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Abstract

In this paper, the theory of a Cosserat point is used as a numerical model of a nonlinear elastic beam–mass system and

simulations of dynamic lateral torsional buckling are compared with results of experiments. The Cosserat equations are

solved using the Newmark time-integration scheme and an analytical expression for the tangent stiffness of the resulting

Newton–Raphson iteration procedure is developed. Also, the effects of material damping, aerodynamic drag and gravity

have been included. The simulations reproduce the experimental result that two different nonlinear modes of vibration

occur at the same excitation amplitude and frequency. One mode: Torsion I is a post-buckling mode associated with out-

of-plane motion of the beam–mass system, which is dominated by oscillating torsion of the beam. The second mode:

Bending II is dominated by a nonlinear second bending mode in the weak bending plane. The simulations of Torsion I and

Bending II and another mode Torsion II are in reasonably good quantitative agreement with the experimental results.

However, the model is not able to accurately simulate the response of Torsion III (which was similar to Torsion I and II

but with a larger amplitude of vibration). Comparison is also made with the commercial code ANSYS.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In Ref. [1], an experimental setup was designed to produce dynamic lateral torsional buckling of a
beam–mass system. Fig. 1 shows a sketch of the beam–mass system with ei (i ¼ 1, 2, 3) being fixed rectangular
Cartesian base vectors. Specifically, an elastic beam of mass m, length L, and rectangular cross-section with
height h and width w, was clamped at one end to a block that was attached to a motor shaft. The distance
between the clamped end of the block and the axis of the motor was R. The other end of the beam was
clamped to a rectangular block of mass M, with length B, height H and width W. The motor shaft was
controlled to oscillate with angle f, such that

fðtÞ ¼ f0 sinðotÞ, (1)

where f0 is the amplitude and o the frequency. For small amplitudes, the motor merely causes the beam–mass
system to oscillate in the plane of stiffest bending of the beam. However, it was shown that for a range of
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Fig. 1. Sketch of the beam–mass system.
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amplitudes and frequencies, dynamic buckling occurs with the beam bending out-of-plane, the mass remaining
on one side of the vertical (e1–e3) plane and with the mass oscillating so that it applies torsion to the beam. This
buckling phenomena characterizes the responses of Torsions I, II and III described in Ref. [1], which occurred,
respectively, for (f0 ¼ 0.651, o ¼ 35.0Hz), (f0 ¼ 1.501, o ¼ 27.0Hz) and (f0 ¼ 1.491, o ¼ 25.5Hz). In
addition, it was shown that two different modes of vibration occur at the same excitation amplitude and
frequency associated with Torsion I. In particular, the second mode Bending II is dominated by second mode
bending in the weak plane of bending of the beam which is accommodated by torsion of the beam.

In Ref. [1], parametric functions were presented, which quantify the time response of the motion of the
beam’s centerline at a number of deformed axial locations and the torsion angle at the beam’s end for the four
responses Torsions I–III, and Bending II. Also, polynomial functions were presented to characterize the
spatial shape of the beam’s centerline at a number of times for these four responses. Measurements were made
of the first four natural frequencies and their associated damping coefficients and for the effect of gravity on
the first bending mode in the weak bending plane. This provides substantial data to test the accuracy of
mathematical and numerical models predicting this nonlinear dynamic phenomena.

Nonlinear theories of rods have been developed [2,3], which include bending, torsion, axial extension and
tangential shear deformation, but which model the cross-section of the rod as rigid. More general nonlinear
theories of a Cosserat curve have been developed [4,5] which, in addition, allow for normal extension and
shear deformations in the cross-section of the rod. Also, it is noted that the nonlinear dynamic response of a
cantilever beam with a tip mass has been considered in Ref. [6]. However, that work [6] is not directly
applicable to the problem under consideration here since there the tip mass was modeled as a point mass and
not a finite block and forced vibrations were not considered.

A finite element for large deformations of rods with rigid cross-sections has been developed [7–9] using the
formulation [10] which was based on that in Ref. [2]. More recently [11–13], a finite element based on the
theory of a Cosserat point has been developed which includes all of the kinematics modeled by the theory of a
Cosserat curve [4,5]. In particular, the theory of a Cosserat point has been developed [11,12] to formulate the
solution of dynamic problems of nonlinear elastic beams. This theory includes both material and geometric
nonlinearities and it has been tested for static torsional buckling [13], for static buckling of a shallow arch [14],
and for small deformation vibrations of circular arches [15]. The objective of this paper is to further test the
accuracy of this Cosserat theory for a complicated nonlinear dynamic problem of rods. Comparison is also
made with the commercial code ANSYS.

