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Abstract

In this paper, the modal interval analysis method to estimate modal parameters, frequency response function (FRF),

and mode shapes of structures with uncertain-but-bounded is presented. Although the system parameters or properties are

uncertain in many engineering problems, but their probable range of values i.e. upper and lower bounds, can be provided

from practical experience and engineering knowledge. Moreover, to avoid the resonance of a structure and to consider the

dynamic response of an uncertain one, and also for reliability and stability analysis, we often need the bounds of the ranges

of structural characteristic parameters such as natural frequency and normal mode. By using modal analysis and interval

calculus, we investigate the method of computing upper and lower bounds of paramenters such as, natural frequencies,

modal shapes, and FRFs. Theoretically, it is possible to analyze the uncertain-but-bounded of a structure by using modal

analysis and interval calculus. They can be estimated by modal interval analysis. On the basis of the estimated intervals, the

engineering structure parameters can be applied into engineering design. A numerical example is presented for a tower

structure, and the results illustrate that the proposed method is effective. A comparison of the modal interval method with

the results of Monte Carlo simulation serves to validate the solutions and to identify the bounded ranges of parameters.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Modal analysis method, as an engineering tool, is used to calculate the natural frequencies and mode shapes
of a structure. This method is familiar for determining the dynamic response of complicated structural
dynamic problems. In general, applications of modal analysis today cover a broad range of objectives:
identification and evaluation of vibration phenomena, validation, structural integrity assessment, structural
modification, and damage detection. It had been used on mechanical systems, transportation systems, and
large civil engineering structures—anything that is subject to dynamic motions or vibration. Modal analysis
method had been introduced by many scientists in many books, e.g. [1–3].

Interval analysis method for a system with interval parameters had been used in uncertain structural
analysis. Interval calculus is a tool to evaluate a mathematical expression for ranges of values of its
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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parameters. Since Moore established the basic theory for the interval analysis in 1966, it has become a tool in
many fields in recent years, e.g. [4–6]. In engineering design, it is important to calculate the response quantities
such as the displacement, stress, and vibration frequencies, buckling loads and mode shapes to assess the
integrity of a proposed structure against a given set of design parameters. In many practical engineering
applications, the design parameters may be uncertain because of e.g. manufacturing errors and errors in
observation. No surprise that the concept of uncertainty plays an important role in investigation of various
engineering problems.

These uncertain structural parameters had been modeled as probabilistic models by a number of authors
[7–9]. However, uncertainty could be described by interval vector [10–18] or ellipsoid [19–21], rather than a
probabilistic modeling. Based on the invariance properties of eigenvector entries, Deif [10] developed a
numerical method for the interval eigenvalue analysis. Because there exists no efficient criterion for judging
invariance properties of signs of the components of the eigenvectors, the application of Deif’s approach
appears restricted.

In structural analysis, Chen et al. [14] had used interval set models to evaluate eigenvalue problems of
structures with uncertain-but-bounded parameters. Qiu presented in the year 1994 itself, interval analysis for
static response and eigenvalue problem of structures with uncertain parameters. Therefore, in itself practical
engineering computation, the considered methods can be used successfully. By means of the stationary
condition of Rayleigh quotient, the generalized eigenvalue problem of structures with bounded uncertain
parameters can be transformed into two distinct generalized eigenvalue problems. The paper was also
proposed for the problem of forced vibration with uncertain structures under interval loading. In their studies,
several important results have been obtained. Dimarogonas [11] introduced interval modal analysis, and
interval solution of the eigenvalue problem. He discussed the natural and forced vibration problems for
interval rotor-bearing systems and solutions were developed using interval calculus.

Dynamic response of structures with uncertain-but-bounded parameters was studied via interval analysis by
Qiu and Wang [17]. They did not assume extensive knowledge of the probabilistic characteristics of the
uncertain parameters, adopted as a nonprobabilistic, set-theoretic approach to model uncertainty in the
structural parameters that often are uncertain-but-bounded not certain.

However, in our previous works [14,18] only direct estimation methods for the interval of natural frequency
were proposed. In this paper, interval estimation for the interval of modal parameters is also given. Hence,
other interval eigensolutions can be derived using interval modal parameters such as interval natural
frequency, frequency response function (FRF), etc. The interval mode shapes are also given.

This paper starts with a brief review of the interval mathematics and then, based on the modal analysis
method, the interval stiffness and mass matrices for eigenvalue analysis of structures with interval parameters
are derived. Modal interval analysis method is based on modal analysis method via interval analysis, and
uncertain structure parameters will be expressed the interval stiffness matrix and interval mass matrix are
developed directly from the interval parameters. The obtained generalized interval eigenvalues and
corresponding eigenvectors are applied to analyze the range between lower and upper bounds of natural
frequencies needed in engineering designs, and the method is extended to solve the modal dynamic response
analysis. Then in Section 5, the mode shapes interval is given based on the first-order Taylor’s series
expansion. A numerical example is given to illustrate the application of our present method. The results
obtained by the present method are compared with some in Ref. [19], p. 60–64.

