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Abstract

The vibrational power flow in a submerged infinite unconstrained viscoelastic cylindrical shell using wave propagation

approach is presented. The harmonic motion of the shell and the pressure field in the fluid is described by Flügge shell theory

and Helmholtz equation, respectively. The damping characteristics are considered by complex modulus method. Vibrational

power flow inputting into the coupled system and propagating along the shell axial direction are both studied. The numerical

results indicate input power flow varies with driving frequency and circumferential mode order, and the viscoelastic damping

layer will restrict the exciting force inputting power flow into the shell especially for a thicker damping layer and a higher

circumferential mode order. Cut-off frequencies do not exist in viscoelastic shell so that the exciting force can input power flow

into the shell at any frequency and for any circumferential mode order. Relative to the nearly linear attenuation form of

propagation power flow in elastic shell, propagation power flow in viscoelastic shell is exhibited in exponential attenuation

form. Viscoelastic layer will have a good damping effect especially at middle or high frequencies. The conclusion may be

valuable to the application of viscoelastic damping material on noise and vibration control of submarines and underwater pipes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of controlling the noise and vibration of mechanical structures is very important. An effective
way to solve the problem is to use the technique of surface damping treatment. When exposed to vibrations,
the high polymeric molecular properties exhibited by viscoelastic materials enhance the system damping,
thereby realizing considerable dissipation of vibration energy. Viscoelastic coating is usually used in two ways:
constrained and unconstrained layer configuration. In unconstrained layer damping, a viscoelastic damping
layer is fixed to an elastic base structure, so that energy dissipation occurs in extension. In constrained layer
damping, an additional elastic layer (which has an elastic modulus much higher than that of the damping
layer) is placed on the damping layer so that energy dissipation occurs in shearing. Vast numerations indicated
that energy dissipation in extension is much less than that in shearing, so the damping capacity of constrained
layer is better than that of unconstrained layer. However, since the constrained layer will add considerable
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

cf sound velocity in fluid
d the distance from midsurface radius to

viscoelastic shell interface
E1, E2 Young’s modulus of elastic material or

viscoelastic material
f vibratory frequency
F applied harmonic pressure
FL fluid loading
h1, h2 thickness of elastic layer or viscoelastic

layer
H ð2Þn the second kind of Hankel function of

order n

kns, k0, kr
s axial wavenumber, free wavenumber
or radial wavenumber

n circumferential modal number
N(x), T(x), S(x), M(x) axial force, torsional

shear force, transverse shear force or
bending moment of the shell

pf acoustic pressure
Pinput input power flow
P0input non-dimensional input power flow
PN(x), PT(x), PS(x), PM(x) power flow carried by,

axial force, torsional shear force, trans-
verse shear force or bending moment of x

cross-section
P0NðxÞ, P0TðxÞ, P0SðxÞ, P0MðxÞ PN(x)/Pshell(x), PT(x)/

Pshell(x), PS(x)/Pshell(x) or PM(x)/Pshell(x)

Pr radial force acting on the shell wall
Pshell(x) total power flow of x cross-section
P0shellðxÞ Pshell(x)/(0.5Pinput)
R shell midsurface radius
s a particular branch of the dispersion

curves
u, v, w, qw(x)/qx shell displacements and slope
~Uns; ~V ns; ~W ns shell spectral displacements

x, r, y cylindrical coordinate
l non-dimension axial wavenumber
o circular frequency
d Dirac delta function
m1, m2 Poisson’s ratio of elastic material or

viscoelastic material
Z1, Z2 loss factor of elastic material or viscoe-

lastic material
r1, r2 density of elastic material or viscoelastic

material
O, O1 non-dimension frequency of elastic shell

or viscoelastic shell
r
2 Laplace operator

Superscripts

* complex conjugate
( )0 Rqð Þ=qx

( )1 qð Þ=qy
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mass to the system while the construction process of unconstrained layer is rather simple, unconstrained
damping layer is still preferred in many practical situations.