An outline of the paper is as follows. Section 2 presents a summary of the equations of the theory of a
Cosserat point for rods. Section 3 describes the problem formulation and Section 4 discusses the Newmark
scheme used to integrate the ordinary differential equations in time. Section 5 presents the linearized equations
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of motion and discusses the procedure for determining the damping coefficients. A preliminary example
problem is considered in Section 6 to study the accuracy of the numerical scheme and comparisons of the
simulations with the experimental data are given in Section 7. Section 8 shows a comparison with the
commercial code ANSYS and conclusions are presented in Section 9. Also, Appendix A presents details of
the determination of the analytical form of the tangent stiffness used in the Newmark integration scheme.

Throughout the text, bold-faced symbols are used to denote vector and tensor quantities. Also, I denotes the
unity tensor; tr(A) denotes the trace of the second-order tensor A; AT denotes the transpose of A; A�1 denotes
the inverse of A; A�T denotes the inverse of the transpose of A; and det(A) denotes the determinant of A. The
scalar a � b denotes the dot product between two vectors a, b; the scalar A �B ¼ tr(ABT) denotes the dot
product between two second order tensors A,B; the vector a� b denotes the cross product between a and b;
and the second order tensor a�b denotes the tensor product between a and b. The range of Greek indices
always being (1, 2), the range of Latin indices can be (0, 1, 2), (1, 2, 3) or (0, 1,y, 5) and will be specified when
it is not clear from the context. Also, the summation convention over repeated indices in suspended
throughout the text.

2. Summary of the equations of a Cosserat point

The objective of this section is to summarize the main equations of the theory of a Cosserat point, which
were developed to formulate the numerical solution of dynamic problems of elastic rods. Details of these
equations can be found in Refs. [11,12,16]. In order to simulate the experiments in Ref. [1], it is sufficient to
confine attention to the specialized theory for a beam, which is straight in its unstressed reference
configuration. The beam is divided into N elements and the Ith element (I ¼ 1,y,N) is modeled using the
theory of a Cosserat point. The equations of motion of the entire beam are obtained by using kinematic and
kinetic coupling conditions at the common boundaries of the elements. These coupling equations yield a set of
ordinary differential equations, which are functions of time t only.

The theory of a Cosserat point can be developed by averaging the three-dimensional equations or by the
direct approach. In either case, the constitutive equations in the Cosserat theory are developed by the direct
approach. Within the context of the direct approach, the Ith nodal cross-section is characterized by the three
constant nodal directors ID

�
i (i ¼ 0, 1, 2) in the unstressed reference configuration and by the nodal directors

Id
�
i ðtÞ (i ¼ 0, 1, 2) in the deformed present configuration, which are functions of time t only. The vectors
fID
�
0; Id

�
0g locate the centroid of the cross-section relative to a fixed origin and the vectors fID

�
1; Id

�
1g and

fID
�
2; Id

�
2g are identified with two independent line elements which determine the beam’s cross-section. The

dynamical equations for the motion of the entire beam are a set of 3(N+1) vector second-order ordinary
differential equations of time only to determine the 3(N+1) nodal vectors Id

�
i (I ¼ 1, 2,y,N+1; i ¼ 0, 1, 2).

Fig. 2 shows the deformed beam–mass system associated with a solution of the nonlinear equations for the
response Torsion I in Ref. [1]. The arrows in this figure represent the nodal directors fId

�
1; Id

�
2g, which

characterize the element’s cross-sections.
The constitutive equations for the Ith element are written in terms of kinematic quantities defined by the

reference element directors IDi (i ¼ 0, 1,y, 5) and the present element directors Idi(t) (i ¼ 0, 1,y, 5), which
are both related to the nodal directors by equations of the forms

Idi ¼
1

2
Id
�
i þ Iþ1d

�
i

� �
; Id3þi ¼

1

I L
�Id

�
i þ Iþ1d

�
i

� �
i ¼ 0; 1; 2 ð2Þ

with Idi replaced by IDi and Id
�
i replaced by ID

�
i for the reference directors. Also, the height IH, width IW and

length IL of the Ith element in its reference configuration are defined so that

jID1j ¼ 1; jID2j ¼ 1; jID3j ¼ 1. (3)

Moreover, the directors are defined so that {ID1, ID2, ID3} and {Id1, Id2, Id3} each are linearly independent
sets

I D1=2 ¼ ID1 � ID2 � ID340; I d1=2
¼ Id1 � Id2 � Id340. (4)
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Fig. 2. Torsion I: The deformed beam and mass showing arrows associated with the nodal directors fId
�
1 ; Id

�
2g, which characterize the

element cross-sections.
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Also, the element director velocities Iwi are specified by

Iwi ¼ I
_di i ¼ 0; 1; . . . ; 5, (5)

where a superposed dot denotes time differentiation.
In addition, the Cosserat point is characterized by its inertia properties

