |—siny(1+ Vp,) +-—
kp

k
— €087 Vs, (24)

—sin 2y [—cosy(1 — V) +siny V] = _Zk
P

which can be proved directly, we reduce the (high-frequency) expression for the displacement uﬁf)(x) to the
form

2
(s) Qlks COS“/I * // ip
= - Vs s dS,,
Uy ) = = ToLy 00 [ [ 45,

Pps = kply —Xo| +ksIx —yl, Lo=1y"—xol, Li=[x-y" (25)

The first terms of power expansion in the quantities |y — x¢| and |x — y|, present in the structure of the phase
function, have the form
|xo — y| = Ly — Asycosa — Asy cos ff + 0.5(Lalsin2 o + ki cosy)(Asy)?
— Lal cos o cos fAs;Asy + O.S(Lalsin2 B + ki cos p)(Ass)?,

|y — x| = Ly + Asjcosa; + Asy cos 8 + O.S(Ll_lsin2 o1 + ki cos y])(Asl)2
— L7' cosa cos By AsiAsy + O.S(Ll’lsin2 B + ky cos ;) (As)?. (26)
Let us prove that in the phase function ¢, = k,|y — Xo| + ks|x — y| the first powers of As; and As, are absent.

These terms have the form: (kscosoy —k,cosa)As; and (kycosf; —k,cos f)As,. In the studied p-s
transformation the following Snell’s law holds: k, siny = kysiny,. Let us consider, for instance, the first term:

kycosoy — k,cosa =k, "7 cos op —kycosa =k, siny( (27)

cosoy  Cosa
siny, '

siny; siny

Since the incident xo—)* and the reflected y*—x rays are situated in the same plane with the normal to the
surface at the point y* € S, the following relations are valid:

coso cosay  cosf cosf

- - ;= : . (28)

siny  siny, siny  siny,

Consequently, coefficients in front of As; and As, are zero.
Under these conditions, the phase ¢, can be reduced to the form
@ = kpLo + ksLy +0.5d11(As1)* + di2As1Asy + 0.5d(As:)’,
di = kyLy'sin® o + kyLy 'sin® oy + ky(k, cosy — kycosy)),
dp= —(ka(jl cosacos ff + kSLl_l cos aj cos fiy),

dy = kl,Lo’lsin2 b+ kXLl’lsin2 P + kao(k,cosy — kgcosyy), (29)

where k| and k&, are the principal curvatures of the boundary surface at the reflection point.

Note once again that the first powers As; and As; are absent here that proves the point y* of the direct ray
reflection to correspond to a stationary value of the phase ¢,,. The leading asymptotic term of integral (25) is
thus determined by the coefficients in front of (As;)?, As; As,, (As»)?, and can be obtained from expression (25)
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by the double stationary phase method [6], in the following form:

k2 explilk, Lo + kyLy + (37" + 2)/4])

&, LoLiy/| detiD™])

where the elements of symmetric (dj, = d5;) Hessian D(p) =dy, i,j = 1,2 are determined by formulas (29),
ar%d 5(” D) = sgn[D(ps)] is the difference between the number of positive and negative eigenvalues of the matrix
D ps)

1 (x) = —QV (") cos 3y (30)

4. Spherical incident wave of transverse type: s—s reflection

Let us study the wave transformations when the incident wave is transverse, being given by the second
relation (2). Let the direction of the incidence be defined by the unit vector {— cosaj, — cos fi;, —cos ), }.

The components of the displacement vector in the reflected s-wave at the point x can be determined again
from Eqgs. (22). For all that the displacement vector u(y) on the boundary surface is defined from the solution
of a local problem on reflection of the transverse s-wave from the plane tangent to the surface S at the point of
specular reflection y*. Solution to this rather classical problem can be found, for example, in Ref. [5], being
given as follows:

un(y) = [Vs(y) — 1 — tany, Vy,(0Mluns(y) m= 1,2,

k
= S8 1 .p
) = | Vol 14

PO | U5 ), (1)

where Vg, and V', are the coefficients of s—s and s—p transformations:

4cotycoty, — (cot?y, — 1) 4coty,(cot?>y; — 1)
58 = - > Vsp = - 5

z=4cotycoty, + (cot’y, — 1% (32)

In the local spherical coordinate system (r, 0, ) linked to the point y* the components of the displacement
vector in the reflected s-wave can be expressed as