2. Mathematical background of interval algebra conventions

In the following section, we will give a brief review of the definitions of the interval and interval operations.
In the following, the field of real numbers is denoted by R and its members are denoted by lower case letters.
A subset of R of the form

X I ¼ ½x; x̄� ¼ ftj xptpx̄; x; x̄ 2 Rg (1)

will be called a (closed) interval; x is the lower bound, and x̄ is the upper bound. The set of closed real intervals
will be denoted by I(R) and its members by upper case letters. Assume that I(R), I(Rn), and I(Rn� n) denote the
sets of all closed real interval numbers, n-dimensional real interval vectors, and n� n real interval matrices,
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respectively. An n-dimensional real interval vector XIAI(Rn) can be written as

X I ¼ ðX I
1;X

I
2; . . . ;X

I
nÞ

T, (2)

XI is a member of I(R) and XI can be usually written in the following form:

X I ¼ ½X c � DX ;X c þ DX �, (3)

in which Xc and DX denote the mean (or midpoint) value of XI and the radius (or the maximum width) in XI,
respectively. It follows that

X c ¼ midðX Þ ¼
xþx̄

2
; DX ¼ radðX Þ ¼

x̄� x

2
. (4)

In terms of the interval addition, Eq. (3) can be put into the more useful form

X I ¼ X c þ DX I ; DX I ¼ ½�DX ;DX �. (5)

Thus, the midpoint (or mean) value and the radius (or uncertainty) in XI are

X C ¼ ðX c
1;X

c
2; � � � ;X

c
nÞ

T; DX ¼ ðDX 1;DX 2; � � � ;DX nÞ
T. (6)

Similar expressions exist for an n� n interval matrix

AI ¼ ½A; Ā� 2 IðRn�nÞ; AI ¼ Ac þ DAI , (7)

where DAI
¼ [�DA, DA]. Ac and DA denote the mean matrix of AI and the uncertainty (or the maximum

width) is matrix AI, respectively. It follows that

Ac ¼
Āþ A

2
or ac

ij ¼
āij þ aij

2
; DA ¼

Ā� A

2
or Daij ¼

āij � aij

2
, (8)

where Ac ¼ ac
ij and DA ¼ Daij. Let XI, YIAI(R), X I ¼ ½x; x̄�, Y I ¼ ½y; ȳ�. Then operations for XI+YI, XI

�YI,

XI
�YI, XI/YI are

X I þ Y I ¼ ½x; x̄� þ ½y; ȳ� ¼ ½xþ y; x̄þ ȳ�, (9)

X I � Y I ¼ ½x; x̄� � ½y; ȳ� ¼ ½x�ȳ; x̄� y�, (10)

X I � Y I ¼ ½x; x̄� � ½y; ȳ�

¼ minðx � y;x �ȳ; x̄ � y; ȳ � x̄Þ;maxðx � y;x �ȳ; x̄ � y; ȳ � x̄Þ
h i

, ð11Þ

X I

Y I
¼
½x; x̄�

½y; ȳ�
¼ ½x; x̄�

1

ȳ
;
1

y

" #
¼

x

ȳ
;
x̄

y

" #
. (12)

Two sets X I ¼ ½x; x̄� and Y I ¼ ½y; ȳ� are equal if x ¼ y and x̄ ¼ ȳ. An interval of zero width [x,x] will be

called as the point interval, and it is a regular real number. It is apparent that division is not defined if 0 2 ½x; x̄�
and that ½x; x̄�c ¼ ½c x; cx̄� for c40 and ½x; x̄�c ¼ ½cx̄; c x� for co0.

3. Theoretical background of modal analysis

In this paper, real modal analysis is considered. The equation of motion for an undamped structure with
multiple degrees of freedom (MDOF) is generally given by

M €xþ Kx ¼ f , (13)

where M is the mass matrix of the structure (M represents the inertia properties of the structure), K is the
stiffness matrix of the structure, €x is the acceleration vector, _x is the velocity vector, x is the displacement
vector, and f is the external force vector.

The problem of free vibration requires that the force vector f be equal to zero in the formulations of the
equations of motion. For the stiffness equation with f ¼ 0, the motion of an undamped dynamic system in free
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vibration is governed by a homogeneous system of differential equations, which in matrix notation is

M €xþ Kx ¼ 0. (14)

For free vibrations of the undamped structure, we seek solutions of Eq. (14) in the form

xi ¼ ji exp
jot; i ¼ 1; 2; � � � ; n

or in vector notation

x ¼ j expiot; €x ¼ �o2j expiot, (15)

where ji is the amplitude of motion of the ith coordinate and n is the number of degree of freedom. j is
constant vector, and o is constant. The substitution of Eq. (15) into Eq. (14) gives

�o2Mj expiot þ Kj expiot ¼ 0, (16)

or rearranging terms

ðK � o2MÞj ¼ 0, (17)

which for the general case is a set of n homogeneous (right-hand side equal to zero) algebraic system of linear
equations with n unknown displacements ji, and an unknown parameter o2. The formulation of Eq. (17) is an
important mathematical problem known as an eigenproblem.