I m; I yij ¼ I yji; I _y
ij ¼ 0

� �
for i; j ¼ 0; 1; . . . ; 5, (6)

where Im is the mass of the element and Iy
ij are the constant director inertia coefficients. Then, the conser-

vation of mass and the balances of director momentum can be written in the forms

I _m ¼ 0;
d

dt

X5
j¼0

I mI yij
Iwj

" #
¼ I mIb

i � I t
i for i ¼ 0; 1; . . . ; 5 (7)

with

I t
0 ¼ 0; I mIb

i ¼ I mIB
i þ Im

i
1 þ Im

i
2 for i ¼ 0; 1; . . . ; 5. (8)

In these equations, IB
i are the specific (per unit mass) external assigned director couples due to body force

and tractions on the lateral surface of the element, Im
i
1 and Im

i
2 are the director couples applied to the ends I

and (I+1), respectively, and I t
i are intrinsic director couples, which need to be specified by constitutive

equations. Moreover, by introducing the second-order tensor IT, the reduced form of the balance of angular
momentum becomes

IT ¼ I d�1=2
X5
i¼1

I t
i � Idi ¼ IT

T: (9)

In order to develop constitutive equations for nonlinear elastic elements it is convenient to introduce the
reciprocal vectors ID

i and Id
i, such that

IDi � ID
j ¼ dj

i ; Idi � Id
j ¼ dj

i for i; j ¼ 1; 2; 3, (10)
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where di
j is the Kronecker delta symbol. Then, the non-singular deformation tensor IF, its determinant IJ, the

deformation tensors IC and IB, and the inhomogeneous strains Iba are defined by the formulas

IF ¼
X3
i¼1

Idi � ID
i; I J ¼ detðIFÞ ¼

I d1=2

I D1=2
40; IC ¼ IF

T
IF; IB ¼ IFIF

T,

Iba ¼ IF
�1

Id3þa � ID3þa for a ¼ 1; 2. ð11Þ

Also, the deformation rate tensor IL, its symmetric part ID and its skew-symmetric part IW are defined by

IL ¼ I
_FIF
�1 ¼

X3
i¼1

Iwi � Id
i ¼ IDþ IW; ID ¼

1

2
ðILþ IL

TÞ ¼ ID
T,

IW ¼
1

2
ðIL� IL

TÞ ¼ �IW
T. ð12Þ

It was shown in Refs. [1,13] that a simple form for viscous material dissipation can be developed by
additively separating the constitutive equations for {IT, It

i} into purely elastic parts fI T̂; I t̂
i
g and viscous parts

{I
�T, Iť

i}, such that

IT¼I T̂þI
�T; I t

i ¼ I t̂
i
þ I

�t
i

for i ¼ 1; 2; . . . ; 5. (13)

In particular, the rate of material dissipation ID is defined by

I d1=2
ID ¼ I d1=2

IT � IDþ ðIF
T

I t
4Þ � I

_b1 þ ðIF
T

I t
5Þ � I

_b2 � I mI
_SX0, (14)

where IS is the strain energy per unit mass. Moreover, the mechanical power of the elastic parts {IT̂, It̂
i} is

balanced by the rate of change of strain energy

I d1=2
I T̂ � IDþ ðIF

T
I t̂

4
Þ � I

_b1 þ ðIF
T

I t̂
5
Þ � I

_b2 ¼ I mI
_S, (15)

so that the rate of material dissipation requires the viscous terms to be dissipative

I d1=2
ID ¼ I d1=2

I
�T � IDþ ðIF

T
I
�t
4
Þ � I

_b1 þ ðIF
T

I
�t
5
Þ � I

_b2X0. (16)

Here, attention is confined to a homogeneous uniform material with constant three-dimensional mass
density r�0 in the reference configuration so that the mass Im of the Ith element can be written in the form

I m ¼ r�0 I D1=2
I V , (17)

where IV is a volume term that will be defined later. Next, using the work of Flory [17] it is convenient to
define pure measures of distortional deformation IF

0, IC
0 and IB

0 as unimodular tensors

IF
0¼I J�1=3 IF; detðIF

0Þ ¼ 1; IC
0
¼IF

0T
IF
0; detðIC

0
Þ ¼ 1; IB

0 ¼ IF
0

IF
0T; detðIB

0Þ ¼ 1. (18)

Also, the modifications introduced by Nadler and Rubin [16] propose inhomogeneous strain measures in
the forms

Ik11 ¼ I L Ib1 � ID
1; Ik21¼I W Ib1 � ID

2; Ik31 ¼ I H Ib1 � ID
3,

Ik12 ¼ I H Ib2 � ID
1; Ik22¼I LIb2 � ID

2; Ik32 ¼ I W Ib2 � ID
3.ð19Þ

Then, a simple neo-Hookean model for isotropic nonlinear elasticity can be characterized by the strain
energy function

