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Abstract

An approximate solution procedure is formulated for free vibration analysis of tube-in-tube tall buildings in this paper.

The governing partial differential equation of motion is reduced to an ordinary differential equation with variable

coefficients on the assumption that the transverse displacement is a harmonic vibration. A power-series solution which

represents the mode shape function of tube-in-tube tall buildings is derived. Applying the boundary conditions yields the

boundary value problem, from which the frequency equation is established and solved through a numerical process to

determine the natural frequencies. Two numerical examples are performed and compared with results available in the

published literature to show the accuracy of the proposed method. Care has been exercised to retain sufficient terms in

power series in evaluating natural frequencies of accepted accuracy. The influences of the factors including flexural rigidity,

mass per unit length and building height to the natural frequency are discussed. The method proposed herein enables one

to calculate as an alternative the natural frequency of tube-in-tube tall buildings with good accuracy associated by

calculators and hand, prior to use of the complicated computer programs.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Free vibration analysis plays an important role in the structural design of tall buildings, especially for the
first mode because the first mode shape is a dominant component in wind- and earthquake-induced vibrations
of tall buildings. Therefore, it is important to investigate the calculating methods of natural frequencies and
mode shapes for tall buildings. Many researchers in structural engineering have devoted to obtain accurate
theoretical results for the free vibration of tall buildings in the past decades. Wang [1] obtained a formula
directly from the fourth-order Sturm–Liouville differential equations for calculating the natural frequencies of
tube-in-tube tall buildings. The variation principle is adopted to derive the fourth-order Sturm–Liouville
differential equation and corresponding conditions at the end points. Wang [2] soon extended his work to
modify the ODE solver program to calculate a numerical solution of eigenvalues for free vibration of tube-in-
tube tall buildings.

An effective approach based on the classical power-series method (i.e. method of Frobenius) for solving
ordinary differential equations having variables coefficients has widely been applied to solve similar
complicated vibration problems. In recent years for instance, Eisenberger [3] adopted power-series solution in
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

an the coefficient of the nth term of the
power-series solution

Ci arbitrary coefficients of general solution
D4� 4 the (4� 4) coefficient matrix of the

unknowns
EI(x) the flexural rigidity of a tall building
EIf the flexural rigidity of outer tube
EIj the coefficient of the jth term for the

power series of EI(x)
EIw the flexural rigidity of inner tube
h the story height
H the total height of the building
i an integer representing the number of

terms in each series
j an integer representing the number of

term
Kf the equivalent story shearing rigidity of

the outer tube

mj the coefficient of the jth term for the
power series of m(x)

m(x) mass per unit length
n an integer representing the number of

term
Nj the coefficient of the jth term for the

power series of N(x)
P(x,t) the applied external force
o the circular natural frequency
x coordinate with base of the building
y(x,t) transverse displacement of the building
Y(x) the mode shape function
Y(n)(x) the nth derivatives of Y(x)

a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kf h 1

EIf
þ 1

EIw

� �r

x nondimensional coordinates for x

l eigenvalues of the frequency equation
( ¼ o2)
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obtaining the vibration frequencies of beams on variable one- and two-parameter elastic foundations. Fung et
al. [4] used power-series method to express the homogeneous solution in calculating the vibration frequencies
of a rotating flexible arm carrying a moving mass.

In this paper, an approximate solution procedure is formulated for free vibration analysis of tube-in-tube
tall buildings. The governing partial differential equation of motion is reduced to an ordinary differential
equation with general variable coefficients on the assumption that the transverse displacement is a harmonic
vibration. For which a power-series solution, which represents the mode shapes of tube-in-tube tall buildings
is obtained. Applying the boundary conditions yields the eigen-value problem of finding the natural
frequencies of tall buildings. To obtain a non-trivial solution of the system, the determinant of the matrix of
the coefficients is set to zero for the natural frequencies. A numerical example of analyzing the free vibration
and evaluating the natural frequencies for a tube-in-tube tall building are performed. Care has been exercised
to retain sufficient terms in power series in evaluating accurate natural frequencies. Comparisons are also
made with results available in the published literature to show accuracy of the method. In order to discuss the
influences of the factors including flexural rigidity, mass per unit length and total height to the natural
frequency of the buildings, calculation of the natural frequencies for 756 tube-in-tube tall buildings which
having different number of storey, flexural stiffness and mass per unit length is achieved. The main objectives
of this paper are (a) to develop a power-series solution procedure as an alternative method for free vibration
analysis of tube-in-tube tall buildings. (b) To discuss the accuracy of the power-series solution with finite
terms. (c) To discuss the influences of the factors including flexural rigidity, mass per unit length and total
height to the natural frequency of the buildings for tube-in-tube tall buildings.
2. Problem formulation and solution