W = 2 // —cos 2 [cos 11 (Ve — 1) — singy Vo]

. . kp 2 .2 eiks(Ro+R)
—sin2y; |siny; (Vs + 1)+ ki 1-— k% sin”y, Vg, W ds,,
P
W(x) =0, u)(x)=0. (33)

Having substituted relations (32) for the reflection and transmission coefficients into Eq. (33), it can be
analytically proved the arising expression is

—cos2y[cosy (Ve — 1) —siny V]

. . k K
—sin2y; |siny; (Vs + 1)+ 2 1= p smzyl V()| = —2cosy V. (34)

ks

P
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Taking into account this relation, integral representation (33) of the (high-frequency) asymptotic solution
can be rewritten in the following form:

(S)( )__Ql: s COS Yy ss(y*)// 1k(pdS

=ly—xol+x=yl, Lo=1Iy"—xol, L=[x—Y"] (35)

The leading asymptotic term of ug)(x) can be obtained from Eq. (35) in the same way as above for p—p and p—s
transformations, by using the two-dimensional stationary phase method, that finally results in the following
expression:

explilky(Lo 4 L) + (85 + 2)/4]}

LoLy/| det[DS™]|

where 65" = sgn[D$], and Hessian D§® has the same structure as D, and this can be obtained from D
by taklng cos oy, cos fi;,cosy, instead of cos o, cos f3,cosy.

u(x) = -0V, (") (36)

5. Incidence of the transverse spherical wave: s—p transformation

The components of the displacement vector in the reflected p-wave at the point x, under s—p transformation,
are defined by formulas (20), where the components of vector u(y) on the boundary surface should be defined
from solutions (31), (32) of the local problem concerning reflection of the transverse s-wave from the plane
tangential to the surface S at the reflecting point y*.

In the local spherical coordinate system (r, 0, ) coupled with the point y* the only non-trivial component of
the displacement vector in the reflected p-wave is the radial one:

ik’ 2
u&ﬁ)(x) = Q_lz’// —sin2y[cosy (Vg — 1) — siny V] + k—é —2sin’y
dnk; JJ)s k

P

k2
- k—é sin2 "1 Vsp(Y)

)4

ailksRo+k, R)

. k
X Sln'})l(V&y—i— 1)+k—p W

ds,,

uf(x) =0, uf(x)=0. (37)

Here vector {— cosa, —cos f5, — cos y} determines the direction of propagation of the reflected p-wave.

By analogy to the previous cases, substitution of expressions (37) into Eq. (20) reduces the problem to a
double integral, with a complex structure of the integrand. The construction arising there can be simplified as
follows:

k2
2/: —sin2y[cosy (Vg — 1) —siny, V] + (k_é — 2sin® y>
5 p
. kp k? )
x |siny; (Vg + 1)+ T 1— P sin”y; Vi (») =cosy V() (38)

p

that can be proved directly.
Taking into account this relation, integral representation (37) for #¥”)(x) can be simplified to the following

form:
Qlk cos?y . N
0 =S Vo) [0 as,
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P = ksly —xol +kpIx —yl, Lo=1y"—xol, L=[x—y",
¢,y = ksLo + kpL + 0.5d11(As1)* + d1pAsiAsy + 0.5d2(As2)’,

dy = kXLa1 sin? oy + k,,L’lsin2 o+ ki(kgcosy; — kycosy),
dpp = —(kSLO_l cosay cos fi; + ka_1 cos aj cos fi;),

dy = kiLy'sin® B + k,L™"sin? B + ky(k, cos y, — k, cos ). (39)

The leading asymptotic term, which can be obtained from Eq. (39) by the double stationary phase
method, is

12 ol )
W) = OV, ") cosy p SPUEL0 Iy L+ 7024 (40)

ks LoLy/| det[D§P)]

where the elements of the symmetric (dj» = d»;) Hessian matrix D(ZSP) —dy, i,j=1,2 are determined by
formulas (39), and 5?’” = Sgn[D(zs")],

6. Discussions and physical conclusions

The principal developed formulas (17), (30), (36), and (40) are worthy of a detailed discussion. In order to
provide an alternative glance at the subject, let us rewrite these formulas in a different way. We demonstrate
this idea on example of the first of them. It can be shown, based on some results of differential geometry [7,8],
that Eq. (17) is equivalent to