IS ¼ S�ðI J; IC
0
Þ þ ICðIbaÞ, (20)

where the strain energy S* of the three-dimensional material characterizes homogeneous deformation and is
given by

2r�0S
�ðICÞ ¼ 2K�½I J � 1� lnðI JÞ� þ m�ðIC0 � I� 3Þ. (21)
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In this equation, K* and m* are the small deformation bulk modulus and shear modulus of the three-
dimensional material, respectively. Also, the strain energy IC, which characterizes inhomogeneous
deformations of bending and torsion of the element, is given by

2I mIC ¼ I D1=2
I V ½I K1 ðIk31Þ

2
þ I K2ðIk32Þ

2
þ I K3ðIk11Þ

2
þ 2I K4ðIk11 Ik22Þ

þ I K5ðIk22Þ
2
þ I K6ðIk21Þ

2
þ 2I K7ðIk21 Ik12Þ þ I K8ðIk12Þ

2
�, ð22Þ

where IKi (i ¼ 1, 2,y, 8) are constitutive constants. In Ref. [16], these constants were determined by
comparison with exact solutions of bending and torsion of a rectangular parallelepiped to obtain

I K1 ¼ I K2 ¼
E�

12
; I K3 ¼ I K5 ¼

E�

12ðI � n�2Þ
; I K4 ¼

n�E�

12ðI � n�2Þ
,

I K6 ¼
I H

I W

m�b�ðIx3Þ
6ð2� I KÞ

� �
; I K7 ¼

m�b�ðIx3ÞðI K � 1Þ

6ð2� I KÞ

� �
; K8 ¼

I W

I H

m�b�ðIx3Þ
6ð2� I KÞ

� �
,

I K ¼Min 2� �;
1

b�ðIx3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I L2b�ðIx1Þb

�
ðIx2Þ

I HI W

s2
4

3
5; � ¼ 0:1,

Ix1 ¼Max
I W

I L
;

I L

I W

	 

; Ix2 ¼Max

I H

I L
;

I L

I H

	 

; Ix3 ¼Max

I H

I W
;

I W

I H

	 

,

b�ðxÞ ¼
1

x
1�

192

p5x

X1
n¼1

1

ð2n� 1Þ5

� �
tanh

pð2n� 1Þx
2

	 
" #
, ð23Þ

where E* is Young’s modulus, which is related to K* and m* and Poisson’s ratio n* by

K� ¼
2m� 1þ n�ð Þ

3ð1� 2n�Þ
; E� ¼ 2m�ð1þ n�Þ. (24)

Next, using standard arguments it can be shown that the condition Eq. (15) requires the elastic parts fI T̂; I t̂
i
g

to be related to derivatives of the strain energy function by the expressions

I d1=2
I T̂ ¼ 2I mIF

qS�ðICÞ
qIC

IF
T; I t̂

4
¼ I mIF

�T qIC
qIb1

; I t̂
5
¼ I mIF

�T qIC
qIb2

,

I d1=2
I T̂ ¼ I D1=2

I VK�½I J � 1�Iþ I D1=2
I Vm� IB

0 �
1

3
ðIB
0 � IÞI

� �
,

I t̂
4
¼ I D1=2

I V ½I LfI K3 Ik11 þ I K4 Ik22gId
1 þ I W fI K6 Ik21 þ I K7 Ik12gId

2 þ I HfI K1 Ik31gId
3�,

I t̂
5
¼ I D1=2

I V ½I HfI K7 Ik21 þ I K8 Ik12gId
1 þ I LfI K4 Ik11 þ I K5 Ik22gId

2 þ I W fI K2 Ik32gId
3�,

I t̂
i
¼ ½I d1=2

I T̂� I t̂
4
� Id4 � I t̂

5
� Id5� � Id

i for i ¼ 1; 2; 3. ð25Þ

The constitutive equations proposed in Ref. [11] for the viscous parts {I
�T, Iť

i} do not allow independent
control of damping due to torsion, and bending in the two principal directions. Therefore, to remove this
deficiency those constitutive equations are generalized to take the forms

I d1=2
I
�T ¼ I D1=2

I V ½IZ1ðID � IÞIþ 2IZ2D
0�,

I
�t
4
¼ I D1=2

I V ðID
1 � ID

1ÞIF
�T½1

2IZ3ðID2 � ID2ÞðID
2 � I

_b1ÞID
2

þ IZ4ðID3 � ID3ÞðID
3 � I

_b1ÞID
3�,

I
�t
5
¼ I D1=2

I V ðID
2 � ID

2ÞIF
�T½1

2IZ3ðID1 � ID1ÞðID
1 � I

_b2ÞID
1

þ IZ5ðID3 � ID3ÞðID
3 � I

_b2ÞID
3�,

I
�t
i
¼ ½I d1=2

I
�T� I

�t
4
� Id4 � I

�t
5
� Id5� � Id

i for i ¼ 1; 2; 3, ð26Þ
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where ID
0 is the deviatoric part of ID:

ID
0 ¼ ID�

1
3
ðID � IÞI. (27)

Then, substituting Eq. (26) into Eq. (16) indicates that the rate of material dissipation will be non-negative if
the viscosity coefficients IZi are non-negative. Also, it is noted that the constants {IZ1, IZ2, IZ3, IZ4, IZ5} control
the viscosity to: dilatation, distortion, torsion, and bending in two orthogonal planes, respectively.

Dissipation to aerodynamic drag can also be included. Specifically, for a constant body force b* per unit
mass, and in the absence of tractions on the lateral surface of the Ith element, the assigned fields IB

i in Eq. (8)
are specified by

I mIB
0 ¼ I mb� � I CDraAjIw0jIw0; I CD ¼ 0 for I ¼ 1; 2; . . . ;N � 1; NCD ¼ CD,

A ¼ BH ; I mIBi ¼ I mI y0ib� for i ¼ 1; 2; . . . ; 5, ð28Þ

where CD is the drag coefficient, ra the density of air, A the effective area of the element, Iw0 the velocity of the
element’s centroid relative to the velocity of the air, which is assumed to be zero. Also, in the following
simulations aerodynamic drag is added only to the last element I ¼ N, which represents the mass attached to
the beam.

For the numerical solution procedure, it is convenient to use the relations [12]

m3
1 ¼ �

I L

2
m0

1; m3
2 ¼

I L

2
m0

2; m4
1 ¼ �

I L

2
m1

1; m4
2 ¼

I L

2
m1

2; m5
1 ¼ �

I L

2
m2

1; m5
2 ¼

I L

2
m2

2 (29)

to reformulate the equations of motion (7) in the alternative forms

Im
0
1 ¼

1

I L

I L

2
I mI y00

I _w0 � I mIB
0

� ��
� I mI y33

I _w3 � I mIB
3 þ I t

3
� ��

,

Im
0
2 ¼

1

I L

I L

2
I mI y00

I _w0 � I mIB
0

� ��
þ I mI y33

I _w3 � I mIB
3 þ I t

3
� ��

,

Im
1
1 ¼

1

I L

I L

2
I mI y11

I _w1 � I mIB
1 þ I t

1
� ��

� I mI y44
I _w4 � I mIB

4 þ I t
4

� ��
,

Im
1
2 ¼

1

I L

I L

2
I mI y11

I _w1 � I mIB
1 þ I t

1
� ��

þ I mI y44
I _w4 � I mIB

4 þ I t
4

� ��
,

Im
2
1 ¼

1

I L

I L

2
I mI y22

I _w2 � I mIB
2 þ I t

2
� ��

� I mI y55
I _w5 � I mIB

5 þ I t
5

� ��
,

Im
2
2 ¼

1

I L

I L

2
I mI y22

I _w2 � I mIB
2 þ I t

2
� ��

þ I mI y55
I _w5 � I mIB

5 þ I t
5

� ��
, ð30Þ

which have been specialized for the case where the off-diagonal terms of Iy
ij vanish. Kinematic coupling of the

elements has already been considered by Eq. (2), which connect the element directors Idi to the nodal directors

Id
�
i . Additional kinetic coupling equations associated with the interior nodes require [11,12]

I�1m
i
2 þ Im

i
1 ¼ 0 for I ¼ 2; 3; . . . ;N and i ¼ 0; 1; 2: (31)

Also, the boundary conditions are characterized by specifying

f1d
�
0 or 1m

0
1g and f1d

�
1 or 1m

1
1g and f1d

�
2 or 1m

2
1g,

fNþ1d
�
0 or Nm

0
2g and fNþ1d

�
1 or Nm

1
2g and fNþ1d

�
2 or Nm

2
2g. ð32Þ

Thus, with the help of the kinematic conditions (2), (11), (12), (18), (19), the constitutive equations (13),
(25), (26), and the results (30), the coupling Eq. (31) and the boundary conditions (32) yield a system of
3(N+1) ordinary differential equations for the 3(N+1) nodal directors Id

�
i (I ¼ 1, 2,y,N+1; i ¼ 0, 1, 2),

which require specification of initial conditions for the quantities

fId
�
i ð0Þ; Iw

�
i ð0Þg for I ¼ 1; 2; . . . ;N þ 1 and i ¼ 0; 1; 2. (33)
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For later reference it is noted that the kinetic energy IK of the Ith element is given by