2.1. Power-series solution procedure

Consider a tall building with flexural rigidity EI(x), axial compression force N(x), mass per unit
length m(x), and subjected to the applied lateral force P(x,t) as shown in Fig. 1, the differential equation
that governs the transverse displacement y(x,t) can be expressed as a fourth-order partial differential
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Fig. 1. A tall building model with general variable cross-section.
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equation [5,9,11] as

q2

qx2
EIðxÞ

q2yðx; tÞ
qx2

� �
þ

q
qx

NðxÞ
qyðx; tÞ

qx

� �
þmðxÞ

q2yðx; tÞ

qt2
¼ Pðx; tÞ (1)

in which damping effects is neglected in Eq. (1). For analyzing free vibration of the building, one can set the
applied external force P(x,t) to zero. To separate the variables of Eq. (1), the transverse displacement y(x,t) is
assumed to be a harmonic vibration

yðx; tÞ ¼ Y ðxÞeiot, (2)

where Y(x) is the mode shape function and o is the circular natural frequency. By substituting Eq. (2) into Eq.
(1), the governing equation for the mode shape function Y(x) then reduces to a fourth-order ordinary
differential equation

d2

dx2
EIðxÞ

d2Y ðxÞ

dx2

� �
þ

d

dx
NðxÞ

dY ðxÞ

dx

� �
� o2mðxÞY ðxÞ ¼ 0. (3)

Its evident that Eq. (3) is a homogeneous ordinary differential equation with variable coefficients when the
flexural stiffness, axial loads and mass per unit length are general functions of x. To obtain the exact solution
of Eq. (3) by using ordinary trigonometric or hyperbolic functions is difficult. The problem can be solved
exactly by the power-series solution method. To derive the power-series solution of Eq. (3), the coefficients in
the equation are taken to have the following polynomial forms

EIðxÞ ¼
Xi

j¼0

EIjx
j ; NðxÞ ¼

Xi

j¼0

Njx
j ; mðxÞ ¼

Xi

j¼0

mjx
j. (4)

Here, i is an integer representing the number of terms in each series, EIj denotes the coefficient of the jth
term for the power series of EI(x), Nj is the coefficient of the jth term for the power series of N(x), and mj is the
coefficient of the jth term for the power series of m(x). Now the solution Y(x) is taken to be an infinite power
series

Y ðxÞ ¼
X1
i¼0

yix
i, (5)
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where yi is an arbitrary coefficient. Calculating all the derivatives of Eq. (5) and substituting them into
Eq. (3) yield

X1
i¼0

Xi

j¼0

i � j þ 2ð Þ i � j þ 1ð Þ j þ 2ð Þ j þ 1ð ÞEIjþ2yi�jþ2xi

þ
X1
i¼0

Xi

j¼0

2 j þ 1ð Þ i � j þ 3ð Þ i � j þ 2ð Þ i � j þ 1ð ÞEIjþ1yi�jþ3x
i

þ
X1
i¼0

Xi

j¼0

i � j þ 4ð Þ i � j þ 3ð Þ i � j þ 2ð Þ i � j þ 1ð ÞEIjyi�jþ4x
i þ
X1
i¼0

Xi

j¼0

j þ 1ð Þ i � j þ 1ð ÞNjþ1yi�jþ1x
i

þ
X1
i¼0

Xi

j¼0

i � j þ 2ð Þ i � j þ 1ð ÞNjyi�jþ2xi �
X1
i¼0

Xi

j¼0

o2mjyi�jx
i ¼ 0. ð6Þ

Using the property of identity for each term of Eq. (6), one must have

yi�jþ4 ¼
1

i � j þ 4ð Þ i � j þ 3ð Þ i � j þ 2ð Þ i � j þ 1ð ÞEIj

o2mjyi�j � i � j þ 2ð Þ i � j þ 1ð Þ j þ 2ð Þ j þ 1ð ÞEIjþ2yi�jþ2

�
� 2 j þ 1ð Þ i � j þ 3ð Þ i � j þ 2ð Þ i � j þ 1ð ÞEIjþ1yi�jþ3 � j þ 1ð Þ i � j þ 1ð ÞNjþ1yi�jþ1