D) = OV, (r") explilky(Lo + L) + (83" +2)/4) ) m
2H cos?y + ksin’y
cosy

(Lo + L) +2LoL(Ly + L) +4L5L°K ‘

where K = kik; is again the Gaussian curvature, H = (ki + k3)/2 is the average curvature at the point of
specular reflection y*, and k is the curvature of the normal section of the surface by the plane of the ray
xo—y*—x. The latter is defined by the Euler formula

k = ki cos? P+ kysin® ¢ (cos o = CS?;;( ,sin @ = Zij f), (42)
which represents the curvature of arbitrary normal section in terms of the principal curvatures k;, k; and the
angle @ (the latter is the angle between the tangent to this normal section and the first principal direction).

The developed asymptotic expressions (17), (30), (36), and (40) show that the displacement amplitude of the
reflected waves is defined rather complicatedly by geometric and physical parameters of the problem.

The amplitude of the reflected wave is inversely proportional to a root square in the denominator, which
depends upon local geometric characteristics at the point of specular reflection y*, upon the distance between
the source and the receiver from the reflection point, by the direction of the incidence and reflection, as well as
by the elastic constants.

Let us describe the features of the amplitude on examples of p—p and s—s reflections. Let us consider Eq. (41),
which give the leading asymptotic term as k,Lo> 1,k,L>1,k,R; > 1,k,R>> 1 in the p—p case.

In Section 2 we outlined the two extreme cases of a locally plane reflecting surface (k| = k; = 0) and a far-
field back reflection (y = 0, Ly = L, Ly — 00). In the last case the amplitude of the reflected wave is determined
by the distance Ly and by the Gaussian curvature K.

Let us consider the case when the distances, Ly, L, and the principal curvatures, R, R,, are of the same
order. In this case all three terms in the denominator are of the same order. The second term contains the
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information about the shape of the surface through its average curvature, H = (k1 + k2)/2, and the curvature
k of the normal section given by the ray xo—y*—x.

The third term provides dependence upon the Gaussian curvature K. The contribution of the second and the
third terms is determined by a local shape of the surface at the point y*. If the reflection point is elliptic and the
ray is incident to a convex part of the surface (k| >0, k, > 0) all these terms are positive and the ray divergence
(scattering) is maximum. If the ray is incident to a concave part (k1 <0, k» <0) then the second term is negative
(H<0,k<0,K>0) and the ray divergence is less when compared with the previous case. Note that with
decreasing y the contribution of the term containing the average curvature H increases, but of the one
containing k decreases. In the case of normal incidence the second term depends on the average curvature
only. With increasing 7 one can observe the increase of the contribution of .

If the reflection point y* is hyperbolic (K <0) then the principal curvatures k; and k; have different signs.
Consequently, one of the principal sections is bent to the direction of chosen normal, and the other—to the
opposite direction. At such a point there exist two asymptotic directions (with k = 0) passing symmetrically
with respect to the principal directions. Near the hyperbolic reflection point the surface is of saddle shape. For
all that the sign of the third term with K is always negative, and the sign of the second term depends on the
values of H, lg, Y.

If the reflection point y* is parabolic (K = 0) then at least one value among k; and k; is zero. In the case
k1 = ko = 0 the respective result is discussed in Section 2. Let, for example, k1 #0, k; = 0. Then the quantities
H = k; and k = k, cos? ¢ have the same sign as k;, which can be either positive or negative. In the parabolic
case the third term is zero, and the second one has the same sign as the non-trivial principal curvature. For all
that in the case of normal incidence the geometrical properties of the surface are determined by the non-trivial
curvature of the principal section, which is present in the second term as a factor.

The presence of the coefficient V,,(y*) in the numerator of Eqgs. (17)—(41) indicates that the qualitative
properties of the reflection and mode conversion are the same as in the case of reflection from a plane tangent
to the given surface at the point of specular reflection.

The main conclusions of the above consideration can be directly transferred to the case of s—s reflection.

In the case of p—s and s—p transformations respective formulas are more complicated being dependent upon
many parameters when estimating quantitatively the reflected amplitude. The presence (as factors) of the
wavenumbers k, and k; (k, <k;) indicates a smaller contribution of all geometric parameters containing k,.
However, all conclusions about the influence of local geometric characteristics of the surface remain valid.
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