IK ¼
1
2 I m½Iw0 � Iw0 þ I y11

Iw1 � Iw1 þ I y22
Iw2 � Iw2 þ I y33

Iw3 � Iw3 þ I y44
Iw4 � Iw4 þ I y55

Iw5 � Iw5�, (34)

so that the total kinetic energy K and total strain energy U of the beam–mass system are given by

K ¼
XN

I¼1

IK; U ¼
XN

I¼1

I mIS. (35)

Also, from Ref. [13] it can be shown that the mechanical moment I+1m applied to the cross-section I+1 of
the Ith element about its centroid is given by

Iþ1m ¼ Iþ1d
�
1 � Im

1
2 þ Iþ1d

�
2 � Im

2
2 for I ¼ 1; 2; . . . ;N. (36)

Moreover, using Eq. (30) it follows that the viscous part I+1m̌ of the mechanical moment I+1m applied to
the cross-section I+1 of the Ith element is given by

Iþ1 �m ¼ Iþ1d
�
1 �

1

2
I
�t
1
þ

1

I L
I
�t
4

� �
þ Iþ1d

�
2 �

1

2
I
�t
2
þ

1

I L
I
�t
5

� �
. (37)

3. Problem formulation

For simplicity, instead of modeling the mass as a rigid body it is modeled as another Cosserat point with
different dimensions from those associated with the beam. Also, in Ref. [1] it was noted that the flexibility of
the extension bar attached to the motor shaft and the bearings holding this extension bar in the experimental
setup all contribute to damping of the system, which is difficult to model explicitly. Therefore, here a small
element of length c was introduced at the beam’s clamped end to simulate damping of the experimental
system. Specifically, the beam–mass system is modeled by N Cosserat points with the beam being divided into
M ¼ N�2 equal elements. Consequently, the dimensions of the elements are given by

1H ¼ h; 1W ¼ w; 1L ¼ c,

I H ¼ h; I W ¼ w; I L ¼
L� c

M
for I ¼ 2; 3; . . . ;M ¼ N � 1,

NH ¼ H ; NW ¼W ; NL ¼ B. ð38Þ

Moreover, the reference values of the nodal directors are given by

1D
�
0 ¼ Re3; 1D

�
0 ¼ Rþ cþ ðI � 2Þ

ðL� cÞ

M

� �
e3 for I ¼ 2; 3; . . . ;M þ 2 ¼ N,

Nþ1D
�
0 ¼ ðRþ Lþ BÞe3; ID

�
1 ¼ e1; 1D

�
2 ¼ e2 for I ¼ 1; 2; . . . ;N þ 1, ð39Þ

so that the reference element directors IDi and the reciprocal directors ID
i are given by

1D0 ¼ Rþ
c

2

h i
e3; 1D0 ¼ Rþ cþ I �

3

2

� �
ðL� cÞ

M

� �
e3 for I ¼ 2; 3; . . . ;M þ 1 ¼ N � 1;

ND0 ¼ Rþ Lþ
B

2

� �
e3; IDi ¼ ID

i ¼ ei for i ¼ 1; 2; 3 and I ¼ 1; 2; . . . ;N,

ID4 ¼ ID5 ¼ 0 for I ¼ 2; 3; . . . ;N. ð40Þ

Moreover, it can be shown [11,12] that for the beam elements

I D1=2 ¼ 1; I V ¼ I HI W I L; I y00 ¼ 1; I y11 ¼
I H2

p2
; I y22 ¼

I W 2

p2
; I y33 ¼

I L2

p2
; I y44 ¼ I y55 ¼

2I L

3p

� �4
,

all other I yij ¼ 0 for I ¼ 1; 2; . . . ;M þ 1; ð41Þ

where a typographical error in the expressions for Iy
44 and Iy

55 has been corrected. The director inertia
coefficients for the beam elements model the distribution of inertia in shearing and extensional modes of
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deformation. However, for the mass attached to the beam’s end these director inertia coefficients are specified
by values consistent with a rigid body so that

ND1=2 ¼ 1; NV ¼ NHNW NL; Ny00 ¼ 1; Ny11 ¼
NH2

12
; Ny22 ¼

NW 2

12
; Ny33 ¼

NL2

12
,

Ny44 ¼ Ny55 ¼
2NL

3
ffiffiffiffiffi
12
p

� �4
all other Nyij ¼ 0. ð42Þ

In general, the motion of the beam–mass system is fully three-dimensional so that the nodal director vectors

Id
�
i are general vector functions of time to be determined. The boundary conditions at the clamped end of the

beam require

Id
�
0 ¼ Rðsin fe1 þ cos fe3Þ; Id

�
1 ¼ cos fe1 � sin fe3; Id

�
2 ¼ e2, (43)

where f is given by Eq. (1). Also, the end of the mass is taken to be free of tractions so that the remaining
boundary conditions require