� i � j þ 2ð Þ i � j þ 1ð ÞNjyi�jþ2

�
for i ¼ 0�1; j ¼ 0� i. ð7Þ

Eq. (7) is the recursion relationship for every yi. It is noted that the term of yi�j+4 tends to be zero as the
number of terms i approaches the infinity. Thus, the general solution y(x,o) can be obtained from Eq. (7) as

Y ðxÞ ¼ C1Y 1ðx;oÞ þ C2Y 2ðx;oÞ þ C3Y 3ðx;oÞ þ C4Y 4ðx;oÞ. (8)

The coefficients Ci, i ¼ 1–4, are arbitrary coefficients which can be obtained by applying the boundary
conditions of the problem. To obtain a non-trivial solution of the system, the determinant D4� 4 of the matrix
of the coefficients is set to zero

D4�4ðoÞ ¼ 0. (9)

Eq. (9) formulates in the frequency equation of free vibration for tall buildings. The natural frequencies can
be obtained by solving the Eq. (9). Theoretical derivations of a tube-in-tube tall building and a cantilever one
are performed in the following sections.
2.2. Free vibration analysis of tube-in-tube tall buildings

The governing equation for the transverse displacement of free vibration for a tube-in-tube tall building as
shown in Fig. 2 has been derived as [5]

q4y x; tð Þ

qx4
� a2

q2y x; tð Þ

qx2
þm

1

EIw

�
a2x2

2EI

� �
q2y x; tð Þ

qt2
¼ 0, (10)

where y(x,t) denotes the transverse displacement of the tube-in-tube tall building, and

a2 ¼ Kf h
1

EIf

þ
1

EIw

� �
(11)

in which Kf is the equivalent story shearing rigidity of the outer tube, h the story height, EIf the flexural rigidity
of outer tube, EIw the flexural rigidity of inner tube, m the mass per unit height, and EI the sum of flexural
rigidity for inner tube and outer tube.

The solution of Eq. (10) for y(x,t) can be expressed as a harmonic vibration

y x; tð Þ ¼ Y xð Þeiot,
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Fig. 2. A tube-in tube tall building model.
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where o is the natural frequency of the building, Y(x) is the mode shape function. By substituting the
expression of the solution into Eq. (10), the fourth-order ordinary differential equation governing Y(x) can be
extracted as

Y ð4Þ xð Þ � a2Y 00 xð Þ �mo2 1

EIw

�
a2x2

2EI

� �
Y xð Þ ¼ 0. (12)

By introducing a non-dimensional axial coordinate in x direction

x ¼
x

H
0pxp1ð Þ. (13)

And inserting Eq. (13) into Eq. (12), one can obtain

Y ð4Þ xð Þ � a2H2Y 00 xð Þ �mH4o2 1

EIw

�
a2H2x2

2EI

� �
Y xð Þ ¼ 0, (14)

where H denotes the total height of the building. It is obvious that Eq. (14) is a fourth-order ordinary
differential equation with variable coefficients and x ¼ 0 is an ordinary point of the equation. Hence, the
power-series solution method can be applied to derive the solution of Y(x) with the independent variable x. Let
us assume

Y xð Þ ¼
X1
n¼0

anx
n 0pxp1ð Þ (15)

then

Y 00 xð Þ ¼
X1
n¼2

n n� 1ð Þanx
n�2; Y ð4Þ xð Þ ¼

X1
n¼4

n n� 1ð Þ n� 2ð Þ n� 3ð Þanx
n�4. (16a,b)
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By substituting Eqs. (15) and (16a,b) into Eq. (14) and shifting the indices, one can obtain the series
expression of the ordinary differential Eq. (14) as

