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Abstract

The main aim of this work is to study the interactions between vibration and fatigue crack growth. In this paper, a

detailed mathematical modelling of a newly designed fatigue-testing rig, description of the rig, experimental set-up and

procedures, and sensor calibrations are presented. The test rig consists of two base-excited oscillators, one positioned

above and the other below a single-edge-notched beam sample. The inertial forces of the oscillators act on the sample

causing its bending and fatigue. Mathematically the fatigue crack sample is modelled as a discrete spring with piecewise

nonlinear stiffness which is assumed to be constant when the crack closes and to decrease with crack length when it opens.

The results from the modelling correlate well with the experimental tests.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In conventional fatigue studies, the stresses used in the life prediction models neglect inertial and damping
forces, which implies that the stress is independent of the excitation frequency. In many practical applications,
the primary source of dynamic loading does not always act directly on structural components in which a
fatigue crack is present. The dynamic loading is transferred by means of inertial forces or oscillations from
components of structures to the neighbouring ones. A compelling example is a standard oil-rig, where, fatigue
damage often occurs at weld tubular structures of the steel jacket [1,2], process pipe-lines [3] and piles [4].
These structures are continuously subjected to environmental loadings such as waves, wind and current. In
reality, vibration and fatigue crack growth are strongly related [5,6], and this relationship is not well
understood yet.

The fact that cracks decrease the natural frequency of a structure was reported as early as 1940s by Kirmser
[7] and Thomson [8]. This finding implies that, besides the change in structural stiffness, the presence of cracks
may also modify structural mass and damping. Consequently, the dynamic characteristics of structures with
and without cracks are different. The effects of an opened crack on the changes of natural frequencies have
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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been studied in [9–15] while other investigations [10,16–27] focused on the effects of a breathing crack. In
particular, Papadopoulos and Dimarogonas [12] revealed that the change in natural frequency of a
Timoshenko beam of circular cross-section with a transverse surface crack loaded in bending, shear and
torsion at its free-end, is small for the first mode of vibration, when the crack location is far away from the
clamped-end. Gudmundson [10] derived an opened crack model of a cantilever beam to calculate the
eigenfrequencies for different crack lengths and showed that the theoretical and experimental results correlate
well. Crack identification including the locality of the crack induced stress field was discussed by Chondros
and Dimarogonas in [28,29].

The major critical review in this area [30] was published in 1996, where Dimarogonas has discussed, in
detail, various crack modelling methods including the equivalent reduced cross section, local bending moment
and the local flexibility methods, crack identifications in beams and rotors, vibration coupling due to the
presence of cracks and others. He emphasized the difference between theoretical and experimental studies on
real cracks and saw-cuts, and the importance of having a special cracked element in finite elements analysis
rather than using a dense mesh.

The main concern of our work is to understand the effects of fatigue crack growth on the dynamic responses
of engineering components and structures. Due to the fact that the dynamic responses of a standard cracked
specimen are often constrained by the kinematics of the forcing mechanisms in conventional fatigue-testing
machines, the natural response of the cracked specimen cannot be easily obtained. Furthermore, a standard
single-edge-notched beam (SENB) specimen cannot be tested for zero load crossing in conventional fatigue-
testing machines. Therefore, a novel fatigue-testing rig was designed and built; detailed information on the
development has been published previously [6,31]. This novel rig consists of two base-excited oscillators, one
positioned above and the other below a SENB specimen, and is excited by an electro-dynamic shaker. The
main operating principle of the rig is that inertial forces generated by the oscillators act on the specimen. To
avoid confusion, it is worth mentioning here that the experimental results obtained in the present work are
relevant for a fatigue crack, not a notch.

In this paper, details of comprehensive modelling of the dynamic behaviour of the novel fatigue-testing rig
are presented. The description of the rig, operating principle, and experimental set-up are given in Section 2.
Three mathematical models describing different loading and contact scenarios are formulated and tested in
Section 3, where the SENB specimen is considered crack-free. In Section 4, the SENB specimen is modelled as
a spring with piecewise nonlinear stiffness. The stiffness is assumed to be constant when crack closes. When
the crack opens the stiffness decreases with crack length and time.

2. Novel fatigue-testing rig and experimental set-up

The fatigue-testing rig, shown in Fig. 1, consists of two base-excited oscillators (masses 1 and 2 of
approximately 4 kg each), which are positioned above and below a SENB specimen. Each mass sandwiches a
pair of leaf springs, which are also sandwiched and bolted on tower 1. These two pairs of leaf springs prevent
the masses from rotating during oscillations, hence, the line of action of the applied force is perpendicular to
the neutral axis of the specimen. The stiffness of the leaf springs can be adjusted by sliding tower 1 along the
slot on the base, giving a range of stiffness for each pair of 15.65–110.13 kN/m. The test specimen is held by
supports at both ends, which are also adjustable to accommodate a range of specimen lengths. The specimen is
then in turn held in place on the supports by a means of loading pins.

During testing, both oscillators are kept in contact with the specimen by the aid of the pre-loads from the
pneumatic cylinders, having a maximum operating pressure of 10 bar. In addition, the pneumatic cylinders are
used to set the prescribed mean load on the specimen by appropriately adjusted pressures at the top and the
bottom. With this loading arrangement, fatigue testing with positive (tension), negative (compression) or zero
mean stress can be carried out.