The vibration analysis of a cylindrical shell with a free-layer damping treatment was first conducted by
Kagawa and Krokstad [1]. They presented five principal modes (axisymmetrical and axially unaxisymmetrical)
in a two-layered shell by introducing damping. The relevant loss factors for pure torsional, radial,
longitudinal, circumferential and flexural modes were derived for an infinitely long layered shell.
Unfortunately, the derived expressions for the loss factors were based on crude assumptions. The authors
were unable to identify the real damping mechanism, which in fact is due to extensional strains in the damping
treatment in both longitudinal and circumferential directions. Markuš [2] used classical thin shell theory to
study the damping properties of cylindrical shell of finite length, coated on the inside or outside, or on both
sides. He called these two-layered damped shells as ‘‘Oberst shell’’. Markuš [3] further analyzed the above
problem precisely, and also derived the control differential equation with classical thin shell theory. In both
articles, the author adopted the concept of ‘‘damped normal mode’’ [4] and analyzed the non-coupling
torsional mode and the coupling longitudinal-radial mode. He pointed out that mechanical dissipation
strongly depended on the ratio of thickness to radius (even in axisymmetric modes). Iyer [5] analyzed the
forced vibration problem and presented a method to solve forced vibration equations set. The mode response
at arbitrary frequency and the influence of the damping layer for different numeric results were also calculated
and discussed. Naiyar and Asnani [6] considered extensional deformation, shear deformation and high-order
inertia term on the base of classical theory, and calculated the loss factors of the coupling longitudinal-radial
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mode and the non-coupling torsional mode with linear elastic-viscoelastic theory. He also pointed out that it
would make mistake to calculate loss factors with classical thin shell theory.

Compared with full coverage, partial coverage was investigated to a less degree [7–9]. Besides, location and
shape optimization of unconstrained viscoelastic layers for a given weight material have been examined in the
literatures [10,11].

The concept of vibrational power flow is very valuable in the analysis of noise and vibration of a shell. Fuller
[12] investigated the forced input mobility of an infinite elastic circular cylindrical shell filled with fluid. Xu and
Zhang [13] investigated the vibrational power flow input from an external force and the transmission along the
shell axial direction by different internal forces of the shell wall. The results showed that the input power flow
and the power flow transmission depend mainly upon the characteristics of the free propagating waves in this
coupled system. Sorokin [14] formulated an energy flow through arbitrary cross-section of an infinitely long shell
at each circumferential mode number. An inspection into the energy redistribution between several transmission
paths in a near field and the influence of excitation conditions on steady fluctuations of the overall energy flow in
a far field was also performed. The authors [15] also studied the characteristics of the vibrational power flow
propagation in an infinite submerged periodic ring-stiffened cylindrical shell.

Although both vibrational power flow and viscoelastic damping layer concerning circular cylindrical shell
structure have been studied by numerous scholars, literatures about the characteristics of vibrational power
flow in submerged viscoelastic damping cylindrical shell are rarely found. In this paper, vibrational power flow
in a submerged infinite unconstrained viscoelastic cylindrical shell excited by a radial harmonic force is
investigated with wave propagation approach which was discussed in literature [16]. The harmonic motion of
the shell and the pressure field in the fluid is described by Flügge shell theory and Helmholtz equation,
respectively. The damping characteristics are considered by complex modulus method. Vibrational power flow
inputting into the coupled system and propagating along the shell axial direction are both studied. Numerical
computations are implemented and the influences of frequency, circumferential mode order as well as damping
material on the results are discussed, respectively.

This paper is organized in five sections. In Section 1, a brief introduction is given. In Section 2, the motion
equation of the coupled system is set up and the response to convected harmonic pressure is deduced. In
Section 3, input power into the coupled system and propagation power along the shell axial direction are
obtained. Numerical computations and relevant results discussion are carried through subsequently in Section
4, and Section 5 gives a brief summary of the conclusions.

2. The response of the coupled system to convected harmonic pressure

An infinite submerged cylindrical shell coated with unconstrained viscoelastic layer is considered. The
coordinate system and circumferential modal shapes are shown in Fig. 1. It is assumed the vibrations are small
and linear, which is appropriate in most vibroacoustic applications. It is also assumed that each layer of the
studied laminated shell structures is isotropic and homogeneous. Finally, if not defined directly in the text,
notations used may be found in Nomenclature.