X1
n¼4

n n� 1ð Þ n� 2ð Þ n� 3ð Þanx
n�4
� a2H2

X1
n¼4

n� 2ð Þ n� 3ð Þan�2x
n�4

�
mH4l
EIw

X1
n¼4

an�4x
n�4
þ

mH6a2l
2EI

X1
n¼6

an�6x
n�4
¼ 0, ð17Þ

where l ¼ o2. Using the property of identity, for n ¼ 4, the coefficient a4 can be obtained as

a4 ¼
1

4!

mH4l
EIw

a0 þ 2a2H2a2

� �
. (18)

Similarly, for n ¼ 5, the coefficient a5 can be achieved as

a5 ¼
1

5!

mH4l
EIw

a1 þ 6a2H2a3

� �
(19)

and the recursion relationships for any nX6 can be determined as

an ¼
1

n n� 1ð Þ n� 2ð Þ n� 3ð Þ

mH4l
EIw

an�4 þ n� 2ð Þ n� 3ð Þa2H2an�2 �
mH6a2l
2EI

an�6

� �
. (20)

From Eq. (20), the general solution for Y(x) can be obtained as

Y xð Þ ¼ C1Y 1 x; lð Þ þ C2Y 2 x; lð Þ þ C3Y 3 x; lð Þ þ C4Y 4 x; lð Þ, (21)

where

Y 1 x; lð Þ ¼ 1þ
mH4l
4!EIw

x4 þ
1

360

a2H6ml
2EIw

�
a2H6ml
2EI

� �
x6 þ � � � ,

Y 2 x; lð Þ ¼ xþ
mH4l
5!EIw

x5 þ
1

840

a2H6ml
6EIw

�
a2H6ml
2EI

� �
x7 þ � � � ,

Y 3 x; lð Þ ¼ x2 þ
2a2H2

4!
x4 þ

1

360

mH4l
EIw

þ a4H4

� �
x6 þ � � � ,

Y 4 x; lð Þ ¼ x3 þ
6a2H2

5!
x5 þ

1

840

mH4l
EIw

þ a4H4

� �
x7 þ � � � . ð22a2dÞ

It is noted that only the first three terms of the solution are figured out in Eq. (22). In order to discuss the
rate of convergence of the power-series solution, a further study including the higher-order terms of the
solution is derived in Section 3.

To determine the natural frequencies of free vibration for a tube-in-tube tall building the boundary
conditions are discussed. With the structure assumed to be fixed at the base such that the cross-section of the
tube does not rotate at its bottom, the boundary conditions at the base are

Y 0ð Þ ¼ 0;Y 0 0ð Þ ¼ 0. (23a2b)

Meanwhile, since the bending moment is only that of the inner tube at the top, the corresponding boundary
condition is

Y 00ð1Þ ¼ 0. (24)

Furthermore, because the shear forces on the inner and outer tubes at any level along the structural height
are in equilibrium, it yields [1]

Y 000ð1Þ � a2H2Y 0ð1Þ ¼ 0. (25)
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From Eqs. (23) to (25), the characteristic equation of the boundary value problem can be derived for
obtaining non-trivial solutions as

Y 1 0; lð Þ Y 2 0; lð Þ Y 3 0; lð Þ Y 4 0; lð Þ

Y 01 0; lð Þ Y 02 0; lð Þ Y 03 0; lð Þ Y 04 0; lð Þ

Y 001 1; lð Þ Y 002 1; lð Þ Y 003 1; lð Þ Y 004 1; lð Þ

Y 0001 1; lð Þ � a2H2Y 01 1; lð Þ Y 0002 1; lð Þ � a2H2Y 02 1; lð Þ Y 0003 1; lð Þ � a2H2Y 03 1; lð Þ Y 0004 1; lð Þ � a2H2Y 04 1; lð Þ

����������

����������
¼ 0.