During operation, the test rig is mounted on an electro-dynamic shaker. The shaker provides the base
excitation in which the inertial forces of both oscillators are generated and act on the specimen. During the
downward motion, the inertia of mass 1 exerts a load on the specimen causing the crack to open and the
inertia of mass 2 is responsible for closing the crack during the upward motion. The amount of inertial force
induced on the specimen is controlled by the adjustment of amplitude and frequency of the base excitation.
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Fig. 1. Novel fatigue-testing rig.
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The excitation waveform used to drive the shaker can be periodic or aperiodic (quasi periodic, chaotic or
stochastic).

In the present studies, test specimens were manufactured from an aluminium alloy 2024-T351 with the
mechanical properties and chemical composition given in Tables 1 and 2, respectively. For all experiments, the
same sample type, SENB, was used as shown in Fig. 2 having a width and thickness of 20 and 10mm,
respectively. The depth of the notch was 5mm long and 1.5mm wide, and the loading span was 270mm.

The rig was mounted on the electro-dynamic shaker with the equipment layout as shown in Fig. 3. The base
excitation provided by shaker was controlled by the data acquisition unit using Labview. The accelerations of
the base ( €xb), mass 1 ( €xm1), and mass 2 ( €xm2), were measured by calibrated accelerometers. A signal from each
accelerometer was passed through a charge amplifier and monitored on an oscilloscope before being captured
on the data acquisition unit. Similarly, the output of each force transducer (f c1 and f c2) was connected to a
charge amplifier. Each signal was then passed through an oscilloscope before being captured on the data
acquisition unit. The signal of the proximity sensor which represents the relative displacement (zs) between the
specimen and the base was passed through a 1 kHz low-pass filter to remove the high frequency noise. The
output of the low-pass filter was then connected to a power supply before being registered on the data
acquisition unit. Finally, the signal from the alternating current potential difference (ACPD) crack growth
monitor was fed to the data acquisition unit via a power amplifier and an oscilloscope.

In addition to measuring the relative displacement between the test specimen and the base, the proximity
sensor was also used to set the dynamic load amplitude of the specimen. For these reasons, the proximity
sensor was calibrated to obtain the displacement versus the sensor output voltage and the load versus the
sensor output voltage relationships. The displacement calibration procedure was as follow. The central
position of the specimen was displaced by a known distance and, at each increment, the output voltage of the
proximity sensor was recorded. Since the characteristic of the sensor is entirely linear, the gain factors for the
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Table 2

Chemical composition for aluminium alloy 2024-T351

AL Si Fe Cu Mn Mg Cr Zn Ti

93.63 0.09 0.21 4.06 0.47 1.37 0.01 0.14 0.02

20mm

10mm

270mm

Fig. 2. Geometry of SENB specimen.

Table 1

Material properties for aluminium alloy 2024-T351

Property Value

Tensile strength 454MPa

Yield strength 317MPa

Young’s modulus 72.4GPa

Density 2780kg=m3
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aluminium alloys 2024-T351 is 0.171mm/V. The total compliance, Ctot, as a function of crack length of a
through-thickness cracked beam can be calculated as [32]

Ctot ¼ Cnc þ Cc, (1)

where Cnc is the compliance in the absence of a crack and Cc is the additional compliance due to the crack. For
the case of a three-point loaded crack-free beam, the compliance, Cnc, is given as

Cnc ¼
L3
span

48EI
, (2)

where Lspan is the loading span, E is Young’s modulus, I is the second moment of area ðBW 3=12Þ, B is the
thickness and W is the width of the beam. The compliance, Cc, of the three-point loaded SENB for any value
of span-to-width ratio (e.g. b ¼ ðLspan=W Þ) larger than 2.5 has been developed by Guinea et al. [33] in the
following form:

Cc ¼
c1ðaÞ þ bc2ðaÞ þ b2c3ðaÞ

EB
, (3)
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Fig. 3. Experimental layout of the novel fatigue-testing device for inducing dynamic loading.
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where

c1ðaÞ ¼ �0:378a3 lnð1� aÞ þ a2
0:29þ 1:39a� 1:6a2

1þ 0:54a� 0:84a2
,

c2ðaÞ ¼ 1:1a3 lnð1� aÞ þ a2
�3:22� 16:4aþ 28:1a2 � 11:4a3

ð1� aÞð1þ 4:7a� 4a2Þ
,

c3ðaÞ ¼ �0:176a3 lnð1� aÞ þ a2
8:91� 4:88a� 0:435a2 þ 0:26a3

ð1� aÞ2ð1þ 2:9aÞ
,

a is the crack length to specimen width ratio (a=W ) where a is the crack length. Substituting Eqs. (2) and (3)
into Eq. (1), and rearranging, the load versus sensor output voltage relationship as a function of crack ratio is
obtained:

P ¼
ðGf =1000Þ � Vso

L3
span

48EI
þ

c1ðaÞ þ bc2ðaÞ þ b2c3ðaÞ
EB

, (4)

where Gf is the gain factor (displacement versus sensor output voltage relationship as obtained from above),
Vso is the sensor output voltage and P is the load. It is worth noting that ðGf =1000Þ � V so represents the
deflection of the specimen.