The classical complex modulus method [2] is used to study the damping characteristics of structures.
Considering the coupling effect of fluid field and the radial exciting force, the wave motions in the shell wall
can be described by Flügge shell equations [9]
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Fig. 1. Coordinate system and circumferential modal shapes.
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where u, v and w are the displacements of the shell in the direction of the x-, r- and y-axes, respectively. Other
parameters are given in Appendix A.

The shell is excited by a harmonic line force F, acting on x ¼ 0, expressed as

F ðy; tÞ ¼ F 0 cosðnyÞdð0Þ expðiotÞ. (2)

The normal mode shapes assumed for the displacement of the shell wall, associated with a branch axial
wave number kns, can be expressed as the form of wave propagation

u ¼
P1

n¼0

P1
s¼1Uns cosðnyÞ expðiot� iknsxÞ;

v ¼
P1

n¼0

P1
s¼1V ns sinðnyÞ expðiot� iknsxÞ;

w ¼
P1

n¼0

P1
s¼1W ns cosðnyÞ expðiot� iknsxÞ;

8><
>: (3)

where subscript s denotes a particular branch of the dispersion curves.
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The acoustic wave equation for the fluid satisfies the Helmholtz equation [17] in cylindrical coordinates as

r2pf þ k2
0pf ¼ 0, (4)

where k0 ¼ o=cf .
To ensure the fluid remains in contact with the shell wall, the fluid radial displacement and the shell radial

displacement must be equal at the interface of the shell outer wall and the fluid. The coupling condition is
wfluid ¼ wshell at r ¼ R.

Taking the Fourier transform of Eqs. (1) and (4) and applying the coupling condition, the following
equations are obtained:

L11 L12 L13

L21 L22 L23

L31 L32 L33

2
64

3
75

~Uns

~Vns

~W ns

2
64

3
75 ¼

0

0
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2
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3
75, (5)
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Let matrix I be the inverse of matrix L, then the spectral displacements can be obtained from Eq. (5) as
follows:

~Uns
~V ns

~W ns

h iT
¼ I3�3½ � 0 0 X pl

h iT
, (6)

~Uns
~V ns

~W ns

h iT
¼ X pl I13 I23 I33

� �T
, (7)
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where the elements of matrix I can be easily obtained from the elements of matrix L as

I13 ¼ ðL12L23 � L13L22Þ=ðdet jLjÞ, (8a)

I23 ¼ ðL12L13 � L11L32Þ=ðdet jLjÞ, (8b)

I33 ¼ ðL11L22 � L12L21Þ=ðdet jLjÞ. (8c)

Application of the inverse Fourier transform of Eqs. (8) give the shell displacements as

uðxÞ ¼
1

2p

Z 1
�1

I13X pl cosðnyÞ expðiot� iknsxÞdðknsÞ; (9a)

vðxÞ ¼
1

2p

Z 1
�1

I23X pl sinðnyÞ expðiot� iknsxÞdðknsÞ; (9b)

wðxÞ ¼
1

2p

Z 1
�1

I33X pl cosðnyÞ expðiot� iknsxÞdðknsÞ: (9c)

3. Vibrational power flow analysis

3.1. Power flow input into the shell

When a harmonic external force F(y, t) is applied to the shell wall radially, the radial response of the shell
wall at x ¼ 0 can be obtained from Eqs. (9). Thus, the input power flow from this driving force is shown as
follows:

Pinput ¼

Z 2p

0

1

2
Re F0 cosðnyÞ

qwð0Þn

qt

� �
R dy ¼

p
2xn

Re ioF 0wð0Þ
n

� �
, (10)

where the asterisk denotes the complex conjugate, and

xn ¼
0:5; n ¼ 0;

1; na0:

(
(11)

The non-dimensional power flow is defined as

P0input ¼
Pinput

F2
0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1E1R2ð1� m21Þ

q
. (12)