(26)

Eq. (26) is the frequency equation for free vibration of a tube-in-tube tall building. The natural frequency
can be determined by solving Eq. (26).
3. Numerical examples

3.1. Free vibration analysis of a tube-in-tube tall building

A typical tube-in-tube tall building studied by Wang [1] is adopted as a numerical example for the present
study to check the accuracy of the proposed method. The plan layout of the building is shown in Fig. 3. The
flexural rigidity of the outer tube is EIf ¼ 35.2872� 109 kNm2, the flexural rigidity of the inner tube is
EIw ¼ 7.5538� 109 kNm2, mass per unit length is m ¼ 325.828 t/m, the total height of the building is
H ¼ 75.9m, and the value of a is a ¼ 0.0133974546. By inserting these data into Eq. (22), we obtain

Y 1 x; lð Þ ¼ 1þ 0:059645651lx4 þ 1:693202737� 10�3lx6 þ � � � ,

Y 2 x; lð Þ ¼ xþ 0:011929130lx5 þ 1:382803942� 10�4lx7 þ � � � ,

Y 3 x; lð Þ ¼ x2 þ 0:086168175x4 þ 3:976376729� 10�3lx6 þ 2:969981738� 10�3x6 þ � � � ,

Y 4 x; lð Þ ¼ x3 þ 0:051700905x5 þ 1:704161455� 10�3lx7 þ 1:272849316� 10�3x7 þ � � � . ð27a2dÞ

Substituting Eq. (27) into Eq. (26) and solving the frequency equation through a numerical process yield
o1 ¼ 3.5180 rad/s and o2 ¼ 20.7630 rad/s. The values of natural frequencies obtained herein by the proposed
method are compared with the ones found by solving the Sturm–Liouville equation [1], the mode
superposition method [1] and the empirical method [6], respectively, in Table 1.

It is noted that Eq. (27a–d) figures merely out the first three terms of the power-series solution. In order to
show the improvement of the proposed procedure compared to published results the rate of convergence of the
power-series solution is checked. The mode shape functions including the first six terms are derived and shown
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Fig. 3. Plan layout of the tube-in tube tall building studied (unit:cm).
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Table 1

Natural frequencies (rad/s) of a tube-in-tube tall building with different approaches

Methods Present S.-L. equation M.S.M. Empirical

o1 3.5180 3.4620 3.2785 3.1566

o2 20.7630 21.5250 17.9212 —

Table 2

Natural frequencies obtained for different number of terms (rad/s)

Number of terms 2 3 4 5 6

o1 3.8806 3.5180 3.4797 3.4662 3.4641

Error (%) 12.09 1.62 0.51 0.12 0.06

1
2
3
4
5
6
7
8
9
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12
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Number of Modes

E
rr
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 %

 

Fig. 4. Accuracy of the natural frequency.
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in Appendix A. Thereby, the series are approximated by a finite number of N terms (2pNp6) and the error
for the natural frequency of the first mode according to

error ðNÞ ¼
oN

1 � o1;ref

o1;ref

����
����� 100 (28)

is calculated for each number of N. In Eq. (28), the superscript ( )N denotes the number of terms used in the
approximation of the corresponding expression, and o1,ref is the reference solution.The error is shown in
Table 2 and Fig. 4.

3.2. Free vibration analysis of tube-in-tube tall buildings for different flexural rigidity, mass per unit length and

building height

To discuss the influences of the factors including flexural rigidity, mass per unit length and total height to
the natural frequency of the buildings, a total number of 756 tube-in-tube tall buildings have been analyzed in
this study. The total heights of the buildings are from 60 to 120m. The flexural stiffness of the inner tube varies
from 5� 109 to 10� 109 kNm2 and from 30� 109 to 55� 109 kNm2 for outer tube. As a result, the sum of
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Fig. 5. Natural frequencies for EI ¼ 35� 109 kNm2 (EIw ¼ 5� 109 kNm2, EIf ¼ 30� 109 kNm2).
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flexural rigidity for inner tube and outer tube are between 35� 109 and 65� 109 kNm2. Meanwhile, the mass
per unit length is between 260 and 360 t/m. The natural frequencies obtained for different flexural stiffness are
shown in Figs. 5–10. On the other hand, the relationship between the natural frequencies and flexural stiffness
are shown in Figs. 11–13. Finally, the influences of mass per unit length to the natural frequencies are shown in
Figs. 14–16.
3.3. Free vibration analysis of a building with generally variable cross-section