Its nontrivial solution, that is, the solution for which not all ji ¼ 0, requires that the determinant of the
matrix factor of j be equal to zero. In this case,

detðK � o2MÞ ¼ 0 or detðK � lMÞ ¼ 0. (18)

The roots o2
i of this equation provide the natural frequencies oi. It is then possible to solve for the unknowns

ji in terms of relative values. The vectors ji corresponding to the roots o2
i are the modal shapes (eigenvectors)

of the dynamic system

L ¼ diagðl1; l2; . . . ; lnÞ, (19)

F ¼ ðj1;j2; . . . ;jnÞ; jr ¼ ðj1r;j2r; . . . ;jnrÞ
T; r ¼ 1; 2; . . . ; n, (20)

where l ¼ o2 is a eigenvalue. If the structure has n dynamic degrees of freedom (degrees of freedom with
mass), there are n number of o’s that are solutions of the eigenvalue problem. These o’s (o1, o2,y,on) are the
natural frequencies of the structure, also known as normal frequencies, characteristic frequencies,
fundamental frequencies, or resonant frequencies. The eigenvector ji associated with the natural frequency
oi is called normal mode or mode shape. The normal mode corresponds to deflected shape patterns of the
structure. When a structure is vibrating, its shape at any given time is a linear combination of its normal
modes.

We shall now introduce an important property of the normal modes, the orthogonality property. This
property constitutes the basis of one of the most attractive methods for solving dynamic problems of MDOF
systems. We begin by rewriting the equations of motion in free vibration, Eq. (17), as

Kjr ¼ lrMjr; r ¼ 1; 2; . . . ; n. (21)

From the orthogonality relation between any two modal shapes of an MDOF system, for an n-DOF system
in which the mass and stiffness matrix are diagonal, if the term jT

S multiplies into right- and left-hand side of
Eq. (21), the orthogonality condition between any two modes s and r may be expressed as

jT
SKjr ¼ lrjT

SMjr; r ¼ 1; 2; . . . ; n, (22)

jT
SMjr ¼

0; ras;

mr; r ¼ s;

(
jT

r Mjr ¼ mr, (23)
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jT
SKjr ¼

0; ras;

kr; r ¼ s;

(
jT

r Kjr ¼ kr (24)

in which jS and jr are any two modal vectors, M is the mass matrix, K is the stiffness matrix of the structure,
mr is the generalized mass or modal mass, and kr is the generalized stiffness or modal stiffness. As mentioned
above, the modal vectors satisfy the important condition of orthogonality. Thus,

jT
r Kjr ¼ lrjT

r Mjr, (25)

kr ¼ lrmr; lr ¼ o2
r ¼ krm

�1
r . (26)

The normal modes may be conveniently arranged in the columns of a matrix known as the modal matrix of
the system. For the general case of n-DOF, the modal matrix is written as

F ¼

j11 j12 � � � j1n

j21 j22 � � � j2n

..

. ..
. . .

. ..
.

jn1 jn2 � � � jnn

0
BBBBB@

1
CCCCCA or F ¼ ðj1 j2 � � � jn Þ (27)

and the orthogonality condition may then be expressed in general as

FTMF ¼ I , (28)

where FT is the matrix transpose of F and M is the mass matrix of the system, and the amplitudes of vibration
in a normal mode are only relative values which may be scaled or normalized to some extent as a matter of
choice.

Using the matrix form, modal parameters be expressed that

FTMF ¼Mr ¼ diagðm1;m2; . . . ;mnÞ, (29)

FTKF ¼ Kr ¼ diagðk1; k2; . . . ; knÞ, (30)

L ¼ KrM
�1
r ¼ diagðl1; l2; . . . ; lnÞ; r ¼ 1; 2; . . . ; n, (31)

where Mr, Kr, L, and F are called as the modal mass matrix, modal stiffness matrix, modal frequency that is a
diagonal matrix, and modal shape matrix, respectively, in the modal analysis.

For a dynamic system with only a few degrees of freedom, natural frequencies and modal shapes may be
determined expanding the determinant and calculating the roots of the resulting characteristic equation.
However, for a system with a large number of degrees of freedom, this direct method of solution becomes
impractical. It is then necessary to resort to other numerical methods which usually require an iteration
process. The FRF can be expressed by the following relationship:

X ¼
Xn

r¼1

jrj
T
r

�o2mr þ kr

F , (32)

where X ¼ (X1, X2,y,Xn)
T is the displacement response vector that occurred in the external force

vector F ¼ (F1, F2,y,Fn)
T, jr is the rth-mode shape, mr is the modal mass, and kr is the modal stiffness.

Any position response of an n-DOF system can be expressed as the superposition of n-number single
DOF systems.