Nm
i
2 ¼ 0 for i ¼ 0; 1; 2. (44)

To complete the formulation it is noted that the material constants {E*, n*} are given by the values {E, n} in
Table 1 of Ref. [1], and the geometric parameters {R, h, w, L, H, W, B} are given by the values in that table.
Moreover, the reference density r�0 is given by the values of ravg in that table for the beam elements and the
mass element. Also, the body force is given by

b� ¼ age3, (45)

where g ( ¼ 9.81m/s2) is the force of gravity per unit mass, a ¼ �1 indicates that the mass is directly above the
beam’s clamped end, and a ¼ 1 indicates that the mass is directly below the beam’s clamped end.
Furthermore, the length c of the element modeling the clamping system is specified by

c ¼ 1mm: (46)
4. Newmark implicit integration

It is well known that explicit time integration of the nonlinear equations for rods can be quite time
consuming [9]. Consequently, some form of implicit integration is usually employed. Here, the Newmark
scheme is used to express the nodal director velocities Iw

�
i ðtnþI Þ and accelerations I _w

�
i ðtnþI Þ at the end t ¼ tn+1

of a time step Dt ¼ tn+1�tn, in terms of the quantities fId
�
i ðtnÞ; Iw

�
i ðtnÞ; I _w

�
i ðtnÞg at the beginning t ¼ tn of the

time step and the values Id
�
i ðtnþ1Þ of the nodal directors at the end of the time step. Specifically, the Newmark

scheme is specified in the form

I _w
�
i ðtnþ1Þ ¼ a3½Id

�
i ðtnþ1Þ � Id

�
i ðtnÞ� � a4½Iw

�
i ðtnÞ� � a5½I _w

�
i ðtnÞ� for i ¼ 0; 1; 2,

I _w
�
i ðtnþ1Þ ¼ Iw

�
i ðtnÞ þ a2½I _w

�
i ðtnÞ� þ a1½I _w

�
i ðtnþ1Þ� for i ¼ 0; 1; 2,

a1 ¼ gDt; a2 ¼ ð1� gÞDt; a3 ¼
1

bðDtÞ2
; a4 ¼

1

bDt
; a5

1� 2b
2b

, ð47Þ

where the auxiliary constants ai have been introduced for convenience and the constants {g, b} are specified by
the typical values

g ¼ 1
2
; b ¼ 1

4
. (48)

Using expressions (47), the coupling equation (31) and the boundary conditions (43) and (44) yield a system
of 3(N+1) algebraic vector equations, which can be expressed in the forms

Jf
j

Id
�
i ðtnþ1Þ


 �
¼ 0 for I ; J ¼ 1; 2; . . . ;N þ 1 and i; j ¼ 0; 1; 2 (49)
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for each time step, where the functions If
i are specified by

1f
0 ¼ 1d

�
0 � Rðsin fe1 þ cos fe3Þ; 1f

1 ¼ 1d
�
1 � ðcos fe1 � sin fe3Þ; 1f

2 ¼ 1d
�
2 � e2,

1f
i ¼ I�1m

i
2 þ Im

i
1 ¼ 0 for I ¼ 2; 3; . . . ;N and i ¼ 0; 1; 2,

Nþ1f
i ¼ Nm

i
2 for i ¼ 0; 1; 2. ð50Þ

Integration is started by specifying initial conditions of the form Eq. (33). The values of I _w
�
i ð0Þ are

determined here by solving the equations of motion at t ¼ 0; however, it is also common to set these values
equal to zero and to correct them during the second time step. Moreover, Eq. (49) can be solved using a
Newton–Raphson iteration scheme, which determines the value Id

�
i ðtnþ1ÞKþ1 associated with the Kth iteration

by solving the equations

0 ¼ I f
iðId
�
i ðtnþ1ÞK Þ þ DðI f iÞ; DðId�i Þ ¼ Id

�
i ðtnþ1ÞKþ1 � Id

�
i ðtnþ1ÞK

for I ¼ 1; 2; . . .N þ 1 and i ¼ 0; 1; 2,

Dð1f iÞ ¼
X2
j¼0

½1B
ij � Dð1d�j Þ þ 1C

ij
� Dð2d�j Þ� for i ¼ 0; 1; 2,

Dð1f iÞ ¼
X2
j¼0

½1A
ij
� DðI�1d�j Þ þ 1B

ij � DðId�j Þ þ IC
ij
� DðIþ1d�j Þ�

for I ¼ 2; 3; . . . ;N and i ¼ 0; 1; 2;