A typical test was conducted in the following manner. Before the specimen was pre-loaded, the initial value
of the proximity sensor was offset to zero. The amplitude of the proximity sensor output voltage
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corresponding to the load amplitudes acting on the specimen was calculated using Eq. (4). The excitation
frequency was set to the value of interest and the base amplitude was varied gradually until the amplitude of
the output voltage from the proximity sensor coincided with the calculated value.

3. Physical model and equations of motion

In this section, a comprehensive modelling of the dynamic interactions occurring within the novel fatigue
testing device for a crack-free specimen is presented. Firstly a single mass model mimicking dynamic bending
with pre-load is developed. This is followed by a two mass model which captures the complexity of contact
and non-contact regimes. The last part of this section shows how the reduction of the two mass to single mass
model can be made.

3.1. Single mass model

When the lower mass is removed, the experimental rig shown in Fig. 1 can be described by the physical
model shown in Fig. 4. The mass, m, is attached to two springs and two dashpot dampers, in which kLs and cLs

represent the stiffness and damping of the leaf spring, respectively, and kp and cp are stiffness and damping of
the pneumatic cylinder. Both springs are assumed to be linear and the dampers are assumed to be linearly
viscous. The masses of the springs and dampers are neglected.

The specimen inertial effects affecting the dynamics of the rig are negligible due to the operating frequency
range being much lower than the fundamental frequency of the crack-free specimen. It is assumed that the
specimen oscillates in phase with the mass when they are in contact. Therefore, the crack-free specimen is
modelled as a discrete linear spring, ks, with a viscous damping coefficient, cs. As shown in Fig. 4, the model of
the specimen comprises a rigid, massless frame attached to two massless springs of stiffness, 1

2
ks, and two

massless dashpot dampers of viscous damping, 1
2

cs. It is also assumed that the pre-load induces an elastic
deformation at the point of contact between the pneumatic cylinder and the specimen. Physically, the contact
stiffness, ksc, as shown in Fig. 4, is many times larger than the stiffness of the specimen, ks, which means that
the displacement of the contact spring is very small.

The static load, P, acting on the mass, m, that is exerted by the pneumatic cylinder and the gravitation force,
mg, produces static deflections of the mass, xst

m, and of the specimen, xst
s (see Fig. 4). When mass is in contact

with the specimen xst
m ¼ xst

s ¼ xs ¼ ðPþmgÞ=ðkLs þ ksÞ. The mass is excited harmonically from the base with
Fig. 4. Model of fatigue-testing rig considering only single mass.
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amplitude, Ab, and frequency, O. The mathematical model, in the coordinates relative to the base, xb, when the
mass is in contact with the specimen, can be described as

m €zm þ ðcLs þ cp þ csÞ _zm þ ðkLs þ kp þ ksÞzm ¼ mAbO2 sinðOtÞ, (5)

where zm is the displacement of the mass relative to the base. In Eq. (5), the static load P and the gravitational
force mg are compensated by the initial deflections of the springs. When the inertial force of the mass is larger
than the static forces, the mass separates from the specimen, which means zmozs. The equations of motion
are:

m€zm þ ðcLs þ cpÞ_zm þ ðkLs þ kpÞzm þ kLsx
st ¼ PþmgþmAbO2 sinðOtÞ,

cs _zs þ ksðzs þ xstÞ ¼ 0, ð6Þ

where zs is the displacement of the specimen relative to the base.
Eqs. (5) and (6), are then transformed to sets of first-order differential equations using the following non-

dimensional variables and parameters:

t ¼ oLst; X 1 ¼
zm

Ab

; X 2 ¼ X 01 ¼
_zm

AboLs

; X 3 ¼
zs

Ab

; X b ¼
xb

Ab

¼ sinðZLstÞ,

oLs ¼

ffiffiffiffiffiffiffi
kLs

m

r
; xLs ¼

cLs

2moLs

; op ¼

ffiffiffiffiffi
kp

m

r
; xp ¼

cp

2mop

,

os ¼

ffiffiffiffiffi
ks

m

r
; xs ¼

cs

2mos

; l ¼

ffiffiffiffiffiffiffi
kp

kLs

s
; W ¼

ffiffiffiffiffiffiffi
ks

kLs

s
,

g ¼
xst

Ab

; f ¼
Pþmg

mAbo2
Ls

; ZLs ¼
O
oLs

,

where 0 denotes d=dt.
During the Contact phase, the displacement of the mass is equal to the displacement of the specimen,

X 1 ¼ X 3, and the force acting on the mass from the specimen is greater than zero,

2xsX
0
3 þ WX 3 þ Wg40. (7)

The equations of motion in the non-dimensionalised form are:

X 01 ¼ X 2,

X 02 ¼ �ð1þ l2 þ W2ÞX 1 � ð2xLs þ 2xplþ 2xsWÞX 2 þ Z2Ls sinðZLstÞ. ð8Þ

For the No contact phase, X 1oX 3, the force acting on the mass from the specimen is equal to zero and the
following relation holds:

2xsX
0
3 þ WX 3 þ Wg ¼ 0. (9)

Now the equations of motion are described as

X 01 ¼ X 2,

X 02 ¼ �ð1þ l2ÞX 1 � ð2xLs þ 2xplÞX 2 � gþ f þ Z2Ls sinðZLstÞ,

X 03 ¼ �
W
2xs

ðX 3 þ gÞ. ð10Þ

In Eq. (10), when the mass detaches from the specimen, the velocity of the specimen X 03 decreases to zero.
Next, a set of auxiliary functions, G1 and G2 is defined in order to obtain the final form of the equations of

motion. The piecewise linear nature of the system can be conveniently described by Heaviside step functions:

G1 ¼ G1ðX 1;X 3Þ ¼ HðX 1 � X 3Þ,

G2 ¼ G2ðX 3;X
0
3Þ ¼ Hð2xsX

0
3 þ WX 3 þ WgÞ. ð11Þ
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Hence, the equations of motion for all possible contact scenarios can be described by the following set of first-
order differential equations:

X 01 ¼ X 2,

X 02 ¼ � ð1þ l2ÞX 1 � ð2xLs þ 2xplÞX 2

� G1G2ð2xsWX 2 þ W2X 3 þ W2gÞ � gþ f þ Z2Ls sinðZLstÞ,

X 03 ¼ G1G2X 2 þ ð1� G1Þð1� G2Þ �
W
2xs

ðX 3 þ gÞ
� �

. ð12Þ

In Eq. (12), the auxiliary functions G1 and G2 work as switches; when the mass is in contact with the specimen
they are equal to 1 or otherwise 0.

The steady-state time histories computed from Eq. (12) are compared with the experimental results in Fig. 5.
The theoretical time histories showing intermittent contacts between the mass and the specimen for
accelerations X 00b and X 001 are given in Figs. 5a and c, respectively. The displacements of the mass X 1 (dotted
line) and of the specimen X 3 (solid line) are plotted on the same graph as shown in Fig. 5e. These time histories
were computed for the following values of the system parameters: ZLs ¼ 2:2, xLs ¼ 0:00255, xs ¼ 0:002,
xp ¼ 0:4, l ¼ 2:53, W ¼ 7:828 and f ¼ 3:61. Extracting the time interval t 2 ½578:6; 582:5� from Fig. 5e, the
phases of Contact and No contact between the mass and the specimen can be clearly distinguished (Fig. 6b),
when the mass is in contact with the specimen, both displacements are equal. If the displacement of the mass is
larger than the static deflection g, it separates from the specimen.

The experimental time histories are depicted in Figs. 5b, d and f, where Fig. 5b shows the base acceleration
€xb, Fig. 5d shows the relative acceleration of the mass €zm, and Fig. 5f shows the relative displacements of the
mass zm (dotted line) and of the specimen zs (solid line). The relative displacement of the mass was obtained by
a double numerical integration of the relative acceleration, €zm. For this set of tests, the excitation frequency
and amplitude were set to 18.31Hz and 2.48mm, respectively. The data were acquired at a rate of 5000
samples per second. As the responses of the mass and the specimen were measured by different transducers
(accelerometer for the mass and proximity sensor for the specimen) a slight offset of both time histories can be
seen, Fig. 5f. Nevertheless, looking at both time histories, it can be deduced that the displacement of the mass
is equal to the displacement of the specimen when they are in contact.

It is worth emphasising that the excellent correspondence between experimental and simulated time histories
validates the simplifying assumptions made for the constructed model.

3.2. Two mass model

To model the actual fatigue testing rig shown in Fig. 1, a two mass model is needed. The system with two
masses allows symmetrical dynamic loading, and it is used for tests that require the specimen to cross zero
level loading. Comparing this to the single mass model (Fig. 4), an additional mass m2 is situated at the bottom
of the specimen, as shown in Fig. 7. The mass m2 is attached to the base in the same way as mass m1. Here, kLs2

and cLs2 represent the stiffness and damping of the bottom leaf spring, kp2 and cp2 are the stiffness and
damping of the bottom pneumatic cylinder, and ksc2 is the contact stiffness between the bottom pneumatic
cylinder and the bottom surface of the specimen. To ensure that both masses are kept in contact with the
specimen, the pneumatic forces P1 and P2 act on masses m1 and m2, respectively. As mentioned earlier, the
contact stiffnesses (ksc1 and ksc2) are many times larger than the stiffness of the specimen ks, and these springs
are needed to determine the Contact and No contact phases between the masses and the specimen. From the
pneumatic forces (P1 and P2) and the gravitational forces (m1g and m2g), the specimen is loaded from the top
and the bottom by ksc1zst

sc1 and �ksc2z
st
sc2, respectively, where

zst
sc1 ¼ xst

m1 � xst
s ; zst

sc2 ¼ xst
m2 � xst

s

and, xst
m1, xst

m2 and xst
s are the static displacements of masses m1, m2 and the specimen, respectively.

If the pre-loading forces (P1 þm1g and �P2 þm2g) are not large enough to keep both masses in contact
with the specimen at all the time, the fatigue rig may operate in one of the following phases: (i) full contact of
both masses with the specimen, (ii) partial contact where the mass m1 loses contact while the mass m2 is in
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contact with the specimen, (iii) partial contact where the mass m2 loses contact while the mass m1 is in contact
with the specimen, and finally (iv) no contact where both masses lose contact with the specimen. When both
masses are in contact with the specimen (phase (i)), the relative displacements of the masses, zm1 and zm2, and
the specimen, zs, are oscillating in phase. In addition, if ksc1 and ksc2 are equal and also if the springs and the
dampers that are attached to mass m1 are identical to those on m2, then for the considered system the
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Fig. 7. Symmetric dynamic loading model of the fatigue-testing rig.
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displacements of masses m1 and m2 are equal, zm1 ¼ zm2. For phase (i) the equations of motion are:

m1 €zm1 þ ðcLs1 þ cp1Þ_zm1 þ ðkLs1 þ kp1 þ ksc1Þzm1 � ksc1zs ¼ m1AbO2 sinðOtÞ,

cs _zs þ ðks þ ksc1 þ ksc2Þzs � ksc1zm1 � ksc2zm2 ¼ 0,

m2 €zm2 þ ðcLs2 þ cp2Þ_zm2 þ ðkLs2 þ kp2 þ ksc2Þzm2 � ksc2zs ¼ m2AbO2 sinðOtÞ. ð13Þ