If we assume a force Fj at the j-point of structure, then i-point response

X i ¼
Xn

r¼1

jirjjr

�o2mr þ kr

Fj. (33)



ARTICLE IN PRESS
J. Sim et al. / Journal of Sound and Vibration 303 (2007) 29–4534
Thus, the above equation can be rewritten as

HijðoÞ ¼
X i

Fj

¼
Xn

r¼1

jirjjr

�o2mr þ kr

. (34)

This is the FRF between i-point and j-point. Otherwise, this is called frequency domain transfer function.
From the reciprocity of linear system, Hij ¼ Hji. From the definition of FRF, i-point deformed response Xi for
loading Fj at j-point of system is

X i ¼ HijF j. (35)

If force is F ¼ (F1, F2,y,Fn)
T, from the linear superposition principle,

X i ¼ Hi1F1 þHi2F2 þ � � � þHinF n ¼ ðHi1 Hi2 � � � HinÞðF 1 F 2 � � � FnÞ
T. (36)

Hence,

X ¼

X 1

X 2

..

.

X n

0
BBBB@

1
CCCCA ¼

H11 H12 � � � H1n

H21 H22 � � � H2n

..

. ..
. . .

. ..
.

Hn1 Hn2 � � � Hnn

0
BBBB@

1
CCCCA

F2

F2

..

.

F2

0
BBBB@

1
CCCCA ¼ HF , (37)

in which

H ¼

H11 H12 � � � H1n

H21 H22 � � � H2n

..

. ..
. . .

. ..
.

Hn1 Hn2 � � � Hnn

0
BBBB@

1
CCCCA. (38)

This is called the diagonal FRF matrix, Hij ¼ Hji.
The relationship between the FRF matrix and modal parameters is

X ¼
Xn

r¼1

jrj
T
r

�o2mr þ kr

F . (39)

If we compare Eqs. (37) and (39), then the FRF matrix is as follows:

H ¼
Xn

r¼1

jrj
T
r

�o2mr þ kr

; Y r ¼
1

�o2mr þ kr

, (40)

H ¼
Xn

r¼1

rH ¼
Xn

r¼1

1

�o2mr þ kr

j1r

j2r

..

.

jnr

0
BBBBB@

1
CCCCCAðj1r j2r � � � jnr Þ

0
BBBBB@

1
CCCCCA, (41)

where rH is rth-mode FRF matrix that contributes the rth-mode to H, and Yr is called the rth modal
conductivity

H ¼
Xn

r¼1

rH ¼
Xn

r¼1

Y r

j1rj1r j1rj2r � � � j1rjnr

j2rj1r j2rj2r � � � j2rjnr

..

. ..
. . .

. ..
.

jnrj1r jnrj2r � � � jnrjnr

0
BBBBB@

1
CCCCCA ¼

Xn

r¼1

Y r

j1rj
T
r

j2rj
T
r

..

.

jnrj
T
r

0
BBBBB@

1
CCCCCA ¼

Xn

r¼1

Y r

jrj1r

jrj2r

..

.

jrjnr

0
BBBBB@

1
CCCCCA

T

. (42)
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The shape of FRF is drawn by the following method. From the FRF expressive equation,

Hij ¼
Xn

r¼1

1

�o2mr þ kr

jirjjr ¼
Xn

r¼1

Y rjirjjr ¼
Xn

r¼1

rHij , (43)

rHij ¼ Y rjirjjr ¼
1

�o2mr þ kr

jirjjr. (44)

Herein, the shape of FRF can be drawn easily as the linear superposition making the transfer function curves
of a single DOF system shown in Refs. [1–3].

4. Modal interval analysis method

The generalized interval eigenvalue problem is expressed as follows:

Ku ¼ lMu. (45)

In a variety of applications it is often desirable to obtain solutions to the eigenvalue problem in which K and
M are affected by uncertainties as subjected to

K pKpK̄ or kijpkijpk̄ij ; i; j ¼ 1; 2; . . . ; n, (46)

M pMpM̄ or mijpmijpm̄ij ; i; j ¼ 1; 2; . . . ; n, (47)

where K ¼ (kij) is stiffness matrix, M ¼ (mij) is the mass matrix, u is the mode shape and l is the square of the

frequency of free vibration. K ¼ ðkijÞ and K̄ ¼ ðk̄ijÞ are the minimum and maximum allowable stiffness

matrices of system, M ¼ ðmijÞ and M̄ ¼ ðm̄ijÞ are the minimum and maximum allowable mass matrices of

system. With the use of the interval matrix notation, the above equations can be rewritten as

K 2 KI ; KI ¼ ½K ; K̄� ¼ ½KC � DK ;KC þ DK �, (48)

M 2MI ; MI ¼ ½M; M̄� ¼ ½MC � DM ;MC þ DM� (49)

in which KI ¼ ½K ; K̄ � is a positive-semidefinite symmetric interval matrix and MI ¼ ½M; M̄� is a positive-
definite symmetric interval matrix. Then KC and MC are centered interval stiffness and mass, DK and DM are
respectively radius interval stiffness and mass. They are given by

KC ¼
K þK̄

2
; MC ¼

M þM̄

2
; DK ¼

K̄ � K

2
; DM ¼

M̄ �M

2
.