3.2. Power flow propagation along the shell axial direction

When an external harmonic line force is applied radially on the wall of the fluid-loaded viscoelastic
shell, the forced vibration waves will propagate in the shell-fluid coupled system, and thus the power
flow will also be transmitted along the shell axial direction. At the cross-section x, the shell displacements
u(x), v(x), w(x) and slope qwðxÞ=qx can be obtained from Eqs. (9). Meanwhile, there will be four
internal forces (moments) of the shell wall along the axial direction which can be easily derived from
Flügge shell theory [18]. Then, the vibrational power flow transmitted by these forces (moments) can be
expressed as

PNðxÞ ¼
1
2

Z 2p

0

Re NðxÞðioÞuðxÞn
� �

Rdy, (13a)

PTðxÞ ¼
1
2

Z 2p

0

Re TðxÞðioÞvðxÞn
� �

Rdy, (13b)
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PSðxÞ ¼
1
2

Z 2p

0

Re SðxÞð�ioÞwðxÞn
� �

Rdy (13c)

PMðxÞ ¼
1
2

Z 2p

0

Re MðxÞðioÞðqwðxÞ=qxÞn
� �

Rdy. (13d)

The total vibrational power flow in the shell wall is the sum of the component power flow carried by internal
forces (moments) and expressed as

PshellðxÞ ¼ PNðxÞ þ PTðxÞ þ PSðxÞ þ PMðxÞ. (14)

Once the external harmonic line force inputs power flow into the coupled system, the power flow in the shell
transmitted along the axial direction can be known. According to symmetry, half of the input power will be
transmitted in the positive direction of the shell axial while the other half will be transmitted in the opposite
direction. Thus, the relative propagation power flow P0shellðxÞ ¼ PshellðxÞ=ð0:5PinputÞ (x40) is defined to describe
the characteristics of the power flow in the shell transmitted along the axial direction. In the same time, the
ratios of the power flow carried by different shell internal forces (moments) (those are P0NðxÞ ¼ PNðxÞ=PshellðxÞ,
P0TðxÞ ¼ PTðxÞ=PshellðxÞ, P0SðxÞ ¼ PSðxÞ=PshellðxÞ and P0MðxÞ ¼ PMðxÞ=PshellðxÞ, respectively) to the total power in the
shell wall also can be obtained.

4. Numerical computation and results discussion

The integrals in Eqs. (9) can be obtained by using a numerical integral method. This method is to integrate
numerically along the pure imaginary axis of the complex wave number domain. Damping is introduced into
the shell material by modifying the Young’s modules E to be complex such as E0 ¼ Eð1þ iZÞ. Thus,
singularities in the integrand function along the integration path can be avoided and solution of free wave
numbers of this system is unnecessary. Fuller [19] used this method to study the radiation of sound from an
infinite elastic cylindrical shell excited by an internal monopole source. Xu and Zhang [20] used it to study the
input energy flow into a shell filled with fluid.

For the infinite condition, the upper truncation point of the integral range has to be decided to obtain the
results. In this paper, the value of integral in [�b, b] is compared with that in [�0.5b, 0.5b]. If the difference is
less than 1%, then b will be taken as the upper truncation point. When the integral range is decided, it is
divided into many small integral ranges and the Gauss integral method is used in each integral range. This
method is found to provide sufficient accuracy on the final results.

The following parameters of the coupled system have been used in the computations. E1 ¼ 1:92�
1011ð1� iZ1Þ N=m

2, Z1 ¼ 0.02, r1 ¼ 7800 kg/m3, m1 ¼ 0.3, the parameters of the discussed viscoelastic material
change with vibratory frequency and can be expressed as E2 ¼ 3:0307� 106f 0:625

ð1þ iZ2Þ N=m
2 and

Z2 ¼ 1.6274f�0.072, r2 ¼ 1100 kg/m3, m2 ¼ 0.4, h1 ¼ h2 ¼ 0.02R, rf ¼ 1000 kg/m3, cf ¼ 1500m/s. The magni-
tude of radial harmonic line force is supposed to be F ¼ 1N.