For phase (ii) to occur, zm1oðzs � zst
sc1Þ has to be satisfied and the force acting between m1 and the specimen

needs to vanish, ksc1ðzm1 � zs þ zst
sc1Þ ¼ 0. Hence the equations of motion are:

m1 €zm1 þ ðcLs1 þ cp1Þ_zm1 þ ðkLs1 þ kp1Þzm1 þ kLs1x
st
m1 ¼ P1 þm1gþm1AbO2 sinðOtÞ,

cs _zs þ ðks þ ksc2Þzs � ksc2zm2 þ ksx
st
s � ksc2z

st
sc2 ¼ 0,

m2 €zm2 þ ðcLs2 þ cp2Þ_zm2 þ ðkLs2 þ kp2 þ ksc2Þzm2 � ksc2zs ¼ m2AbO2 sinðOtÞ. ð14Þ
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For phase (iii) to occur, zm24ðzs � zst
sc2Þ has to be satisfied and the forces acting between m2 and the specimen

need to vanish; ksc2ðzm2 � zs þ zst
sc2Þ ¼ 0. The equations of motion are then expressed as

m1 €zm1 þ ðcLs1 þ cp1Þ_zm1 þ ðkLs1 þ kp1 þ ksc1Þzm1 � ksc1zs ¼ m1AbO2 sinðOtÞ,

cs _zs þ ðks þ ksc1Þzs � ksc1zm1 þ ksx
st
s � ksc1z

st
sc1 ¼ 0,

m2 €zm2 þ ðcLs2 þ cp2Þ_zm2 þ ðkLs2 þ kp2Þzm2 þ kLs2x
st
m2 ¼ �P2 þm2gþm2AbO2 sinðOtÞ. ð15Þ

And finally, for phase (iv) to occur, zm1oðzs � zst
sc1Þ and zm24ðzs � zst

sc2Þ have to be satisfied simultaneously.
The equations of motion are:

m1 €zm1 þ ðcLs1 þ cp1Þ_zm1 þ ðkLs1 þ kp1Þzm1 þ kLs1x
st
m1 ¼ P1 þm1gþm1AbO2 sinðOtÞ,

cs _zs þ kszs þ ksx
st
s ¼ 0,

m2 €zm2 þ ðcLs2 þ cp2Þ_zm2 þ ðkLs2 þ kp2Þzm2 þ kLs2x
st
m2 ¼ �P2 þm2gþm2AbO2 sinðOtÞ. ð16Þ

Before non-dimensionalising of the above equations of motion, the following simplifying assumptions were
made:

m1 � m2 ¼ m; cLs1 � cLs2 ¼ cLs; kLs1 � kLs2 ¼ kLs; ksc1 � ksc2 ¼ ksc.

The developed equations of motion (Eqs. (13)–(16)) are now non-dimensionalised by introducing the
following non-dimensional variables:

t ¼ oLst; X 1 ¼
zm1

Ab

; X 2 ¼ X 01 ¼
_zm1

AboLs

; X 3 ¼
zs

Ab

; X 4 ¼
zm2

Ab

,

X 5 ¼ X 04 ¼
_zm2

AboLs

; X b ¼
xb

Ab

¼ sinðZLstÞ,

and parameters

oLs ¼

ffiffiffiffiffiffiffi
kLs

m

r
; xLs ¼

cLs

2moLs

; os ¼

ffiffiffiffiffi
ks

m

r
; xs ¼

cs

2mos

; op1 ¼

ffiffiffiffiffiffiffi
kp1

m

r
,

xp1 ¼
cp1

2mop1
; op2 ¼

ffiffiffiffiffiffiffi
kp2

m

r
; xp2 ¼

cp2

2mop2
; l1 ¼

ffiffiffiffiffiffiffi
kp1

kLs

s
; l2 ¼

ffiffiffiffiffiffiffi
kp2

kLs

s
,

W ¼

ffiffiffiffiffiffiffi
ks

kLs

s
; � ¼

kLs

ksc

; d1 ¼
xst

m1

Ab

; d2 ¼
xst

m2

Ab

; D1 ¼
zst

sc1

Ab

; D2 ¼
zst

sc2

Ab

,

gs ¼
xst

s

Ab

; ZLs ¼
O
oLs

; f 1 ¼
P1 þmg

mAbo2
Ls

; f 2 ¼
P2 �mg

mAbo2
Ls

,

where 0 denotes d=dt.
Eqs. (13)–(16) are transformed to a set of the first-order differential equations which can be given for each

phase as
Phase (i):