For the sake of simplicity, they can be expressed by

KI u ¼ lMI u. (50)

The above equation is called a generalized interval eigenvalue problem [15], and this analysis procedure was
introduced by Qiu et al. [13]. Here, we consider modal interval analysis, based on this conclusion. First, the
centered eigenvalue problem for the ith eigenvector ji associated with the eigenvalue li having interval
parameter KC and MC, is considered:

KCji ¼ liM
Cji. (51)

The centered eigenvalues lC
i that denotes the natural frequencies and the evaluative centered eigenvectors

jC
i that denotes the normal modes can now be obtained. Then, to compute the lower and the upper bounds on

a particular li, we can introduce Deif’s assumption [11], i.e. signs of the components of the associated

eigenvector jC
i remain unchanged, when matrices K and M range over the interval KI ¼ ½K ; K̄ � and

MI ¼ ½M ; M̄�. Then we define

Si ¼ diagðsgnðjC
1iÞ; sgnðj

C
2iÞ; . . . ; sgnðj

C
niÞÞ; jC

ji a0; i; j ¼ 1; 2; . . . ; n, (52)

where Si is a diagonal sign matrix expressed by the sign of row elements ðjC
1i;j

C
2i; . . . ;j

C
niÞ

T of the ith centered

eigenvector ji
C. In the sign matrix Si of the eigenvectors within the interval of the eigenvalues, the bounds
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found for the eigenvalues are exact. Using the sign matrix, the lower bound li and the upper bound l̄i satisfy,
respectively (see Qiu [18]):

ðKC � Si DKSiÞj
i
¼ liðM

C þ Si DMSiÞj
i

(53)

and

ðKC þ Si DKSiÞji ¼ l̄iðM
C � Si DMSiÞji, (54)

where ji and j
i
are the eigenvectors corresponding to the upper-bound eigenvalue and lower-bound

eigenvalue, respectively, not the ‘‘real’’ upper- and lower bounds of eigenvectors, which will be given in Section 5.

In the general case of a system with relatively narrow system interval matrices KI ¼ ½K ; K̄ � and MI ¼ ½M; M̄�, the
interval eigenvalue problem is equivalent to the optimization problems to find the minimum or maximum l.

By means of the above conclusion and the orthogonality demands of the modal parameters such as modal
mass (or generalized mass) and modal stiffness (or generalized stiffness), modal interval parameters can be
written as

kI
r ¼ ½kr; k̄r� ¼ ½jT

r
K j

r
; jT

r K̄jr�, (55)

mI
r ¼ ½mr; m̄r� ¼ ½j

T

r M jr; j
T

r
M̄j

r
�, (56)

in which

kr ¼ jT

r
K j

r
¼ jT

r
ðKC � Si DKSiÞj

r
, (57)

k̄r ¼ jT

r K̄jr ¼ jT

r ðK
C þ Si DKSiÞjr, (58)

mr ¼ jT

r M jr ¼ jT

r ðM
C � Si DMSiÞjr, (59)

m̄r ¼ jT

r
M̄j

r
¼ jT

r
ðMC þ Si DMSiÞj

r
. (60)

From the relationship between the above modal parameters and modal frequencies, modal interval frequency
can be expressed as

lI
r ¼ ½lr; l̄r� ¼

kr

m̄r

;
k̄r

mr

� �
¼

jT

r
K j

r

jT

r
M̄j

r

;
jT

r K̄jr

jT

r M jr

" #
, (61)

where j
r
is the associated eigenvector with lr and jr is the associated eigenvector with l̄r.

Otherwise, in order to draw the frequency domain response formally, the interval FRF HI that is associated
to the modal interval frequencies and shapes can be denoted:

HI ¼ ½H̄; H� ¼
Xn

r¼1

rHij ;
Xn

r¼1

rH̄ij

" #
; i; j ¼ 1; 2; . . . ; n (62)

in which

rH̄ij ¼
1

�o2mr þ k̄r

j̄irj̄jr; rHij ¼
1

�o2m̄r þ kr

j
ir
j

jr
, (63)

where j̄r and j
r
are the real upper and lower bounds of mode shape given in Section 5.

Applying to normalized condition, modal interval mass and stiffness can be written as

kr ¼ jT

r
K j

r
¼ lr; k̄r ¼ jT

r K̄jr ¼ l̄r (64)
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and

mr ¼ jT

r M jr ¼ 1; m̄r ¼ jT

r
M̄j

r
¼ 1. (65)

Thus we can see the interval FRF to satisfy

rHij ¼
1

�o2 þ lr

j
ir
j

jr
; rH̄ij ¼

1

�o2 þ l̄r

j̄irj̄jr, (66)

where interval FRF can be written by means of associated interval parameters.
As mentioned above, the bounded FRF can reflect not only the range of modal interval parameters for

drawing frequency domain response, but also the width of dynamic response for modal dynamic response
analysis of a large structure with uncertain-but-bounded parameters.