4.1. Power flow input into the shell

The non-dimensional input power flow P0input against the non-dimensional driving frequency O for
viscoelastic shell of different circumferential mode order n is plotted in Fig. 2. In order to investigate the
influence of viscoelastic layer, the results of elastic shell are also plotted. As shown in the graphs, the
input power flow varies with circumferential mode order and non-dimensional frequency. Resonance
hump, at least one, will be shown on the input power flow curve for both elastic shell and viscoelastic
shell in the frequency band of interest. As an additional mass, the viscoelastic layer will greatly
influence the input power flow. Compared with the results of elastic shell, the stiffness of viscoelastic shell
is increased, so the input power flow of viscoelastic shell becomes gentler and its amplitude declines. It
indicates viscoelastic layer will restrict inputting power flow into the shell. With the increasing of the
circumferential mode order, the vibration of the shell will present a more complex state and the reduced
amplitude of resonance hump is further enlarged. Therefore, a conclusion can be drawn that the viscoelastic
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layer can restrict the exciting force inputting power flow into the shell effectively when the circumferential
mode order is high. For elastic shell, there exist so-called cut-off frequencies for some circumferential
mode order. At those frequencies, the exciting force cannot input power flow into the structure [20].
But for viscoelastic shell, cut-off frequencies do not appear due to the influence of viscoelastic damping.
This implies the exciting force can input power flow into the shell at any frequency and for any circumferential
mode order.

Besides, it can be found that the effects of the damping are not so apparent at low frequencies for all
circumferential mode order. With the increasing frequency, the effects of damping on restricting the input
power flow become effective.
4.2. Influence of the damping layer thickness on the input power flow

The influences of the damping layer thickness on the input power flow for circumferential mode order n ¼ 2
and 5 are given in Fig. 3. As shown in the drawings, the input power flow is reduced as the damping layer
thickness increased from h2 ¼ h1 to h2 ¼ 1.5h1. Considered the influence of mode order, the resonance hump is
crippled obviously especially for a higher circumferential mode order. It implies viscoelastic layer will play a
more important role when the circumferential mode order is higher. But beyond resonance frequency, the
effects of damping are limited. So once the external load is given in practice, it can be concluded viscoelastic
damping will be more effective in restraining structure resonance and a thicker damping layer will be very
helpful.
4.3. Power flow propagation along the shell axial direction

The relative propagation power flow P0shellðxÞ, P0NðxÞ, P0TðxÞ, P0SðxÞ and P0MðxÞ against the non-dimensional axial
distance x/R are studied in Fig. 4. The analyses are focused on three typical frequencies (those are low
frequencies O ¼ 0.3, middle frequencies O ¼ 1.2 and high frequencies O ¼ 5.0, respectively.) for
circumferential mode order n ¼ 5. In the drawings, negative value denotes power flow may be transmitted
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in opposite direction. In order to investigate the influence of viscoelastic layer, the results of an elastic shell are
also plotted.

As shown in the graphs, the characteristics of the propagation power flow of viscoelastic shell are similar to
those of elastic shell. At the driving point, x/R ¼ 0, there is P0shellðxÞ ¼ 1 for any circumferential mode order n

and non-dimensional frequency O. At close range of the driving point, P0shellðxÞ � P0SðxÞ, the total energy is
almost concentrated on flexural motion. When x/R increases, P0shellðxÞ will couple with the fluid and gradually
attenuates because of damping and sound radiation.

At low frequencies (O ¼ 0.3, as shown in Fig. 4(1)), P0SðxÞ þ P0MðxÞ5P0NðxÞ þ P0TðxÞ, the power flow in
the shell is mainly carried by axial force and torsional shear force. At middle or high frequencies (as shown in
Figs. 4(2) and 4(3)), P0SðxÞ þ P0MðxÞbP0NðxÞ þ P0TðxÞ, the motion of the shell wall is mainly in radial direction
and the power flow in the shell is mainly carried by transverse shear force and bending moment. For all
frequencies O and circumferential mode orders n, P0SðxÞ � P0MðxÞ, which means the power transmitted by the
transverse shear force equals that transmitted by the bending moments. Due to the energy dissipation of
damping and sound radiation, propagation power flow, P0shellðxÞ, is attenuated along the shell axial direction.
The decay speed of viscoelastic shell is much quicker than that of elastic shell, and the power is almost
exhausted at x/R ¼ 5.