For the building with generally variable cross-section as shown in Fig. 1, a power function expression of
flexural stiffness, axial loads and mass per unit length which has been discussed in literature [7] is selected as an
example

EI xð Þ ¼ EI0 1þ bxð Þ
mþ2;N xð Þ ¼ N0 1þ bxð Þ

mþ1;m xð Þ ¼ m0 1þ bxð Þ
m. (29)

By substituting Eq. (29) into Eq. (3), one can obtain

EI0
d2

dx2
ð1þ bxÞmþ2

d2Y ðxÞ

dx2
þN0

d

dx
ð1þ bxÞmþ1

dY ðxÞ

dx

� �
�m0ð1þ bxÞmo2Y ðxÞ ¼ 0. (30)
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Eq. (30) can be expressed in power series form as

EI0b
4
X1
n¼0

nþ rð Þ nþ r� 1ð Þ nþ r� 2ð Þ nþ r� 3ð ÞanZnþrþm�2 þ 2EI0b
4 mþ 2ð Þ

X1
n¼0

nþ rð Þ nþ r� 1ð Þ

� nþ r� 2ð ÞanZnþrþm�2 þ EI0b
4 mþ 2ð Þ mþ 1ð Þ

X1
n¼0

nþ rð Þ nþ r� 1ð ÞanZnþrþm�2 þN0b
2

� mþ 1ð Þ
X1
n¼1

nþ r� 1ð Þan�1Znþrþm�2 þN0b
2 mþ 1ð Þ

X1
n¼1

nþ r� 1ð Þ nþ r� 2ð Þ

� an�1Znþrþm�2 �m0l
X1
n¼2

an�2Znþrþm�2 ¼ 0. ð31Þ

where l ¼ o2, x ¼ x/H, and Z ¼ (1+bHx). The power-series solution of mode shape functions can be
obtained from solving Eq. (31) as

Y 1 x; lð Þ ¼ 1þ bHxð Þ �
N0

4EI0b
2
1þ bHxð Þ

2
þ

m0lþN2
0=EI0

� 	
36EI0b

4
1þ bHxð Þ

3
�

2m0N0lþN3
0=EI0

576 EI0ð Þ
2b6

1þ bHxð Þ
4
þ � � �

" #
,
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Since the structures are assumed be fixed at the base such that the cross-section of the building does not
rotate at its bottom, the boundary conditions at the base are [7,10]

Y 0ð Þ ¼ 0; Y 0 0ð Þ ¼ 0. (33a2b)
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On the other hand, the bending moment and the shear force is free at the top, the corresponding boundary
conditions are

EIY 00ð1Þ þNY ð1Þ ¼ 0; ðEIY 00ð1Þ þNY ð1ÞÞ0 ¼ 0. (34a2b)

The frequency equation of the building can be expressed as

Y 1 0; lð Þ Y 2 0; lð Þ Y 3 0; lð Þ Y 4 0; lð Þ

Y 01 0; lð Þ Y 02 0; lð Þ Y 03 0; lð Þ Y 02 0; lð Þ

EIY 001 1; lð Þ þNY 1 1; lð Þ EIY 002 1; lð Þ þNY 2 1; lð Þ EIY 003 1; lð Þ þNY 3 1; lð Þ EIY 004 1; lð Þ þNY 4 1; lð Þ

EIY 001 1; lð Þ þNY 1 1; lð Þ
� 	0

EIY 002 1; lð Þ þNY 2 1; lð Þ
� 	0

EIY 003 1; lð Þ þNY 3 1; lð Þ
� 	0

EIY 004 1; lð Þ þNY 4 1; lð Þ
� 	0

����������

����������
¼ 0

(35)

A typical shear-wall tall building with 27-storeys studied by Li [7] is adopted as a numerical example. Based
on the full-scale measurement of free vibration [8], this building can be treated as a cantilever bar with variable
cross-section under various axial loads. Because the variation is comparatively small, the mass per unit length
is reasonably assumed uniformly distributed along the height of the building. One can obtain

m xð Þ ¼ m0 1þ bxð Þ
0. (36)

The distributions of flexural stiffness and axial loading are assumed as

NðxÞ ¼ N0 1þ bxð Þ
1; EI xð Þ ¼ EI0 1þ bxð Þ

2, (37a2b)
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where m0 ¼ 38014.2 kg/m, N0 ¼ 9301390.7N, EI0 ¼ 60.38� 1013Nm2, b ¼ �3.796� 10�3, H ¼ 76.0m. By
inserting these data into Eq. (32) and Eq. (35) and solving Eq. (35) through a numerical process, we obtain
o1 ¼ 6.5822 rad/s. The value of natural frequency is compared with the ones found by Li [7] and the measured
value [8] in Table 3.