5. Interval mode shapes

In this section, the ‘‘real’’ upper and lower bounds for mode shapes interval will be given based on the first-
order Taylor’ series expansion.

When physical properties and geometric variables of structures are taken as structural parameters, the
stiffness matrix and the mass matrix are functions of the structural parameters:

K ¼ KðbÞ; M ¼MðbÞ, (67)

where b ¼ (b1, b2,y,bm)
T is the structural parameter vector. Thus, eigenvalue problem (45) can be written in

the form

KðbÞj ¼ lMðbÞj (68)

and

jTMðbÞj ¼ 1. (69)

Consider eigenvalue problem (68) subject to the following structural parameter constraint condition:

bpbpb or bipbipbi; i ¼ 1; 2; . . . ;m, (70)

where b ¼ ðbiÞ and b ¼ ðbiÞ are respectively the upper- and lower-bound vectors of the structural parameter
vector b.

In terms of the interval matrix notation in interval mathematics or interval analysis, the inequality condition
(70) can be written as

b 2 bI or bi 2 bI
i ; i ¼ 1; 2; . . . ;m, (71)

where

bI
¼ ðbI

i Þ; bI
i ¼ ½bi; bi�; i ¼ 1; 2; . . . ;m, (72)

in which bI is the interval vector and bi
I, i ¼ 1, 2,y,m, is the component of the interval vector bI. bI is called

the interval structural parameter.
Consider the eigenvector ji which is dependent on m structural parameters bi, i ¼ 1, 2,y,m. This function

is defined by

ji ¼ jiðb1; b2; . . . ; bmÞ. (73)

Let bic, i ¼ 1, 2,y,m, be a nominal value of the structural parameters. By Taylor’s series expansion, the
eigenvector for the structural parameters bi ¼ bic+dbi, i ¼ 1, 2,y,m, to the first order in dbi ¼ bi�bic,
i ¼ 1, 2,y,m, is given by

jiðb1; b2; . . . ; bmÞ ¼ jiðb1c; b2c; . . . ; bmcÞ þ
Xm

j¼1

qjiðb1c; b2c; . . . ; bmcÞ

qbj

ðbj � bjcÞ. (74)
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It is understood that in the summation, the partial derivative of the eigenvector ji(b1, b2,y, bm) is taken and
then evaluated at the nominal value bic, i ¼ 1, 2,y,m, which can be obtained by the first-order perturbation
theory [22] as follows:

qjiðbcÞ

qbj

¼
Xn

s¼1

cisjiðbcÞ, (75)

where

cis ¼
1

lic � lsc

jT
sc

qKðbcÞ

qbj

jic � licjT
sc

qMðbcÞ

qbj

jic

� �
ðsaiÞ (76)

and

cii ¼ �
1

2
jT

i

qMðbcÞ

qbj

ji ðs ¼ iÞ. (77)

For convenience of notation, let us define

gT ¼
qjiðbcÞ

qb1
;
qjiðbcÞ

qb2
; . . . ;

qjiðbcÞ

qbm

� �
¼

qjic

qb1
;
qjic

qb2
; . . . ;

qjic

qbm

� �
, (78)

where the superscript T means vector transposition. Then Eq. (74) can be rewritten as

jiðbÞ ¼ jiðbc þ dbÞ ¼ jic þ gTdb, (79)

where

jic ¼ jiðbcÞ ¼ jiðb1c; b2c; . . . ; bmcÞ; dbT
¼ ðdb1; db2; . . . ; dbmÞ. (80)

The deviation from the nominal value db ¼ (dbi) of the structural parameter b ¼ (bi) is assumed to vary in the
following rectangular set:

DbI
¼ ½�Db;Db� ¼ fdb : �DbpdbpDbg, (81)

where DbI
¼ (Dbi

I) is the interval parameter vector and can be expressed in a component form, i.e.

DbI
i ¼ ½�Dbi;Dbi� ¼ fdbi : �DbipdbipDbig; i ¼ 1; 2; . . . ;m, (82)

where Db ¼ (Dbj) is a nonnegative constant vector. The objective now is to find the lower-bound eigenvector
and the upper-bound eigenvector of the eigenvector for all possible structural parameters belonging to the set
DbI by interval analysis method. Then the problem of finding upper or maximum and lower or minimum
eigenvectors becomes the following extreme value problem:

jiext ¼ extremum
db2DbI

¼½�Db;Db�
fjic þ gTdbg. (83)

Thus, we arrive at a way of determining upper and lower bounds of eigenvectors which can be applied to an
ensemble of structures with uncertain-but-bounded Fourier coefficients.