Compared with the nearly linear attenuation mode of elastic shell, the attenuation of viscoelastic shell is
exhibited in exponential form. So the propagation power flow will quickly be attenuated at middle or high
frequencies due to viscoelastic damping. Considering the previous discussions about the input power flow in
viscoelastic shell, a conclusion can be drawn that viscoelastic damping layer will have a good energy
attenuation effect at middle or high frequencies.
5. Conclusions

By using wave propagation approach, the characteristics of the vibrational power flow in an
infinite submerged unconstrained viscoelastic cylindrical shell are studied analytically. Several typical
numerical computations are implemented and some comparisons are made with those of elastic
shell.

The input power flow varies with circumferential mode order and frequency, and the viscoelastic
damping layer will restrict the exciting force input power flow into the shell especially for a thicker
damping layer and a higher circumferential mode order. Cut-off frequencies do not exist in viscoelastic
shell so that the exciting force can input power flow into the shell at any frequency and for any circumferential
mode order.

According to the symmetry propagation of power flow, at the driving point, x/R ¼ 0, there is
Pshell(x) ¼ 0.5Pinput for any circumferential mode order n and non-dimensional frequency O. When non-
dimensional axial distance x/R increases, P0shellðxÞ will couple with the fluid and gradually attenuates because of
damping and sound radiation.

Considered the power flow transmitted by different internal forces (moments) of the shell wall,
it can be found the power flow is mainly carried by axial force and torsional shear force at low
frequencies while it is mainly carried by transverse shear force and bending moment at middle or high
frequencies.

Relative to the nearly linear attenuation form of propagation power flow in elastic shell, propagation power
flow in viscoelastic shell is exhibited in exponential attenuation form. Viscoelastic damping layer will have a
good energy attenuation effect especially at middle or high frequencies.
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Appendix A

A1 ¼ 1þ EB; E ¼ S2=S1; S1 ¼ E1=ð1� m21Þ; S2 ¼ E2=ð1� m22Þ,

E2 ¼ En

2ð1þ iZ2Þ; B ¼ h2=h1; AF 1 ¼ 1=G11 þ EB=G22; G11 ¼ 1þ d1h�
1
2

h,

G22 ¼ 1þ d1h�
1
2

Bh; h ¼ h1=R; d1 ¼ d=h1 ¼
1

2

1� EnB2

1þ EnB
; En ¼ Sn

2=S1,

Sn

2 ¼ En

2=ð1� m22Þ; AF 1r ¼ m1=G11 þ EBm2=G22,

BT1 ¼
h2

12
ð1=G11Þ

3
þ EðB=G22Þ

3
� �

; D ¼ E1h1= 1� m21

 �

,

m ¼ ðr1h1 þ r2h2Þ; A1r ¼ m1ð1þ EBnÞ; n ¼ m2=m1,

D1r ¼ hm1
1
3
ð1� EB2nÞ � 2d1ð1þ EBnÞ

� �
,

B1 ¼ h2 1
3
ð1þ EB3Þ � d1ð1� EB2Þ þ d2

1ð1þ EBÞ
� �

,

BT1r ¼
h2

12
m1ð1=G11Þ

3
þ Em2ðB=G22Þ

3
� �

,

BD ¼ 1
4

D1r �
1
2
ðA1 � A1rÞ þ

1
2
ðAF 1 � AF 1rÞ þ

1
2
ðBT1 � BT1rÞ,

AQ ¼ 3
4

D1r þ
1
2
ðA1 � A1rÞ þ

3
2
ðB1 � B1rÞ �

1
4
ðAP1 � AP1rÞ,

B1r ¼ h2m1
1
3
ð1þ EB3nÞ � d1ð1� EB2nÞ þ d2

1ð1þ EBnÞ
� �

,

AP1 ¼ h3
ð1� EB4Þ � 4d1ð1þ EB3Þ þ 6d2

1ð1� EB2Þ � 4d3
1ð1þ EBÞ

� �
,

AP1r ¼ h3m1 ð1� EB4nÞ � 4d1ð1þ EB3nÞ þ 6d2
1ð1� EB2nÞ � 4d3

1ð1þ EBnÞ
� �

.
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