4. Results and discussions

4.1. Accuracy of the proposed method

It can be seen in Table 1 that the results calculated by the proposed method agree very well with the results
found by other published methods. The differences of the natural frequencies of the tube-in-tube tall building
between the proposed method and other published methods are small. In fact, the difference between the
natural frequency of the first mode calculated by the proposed method and from solving the Sturm–Liouville
equation is about 1.62% and 3.54% for the second mode. On the other hand, the difference of the natural
frequencies between the proposed method and other published methods is about 1.02% for the cantilever
model of tall building studied. Although larger differences are found between the results of the mode
superposition method and the proposed method, the agreement is still satisfactory sufficiently for structural
design.

For the tube-in-tube tall building studied in this paper, it can be seen from Fig. 4 that the error of
the approximate solution is about 12.09% when the first two terms of the power-series solution are
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merely considered. Meanwhile, if we consider the first three terms of the power-series solution, the error
of the approximate solution reduces significantly to about 1.62%. Furthermore, the errors are about
0.51%, 0.12% and 0.06% as the first four terms, five terms and six terms are considered, respectively.
Therefore, its of good accuracy to calculate the natural frequencies by using the first three terms of the power-
series solution.
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Table 3

Natural frequencies obtained for the building studied by different methods (rad/s)

Methods Present Q.S. Li Measured

o1 6.5822 6.5170 6.4775
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4.2. Discussion on the results

As can be seen from Figs. 5 to 10 the value of the natural frequencies decreases as the total height of the
buildings increase. However, it is observed from Figs. 11 to 13 that the value of the natural frequencies
increases as the flexural stiffness of the buildings increases. Meanwhile, as the value of mass per unit length
increases the natural frequencies decreases as can be seen from Figs. 14 to 16.

Figs. 5–10 are the natural frequencies of tube-in-tube tall buildings with total height from 60 to 120m. One
can calculate approximately the natural frequency of an individual tube-in-tube tall building by looking up
these diagrams. For example, a tube-in-tube tall building with total height H ¼ 110m, flexural stiffness of the
inner tube EIw ¼ 8� 109 kNm2, flexural stiffness of the outer tube EIf ¼ 45� 109 kNm2, and mass per unit
length m ¼ 330 t/m, the natural frequency can be obtained from Fig. 8 with interpolation. In fact, the value of
the natural frequency obtained from Fig. 8 is 1.6847 rad/s.

5. Conclusions

The formulae proposed in this paper can be used as an alternative to determine the natural frequencies of
tube-in-tube tall buildings. Two numerical examples have been performed and compared to the published
results to demonstrate the accuracy of the method. Calculation of the natural frequencies for 756 tube-in-tube
tall buildings which having different number of storey, flexural stiffness and mass per unit length is achieved.
The following concluding remarks could be drawn from the present study:
(1)
 An approximate solution procedure is formulated in this paper for free vibration analysis of tube-in-tube
tall buildings.
(2)
 The method proposed herein enables one to calculate the natural frequency rapidly with accepted
accuracy associated by calculators and hand, prior to the use of the complicated computer
programs.
(3)
 The influences of the factors including flexural rigidity, mass per unit length and total height of the
building to the natural frequency of the tube-in-tube tall buildings are discussed.
(4)
 It’s of good accuracy to calculate the natural frequencies by using the first three terms of the power-series
solution. The natural frequencies found by the proposed method agree very well with the results found by
other published methods.
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(5)
 The method proposed herein can be adopted as an alternative procedure to evaluate the natural
frequencies for free vibration of tube-in-tube buildings in the preliminary stage of structural design.
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Appendix A
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