From Eq. (83), since ji is a function of uncertain variable db, by means of the natural interval extension, we
have

jI
i ¼ ½ji

;ji� ¼ jic þ gT DbI . (84)

By interval operations, Eq. (84) can be rewritten as follows:

jI
i ¼ ½ji

;ji� ¼ jic þ ½�jgj
T Db; jgjT Db� ¼ ½jic � jgj

T Db;jic þ jgj
T Db�. (85)

Using the necessary and sufficient condition of two intervals equality, from Eq. (85), we obtain

j
i
¼ jic � jgj

T Db (86)

and

ji ¼ jic þ jgj
T Db. (87)
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Substitution of Eq. (78) into Eqs. (86) and (87), yields

j
i
¼ jic �

Xm

j¼1

qjic

qbj

����
����Dbj (88)

and

j̄i ¼ jic þ
Xm

j¼1

qjic

qbj

����
����Dbj . (89)

So from Eqs. (88) and (89), we can obtain the lower- and upper bounds of eigenvector.
6. Numerical example

By modal interval analysis method, we illustrate how to determine the range between lower and
upper natural frequencies and mode shapes of a five-story frame structure with uncertain-but-
bounded parameters shown in Fig. 1(a). Assume that the horizontal members are very rigid compared to
the columns of the frame. This assumption reduces the system to only five degrees of freedom shown
in Fig. 1(b), indicated by coordinates X1, X2,y, Xn in the figure, and this structure may be modeled by the five
mass system. The mass of the structure, which is lumped at the floor levels, has interval values such as
MI

1 ¼ [29, 31], MI
2 ¼ [26, 28], MI

3 ¼ [26, 28], MI
4 ¼ [24, 26], and MI

5 ¼ [17, 19]. The total stiffness of each
story has also interval values such as KI

1 ¼ [2000, 2020], KI
2 ¼ [1800, 1850], KI

3 ¼ [1600, 1630], KI
4 ¼ [1400,

1420], and KI
5 ¼ [1200, 1210], as indicated in Fig. 1. The interval physical parameters of the system are

listed in Table 1.
To apply the modal analysis method, we assume a deformed shape of j1, j2, j3, j4, j5 given in Fig. 2.
In order to apply the present method for generalized interval eigenvalues, interval stiffness matrix and

interval mass matrix of the system can be written as KI and MI, respectively. From interval calculus definition,
Fig. 1. (a) Five-story frame tower structure and (b) 5-DOF modeled system.
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Table 1

Interval physical parameters of the system

Interval for each stiffness parameters (unit: N/m) Interval for each mass parameter (unit: kg)

Bounded value Center Radius Bounded value Center Radius

KI
1 ¼ [2000, 2020] KC

1 ¼ 2010 DK1 ¼ 10 MI
1 ¼ [29, 31] MC

1 ¼ 30 DM1 ¼ 1

KI
2 ¼ [1800, 1850] KC

2 ¼ 1825 DK2 ¼ 25 MI
2 ¼ [26, 28] MC

2 ¼ 27 DM2 ¼ 1

KI
3 ¼ [1600, 1630] KC

3 ¼ 1615 DK3 ¼ 15 MI
3 ¼ [26, 28] MC

3 ¼ 27 DM3 ¼ 1

KI
4 ¼ [1400, 1420] KC

4 ¼ 1410 DK4 ¼ 10 MI
4 ¼ [24, 26] MC

4 ¼ 25 DM4 ¼ 1

KI
5 ¼ [1200, 1210] KC

5 ¼ 1205 DK5 ¼ 5 MI
5 ¼ [17, 19] MC

5 ¼ 18 DM5 ¼ 1

Fig. 2. Modal shapes of natural frequency of 5-DOF system.

J. Sim et al. / Journal of Sound and Vibration 303 (2007) 29–4540
we can obtain centered stiffness matrix KC, derivative radius stiffness matrix DK, centered mass matrix MC,
and derivative radius mass matrix DM

KI ¼

½3800; 3870� �½1800; 1850� 0 0 0

�½1800; 1850� ½3400; 3480� �½1600; 1630� 0 0

0 �½1600; 1630� ½3000; 3050� �½1400; 1420� 0

0 0 �½1400; 1420� ½2600; 2630� �½1200; 1210�

0 0 0 �½1200; 1210� ½1200; 1210�

0
BBBBBB@

1
CCCCCCA
,

KC ¼

3835 �1825 0 0 0

�1825 3440 �1615 0 0

0 �1615 3025 �1410 0

0 0 �1410 2615 �1205

0 0 0 �1205 1205

0
BBBBBB@

1
CCCCCCA
; DK ¼

35 �25 0 0 0

�25 40 �15 0 0

0 �15 25 �10 0

0 0 �10 15 �5

0 0 0 �5 5

0
BBBBBB@

1
CCCCCCA
,



ARTICLE IN PRESS
J. Sim et al. / Journal of Sound and Vibration 303 (2007) 29–45 41
MI ¼

½29; 31� 0 0 0 0

0 ½26; 28� 0 0 0

0 0 ½26; 28� 0 0

0 0 0 ½24; 26� 0

0 0 0 0 ½17; 19�

0
BBBBBBBB@

1
CCCCCCCCA
,

MC ¼ diagð 30 27 27 25 18 Þ;

DM ¼ diagð 1 1 1 1 1 Þ:

Hence, the eigensolutions for the system with centered parameters KC and MC can be solved. The results are
listed in Table 2. the centered deformations for modal shapes are plotted by eigenvectors. they are denoted
using solid line (black color) as a deformative modal shape for a centered eigenvalue in Figs. 3–7.