X 01 ¼ X 2,

X 02 ¼ � 1þ l21 þ
1

�

� �
X 1 � ð2xLs þ 2xp1l1ÞX 2 þ

1

�
X 3 þ Z2Ls sinðZLstÞ,

X 03 ¼
1

2�Wxs

X 1 �
1

�Wxs

þ
W
2xs

� �
X 3 þ

1

2�Wxs

X 4,
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X 04 ¼ X 5,

X 05 ¼
1

�
X 3 � 1þ l22 þ

1

�

� �
X 4 � ð2xLs þ 2xp2l2ÞX 5 þ Z2Ls sinðZLstÞ. ð17Þ

Phase (ii):

X 01 ¼ X 2,

X 02 ¼ �ð1þ l21ÞX 1 � ð2xLs þ 2xp1l1ÞX 2 � d1 þ f 1 þ Z2Ls sinðZLstÞ,

X 03 ¼ �
1

2�Wxs

þ
W
2xs

� �
X 3 þ

1

2�Wxs

X 4 þ
D2

2�Wxs

�
Wgs

2xs

,

X 04 ¼ X 5,

X 05 ¼
1

�
X 3 � 1þ l22 þ

1

�

� �
X 4 � ð2xLs þ 2xp2l2ÞX 5 þ Z2Ls sinðZLstÞ. ð18Þ

Phase (iii):

X 01 ¼ X 2,

X 02 ¼ � 1þ l21 þ
1

�

� �
X 1 � ð2xLs þ 2xp1l1ÞX 2 þ

1

�
X 3 þ Z2Ls sinðZLstÞ,

X 03 ¼
1

2�Wxs

X 1 �
1

2�Wxs

þ
W
2xs

� �
X 3 þ

D1

2�Wxs

�
Wgs

2xs

,

X 04 ¼ X 5,

X 05 ¼ �ð1þ l22ÞX 4 � ð2xLs þ 2xp2l2ÞX 5 � d2 � f 2 þ Z2Ls sinðZLstÞ. ð19Þ

Phase (iv):

X 01 ¼ X 2,

X 02 ¼ �ð1þ l21ÞX 1 � ð2xLs þ 2xp1l1ÞX 2 � d1 þ f 1 þ Z2Ls sinðZLstÞ,

X 03 ¼ �
W
2xs

X 3 �
Wgs

2xs

,

X 04 ¼ X 5,

X 05 ¼ �ð1þ l22ÞX 4 � ð2xLs þ 2xp2l2ÞX 5 � d2 � f 2 þ Z2Ls sinðZLstÞ. ð20Þ

Again the Heaviside step function was used to describe the piecewise nature of the system by defining a set of
switch functions G3 and G4,

G3 ¼ G3ðX 1;X 3Þ ¼ HðX 1 � ðX 3 � D1ÞÞ,

G4 ¼ G4ðX 3;X 4Þ ¼ Hð�X 4 þ ðX 3 � D2ÞÞ. ð21Þ

In Eq. (21), when m1 loses contact with the specimen (X 1oðX 3 � D1ÞÞ the function G3 is equal to 0, and when
m2 loses contact with the specimen (X 44ðX 3 � D2ÞÞ the function G4 is equal to 0; otherwise they are equal to
1. The equations of motion that describe all the possible phases are:

X 01 ¼ X 2,

X 02 ¼ � ð1þ l21ÞX 1 � ð2xLs þ 2xp1l1ÞX 2 �
G3

�
ðX 1 � X 3 þ D1Þ � d1 þ f 1 þ Z2Ls sinðZLstÞ,

X 03 ¼
G3

2�Wxs

ðX 1 � X 3 þ D1Þ þ
G4

2�Wxs

ð�X 3 þ X 4 þ D2Þ �
W
2xs

X 3 �
Wgs

2xs

,

X 04 ¼ X 5,

X 05 ¼ � ð1þ l22ÞX 4 � ð2xLs þ 2xp2l2ÞX 5 �
G4

�
ð�X 3 þ X 4 þ D2Þ � d2 � f 2 þ Z2Ls sinðZLstÞ. ð22Þ
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Fig. 8. Time histories computed for ZLs ¼ 3, xLs ¼ 0:00255, xs ¼ 0:002, xp1 ¼ 0:4, xp2 ¼ 0:4, l1 ¼ 2, l2 ¼ 2, W ¼ 7:828, � ¼ 0:002012,
f 1 ¼ 3:75, f 2 ¼ 3:75. Thick solid line represents X 1, dotted line represents X 3 and dash line represents X 4.
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Eq. (22) was used to compute the dynamic responses; four phases of motion can be clearly observed in
Fig. 8. The displacements of mass 1, X 1, and mass 2, X 4, are plotted by thick solid and dashed lines,
respectively. The displacement of the specimen, X 3, is plotted as dotted line.

Referring to Fig. 8b, at the instant when m1 hits m2, both masses are kept in contact with the specimen for a
very short time (labelled as phase(i)). Because of the relative displacements of the pre-compressed springs ksc1

and ksc2, displacements X 1 and X 4 cross each other in phase (i). After this short period of light impact, due to
the energy transfer between m1 and m2, m2 starts to separate while m1 still follows the trajectory of the
specimen (labelled as phase (iii)). When m1 moves up to the vicinity of the equilibrium point, phase (iv) begins.
At this phase, the displacement of the specimen decays and remains stationary as at the equilibrium position.
When the position of m2 coincides with the position of the specimen phase (ii) occurs, in which m2 moves in
phase with the specimen while m1 is still detached from the specimen.

Numerical and experimental results showing intermittent contacts between the masses and the specimen are
compared in Fig. 9. The theoretical steady-state time history for the base acceleration X 00b is shown in Fig. 9a,
while the accelerations of mass 1, X 001 (thick solid line) and mass 2, X 004 (thin solid line) are depicted in Fig. 9c.
The displacements of mass 1, X 1 (thick solid line), mass 2, X 4 (thin solid line) and of the specimen, X 3 (dotted
line) are plotted on the same graph as shown in Fig. 9e. The numerical integrations were performed with zero
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initial conditions for the following values of the system parameters: ZLs ¼ 2:5, xLs ¼ 0:00255, xs ¼ 0:002,
xp1 ¼ 0:4, xp2 ¼ 0:4, l1 ¼ 4:36, l2 ¼ 4:36, W ¼ 7:828, � ¼ 0:002012, f 1 ¼ 5:44, f 2 ¼ 3:52. The experimental
time histories are depicted in Figs. 9b, d and f. The excitation frequency and amplitude used for this
experiment were 19.15Hz and 2.8mm, respectively. In these figures, Fig. 9b shows the base acceleration €xb

where Fig. 9d depicts the relative accelerations €zm1 (thick solid line) and €zm2 (thin solid line), and Fig. 9f shows



ARTICLE IN PRESS
C.-H. Foong et al. / Journal of Sound and Vibration 303 (2007) 58–7772
the relative displacements zm1 (thick solid line), zm2 (thin solid line) and zs (dotted line). The relative
displacements of m1 and m2 were obtained by double numerical integration of the relative accelerations, €zm1

and €zm2, respectively.
It can be concluded that good qualitative and quantitative agreements between the theoretical and

experimental results have been achieved even though the correlation is not as good as for the single mass
model.
3.3. Reduction of two mass model to a single degree-of-freedom system

If the pre-loading forces from the pneumatic cylinders are large enough, both masses and the specimen are
always in contact. In this case the system shown in Fig. 7 is described by Eq. (17), and the model can be
reduced to a single degree-of-freedom by introducing the following variables:

y1 ¼
X 1 þ X 4

2
; y2 ¼

X 2 þ X 5

2
; y3 ¼ X 3; z1 ¼

X 1 � X 4

2
; z2 ¼

X 2 � X 5

2

and assuming that

l1 ¼ l2 ¼ l; xp1 ¼ xp2 ¼ xp.

Using the new variables, Eq. (17) can be re-written as follows:

y01 ¼ y2,

y02 ¼ � 1þ l2 þ
1

�

� �
y1 � ð2xLs þ 2xplÞy2 þ

1

�
y3 þ Z2Ls sinðZLstÞ,

y03 ¼
1

�Wxs

y1 �
1

�Wxs

þ
W
2xs

� �
y3,

z01 ¼ z2,

z02 ¼ � 1þ l2 þ
1

�

� �
z1 � ð2xLs þ 2xplÞz2. ð23Þ

As can be seen clearly from Eq. (23), the first three equations do not depend on variable z, while the last two
are independent of variable y. Hence two independent systems have been obtained and they can be solved
separately. Assuming that X 1 ¼ X 4 and X 2 ¼ X 5, we have z1 ¼ z2 � 0, which means that the displacements
and the velocities of both masses are equal. Furthermore, for the present system, kscbkLs, and thus, when
�! 0, it is assumed that the relative displacements and velocities of the springs ksc1 and ksc2 are negligible. For
this case, the displacements of both masses and the specimen are equal. Therefore, the two mass model given
in Fig. 7 can be simplified to a single degree-of-freedom model as shown in Fig. 10 and its dynamics can be
described by the following equation of motion:

M €zM þ cM _zM þ ðkM þ ksÞzM ¼MAbO2 sinðOtÞ, (24)

where

zM ¼
zm1 þ zm2

2
¼ zm1 ¼ zm2; M ¼ m1 þm2,

cM ¼ ð2cLs þ cp1 þ cp2 þ csÞ; kM ¼ ð2kLs þ kp1 þ kp2Þ.

Transforming Eq. (24) into the non-dimensional first-order form, we have

y01 ¼ y2,

y02 ¼ �ð1þ kMÞy1 � 2xMy2 þ Z2M sinðZMtÞ, ð25Þ
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Fig. 10. Simplified single degree-of-freedom model.
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whereby the non-dimensional parameters are defined as

t ¼ oMt; oM ¼

ffiffiffiffiffiffiffi
kM

M

r
; xM ¼

cM

2MoM

; kM ¼
ks

kM

; ZM ¼
O
oM

,

where 0 denotes d=dt.
As has been demonstrated above, when both masses are in contact with the specimen, the set of equations

that represent the model in Fig. 7 can be simplified from five first-order equations (see Eq. (23)) to just two (see
Eq. (25)). Similarly, for the single mass model (Fig. 4) the equations of motion given in Eq. (5) can be
simplified to the same form as Eq. (24), where

M ¼ m; cM ¼ ðcLs þ cp þ csÞ and kM ¼ ðkLs þ kpÞ.
4. Stiffness of a beam with growing fatigue crack