Then, the modal interval parameters for the structure with uncertain-but-bounded parameters are
calculated by using the modal interval analysis. The ranges between lower and upper bounds of natural
frequencies and deformative shapes are obtained by applying its results. Bounded eigensolutions represented
with the range between lower and upper bounds of natural frequencies and interval modal shapes are listed in
Table 3. In Figs. 3–7 dashed line (blue color) as a deformative modal shape corresponds to the upper-bound
eigenvalue and dotted line (red color) as a deformative modal shape corresponds to lower-bound eigenvalue.
Table 2

Centered eigensolutions for system with interval parameters

Centered values Notate 1 2 3 4 5

Eigenvalues lC 6.1662 44.078 103.57 165.59 219.42

Natural frequency oC 2.4832 6.6391 10.177 12.868 14.813

Eigenvector or Normal

mode

FC j1
C j2

C j3
C j4

C j5
C

0.03181 �0.08099 0.10432 0.08900 �0.08342

0.06362 �0.11150 0.04161 �0.05524 0.12560

0.09301 �0.06382 �0.10130 �0.06531 �0.09893

0.11568 0.04466 �0.06409 0.13025 0.05658

0.12742 0.13075 0.11716 �0.08839 �0.02616

Fig. 3. Deformative first-mode shapes for bounded modal frequencies.
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Fig. 4. Deformative second-mode shapes for bounded modal frequencies.

Fig. 5. Deformative third-mode shapes for bounded modal frequencies.

Fig. 6. Deformative fourth-mode shapes for bounded modal frequencies.

J. Sim et al. / Journal of Sound and Vibration 303 (2007) 29–4542
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Fig. 7. Deformative fifth-mode shapes for bounded modal frequencies.

Table 3

Bounded eigensolutions between lower and upper bounds

Bound Notate 1 2 3 4 5

Eigenvalues Lower l 4.6166 40.754 98.572 158.86 211.51

Upper l̄ 7.8303 47.702 108.99 172.89 227.95

Natural frequency Lower o 2.1486 6.3839 9.9284 12.604 14.543

Upper ō 2.7983 6.9067 10.44 13.149 15.098

Eigenvector Lower F j
1

j
2

j
3

j
4

j
5

0.0311 �0.0858 0.0914 0.0740 �0.0982

0.0621 �0.1181 0.0365 �0.0645 0.1034

0.0908 �0.0676 �0.1138 �0.0763 �0.1164

0.1129 0.0420 �0.0720 0.1083 0.0490

0.1244 0.1230 0.1027 �0.1033 �0.0308

Upper F̄ j̄1 j̄2 j̄3 j̄4 j̄5

0.0326 �0.0762 0.1172 0.1040 �0.0687

0.0651 �0.1049 0.0468 �0.0459 0.1478

0.0952 �0.0600 �0.0888 �0.0543 �0.0814

0.1184 0.0473 �0.0562 0.1522 0.0701

0.1305 0.1385 0.1317 �0.0735 �0.0215

J. Sim et al. / Journal of Sound and Vibration 303 (2007) 29–45 43
In order to evaluate the accuracy and effective bounded results of modal interval parameters, Monte Carlo
simulation method is used to validate the results obtained from the presented modal interval analysis, and to
observe the Monte Carlo solutions within bounded results, iterations of Monte Carlo simulation are used
(10,000) in calculation, but only 100 iterations are used in the plots. Herein interval mass and stiffness are
modeled as uniform distribution.Comparison of results of our analysis with those of Monte Carlo simulation
is given in Fig. 8.

The ranges between lower- and upper-bound natural frequencies are represented by the FRF in Fig. 9.

7. Conclusions

The method presented in this paper provides a simple analytical tool for finding bounds of natural
frequencies and normal modes for structures with uncertain-but-bounded parameters, by using interval
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analysis basis on modal analysis. The bounds of modal parameters obtained by the interval parameters are
verified by the range of natural frequencies and the deformative shape of normal modes of uncertain structure
and it is very important to estimate the stability or reliability of the structures. The numerical example is given
to illustrate the effectiveness and correctness of the presented modal interval analysis method, and its results
agree well with Monte Carlo simulation results. By modal analysis via interval calculus, the modal interval
analysis method for structural dynamical response can determine the width between upper and lower bounds
on structural dynamic response.

The modal interval analysis can be used not only in modal dynamic response analysis, but also in other
areas of vibration analysis and diagnosis. For example, we can obtain the needed maximum and minimum
values in dynamic response analysis, estimated the stability range that avoids the resonance of structures, and
consider how to change the structural parameters in structural modification.
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