Numerous investigations have been carried out to study the nonlinear effects due to discontinuous
stiffness characteristics. For example the externally forced piecewise linear oscillator was studied theo-
retically by Shaw and Holmes [34], and experimentally by Wiercigroch et al. [35] and Sin and Wiercigroch [36].
The results [34–36] revealed complex dynamics that included the existence of periodic, subharmonic
and chaotic motion. Bilinear or piecewise linear oscillators have also been used to model the dynamic
behaviour of cracked structures [16–25]. However, as mentioned elsewhere, the work carried out in [16–25]
assumed a stationary fatigue crack, in which, the restoring force of the cracked structure has a stiffness
characteristic as shown in Fig. 11a. In the present work, taking into account a growing fatigue crack,
the stiffness of the bending specimen decreases as a function of crack length and time when crack opens.
When crack closes completely, the stiffness of a crack-free specimen is assumed. The bilinear behaviour of
restoring force under varying crack length is shown, schematically, in Fig. 11b. The assumption that the
stiffness of a bending specimen is unchanged when a fatigue crack closes is based on the fact that the decrease
of bending stiffness is small for a large crack length. Furthermore, Gudmundson [10] showed experimentally
that the effect of the crack closing has a small influence on the natural frequencies, making our assumption
justified.
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The stiffness of the specimen, assumed as a simply supported beam when the crack closes, can be calculated
from the formula

kcl
s ¼

48EI

L3
span

. (26)

When the crack opens, the stiffness kop
s can be computed from Eq. (4), which after a simple rearrangement

takes the following form:

kop
s ¼

1

L3
span

48EI
þ

c1ðaÞ þ bc2ðaÞ þ b2c3ðaÞ
EB

, (27)

where all parameters are as defined for Eq. (4). The stiffness kop
s decreases with crack length, a, which can be

modelled by an exponential function of time, t, [5], and defined as

a ¼ a0 þ a1 exp
t� a2

a3

� �
, (28)

where the constants a0, a1, a2 and a3 are obtained experimentally. Eq. (28) is used to calculate the crack-depth
ratio a ¼ a=W in the functions c1ðaÞ, c2ðaÞ and c3ðaÞ of Eq. (27).

During fatigue tests, the two oscillating masses of the fatigue rig were kept in contact with the specimen at
all times. The model that represents the full contact case was already presented in Fig. 10 and its equation of
motion is given by Eq. (24). Referring to Fig. 10, for the crack to open, the kinematic condition, ðzM þ xst

MÞ40
must be satisfied, and for the crack to close, ðzM þ xst

MÞp0. After including the static forces into Eq. (24) the
resulting equation was transformed to a set of non-dimensional first-order equations,

y01 ¼ y2,

y02 ¼ �ð1þ kMÞy1 � 2xMy2 � ðRþ kMÞgM þ f M þ Z2M sinðZMtÞ, ð29Þ

where, for the two mass system, parameters R and F M are:

R ¼
2kLs

kM

; f M ¼
P1 þMg� P2

MAbo2
M

,

while for the single mass system,

R ¼
kLs

kM

; f M ¼
PþMg

MAbo2
M

.
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For both systems gM ¼ xst
M=Ab. A Heaviside function Hðy1 þ gM Þ, which is equal to 1 for crack opening and 0

for crack closing is used to model the piecewise linear stiffness characteristics kM in Eq. (29), in which

kM ¼ Hðy1 þ gMÞk
op
M þ ð1�Hðy1 þ gMÞÞk

cl
M , (30)

where

kop
M ¼

kop
s

kM

; kcl
M ¼

kcl
s

kM

.

Figs. 12a and b depict three dimensional and two dimensional phase portraits representing the dynamic
responses of the specimen under a growing breathing crack (crack opens and closes) computed from Eq. (29).
The smallest to the largest orbits correspond to the growing crack ratio, a of 0.32, 0.5, 0.7 and 0.9, respectively.
All orbits form closed loops indicating period one motion with clearly visible piecewise linear nature of the
dynamic responses (see Fig. 12b). This is due to the fact that when the fatigue crack propagates, the stiffness of
the specimen decreases when the crack opens, and hence, causes a larger amplitude of oscillations. In addition,
the trajectories at different crack lengths follow the same path as the crack closes (point A to B in Fig. 12b),
which indicates that the stiffness during crack closure remains constant. These theoretical results have been
validated by the experimental phase portraits as shown in Figs. 12c and d.
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5. Conclusions

The mathematical modelling and experimental verification of the dynamic interactions for the novel fatigue-
testing rig have been presented in this paper. The test rig consists of two, single degree-of-freedom base-excited
oscillators, in which one is positioned above and the other below a SENB specimen. During operation, the
inertia forces act on the specimen, which is modelled as a discrete element with piecewise nonlinear stiffness.
When the crack closes the stiffness of the specimen remains constant; when it opens the stiffness of the
specimen decreases as a function of time and crack size. Three dynamic models of the experimental rig were
developed to describe different loading and contact scenarios. The theoretical results for the dynamic
responses demonstrating Contact and No contact phases between the oscillators and the crack-free specimen,
correlate well with the experiments. This confirms validity of the simplifying assumptions for the dynamic
models of the novel testing device.

It was theoretically predicted and experimentally validated that for breathing crack conditions (crack opens
and closes), as crack propagates, the amplitude of the oscillations grows for the open crack phases. On the
contrary, the amplitude of the oscillations remains the same for the closed crack phases. This finding validates
the assumption of constant stiffness when the crack closes.
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