DðNþ1f iÞ ¼
X2
j¼0

½Nþ1A
ij
� DðNd�j Þ þ Nþ1B

ij � DðNþ1d�j Þ� for i ¼ 0; 1; 2, ð51Þ

where the second-order tensors {IA
ij , IB

ij , IC
ij} (i, j ¼ 0, 1, 2) characterize the tangent stiffness, which is

evaluated at the Kth iteration Id
�
i ðtnþ1ÞK . The solution of DðId�i Þ is used to determine the updated guess

Id
�
i ðtnþ1ÞKþ1 for Id

�
i at the end of the time step. Also, the first guess in the iteration procedure can be specified

by

Id
�
i ðtnþ1ÞK ¼ Id

�
i ðtnÞ for K ¼ 1 and i ¼ 0; 1; 2 (52)

and the iteration converges when the maximum residual RK

RK ¼MaxjJf
jðId
�
i ðtnþ1ÞK Þj for all J; j; I ; i (53)

satisfies a specified convergence criterion.
In order to determine an analytical expression for the tensors {IA

ij, IB
ij, IC

ij} (i, j ¼ 0, 1, 2) it is convenient to
develop auxiliary expressions in terms of changes D(Idi) in the element directors such that

DðI tiÞ ¼
X5
j¼1

IK
ij � DðIdjÞ; DðI t̂

i
Þ ¼

X5
j¼1

I K̂
ij
� DðIdjÞ; DðI �t

i
Þ ¼

X5
j¼1

I
�K

ij
� DðIdjÞ,

IK
ij ¼ I K̂

ij
þ I

�K
ij

for I ¼ 1; 2; . . . ;N and i; j ¼ 1; 2; . . . ; 5,

DðI mIB
0Þ ¼

X5
j¼0

IN
0j � DðIdjÞ; IN

0j ¼ 0 for I ¼ 1; 2; . . .N � 1 and j ¼ 0; 1; . . . ; 5,

DðImi
aÞ ¼

X5
j¼0

IM
ij
a � DðIdjÞ for I ¼ 1; 2; . . . ;N and i ¼ 0; 1; 2 and a ¼ 1; 2; ð54Þ

where the second-order tensors {I ŝ
ij ; I �s

ij ; IK
ij ; I K̂

ij
; I
�K

ij
for i, j ¼ 1, 2,y, 5}, {IN

0j for j ¼ 0, 1,y, 5}, {IM
ij
a for

i ¼ 0, 1, 2 and j ¼ 0, 1,y, 5} are determined in Appendix A. Next, with the help of Eq. (2), D(Idi) are related to
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changes D(Id�i ) in the nodal directors by the expressions

DðIdiÞ ¼
1

2
½DðId

�
i Þ þ DðIþ1d

�
i Þ�,

DðId3þiÞ ¼
1

I L
½�DðId

�
i Þ þ DðIþ1d

�
i Þ� i ¼ 0; 1; 2, ð55Þ

so that

DðImi
aÞ ¼

X2
j¼0

1

2
IM

ij
a �

1

I L
IM

ið3þjÞ
a

� �
� DðId�j Þ þ

X2
j¼0

1

2
IM

ij
a þ

1

I L
IM

ið3þjÞ
a

� �
� DðIþ1d�j Þ

for I ¼ 1; 2; . . . ;N and i ¼ 0; 1; 2 and a ¼ 1; 2. ð56Þ

Then, the tensors {IA
ij, IB

ij, IC
ij for i, j ¼ 0, 1, 2} associated with the tangent stiffness Eq. (51) can be

expressed in the forms

1B
00 ¼ 1B

11 ¼ 1B
22 ¼

1

2
I; 1B

01 ¼ 1B
02 ¼ 1B

10 ¼ 1B
12 ¼ 1B

20 ¼ 1B
21 ¼ 0; 1C

ij
¼ 1B

ij ,

1A
ij
¼

1

2
I�1M

ij
2 �

1

I�1L
I�1M

ið3þjÞ
2

� �
,

1B
ij ¼

1

2
I�1M

ij
2 þ

1

I�1L
I�1M

ið3þjÞ
2

� �
þ

1

2
IM

ij
1 �

1

I L
IM

ið3þjÞ
1

� �
,

1C
ij
¼

1

2
IM

ij
1 þ

1

I L
IM

ið3þjÞ
1

� �
for I ¼ 2; 3; . . . ;N and i; j ¼ 0; 1; 2,

Nþ1A
ij
¼

1

2
NM

ij
2 �

1

NL
NM

ið3þjÞ
2

� �
; Nþ1B

ij ¼
1

2
NM

ij
2 þ

1

NL
NM

ið3þjÞ
2

� �
for i; j ¼ 0; 1; 2. ð57Þ
5. Linarized equations of motion and calibration of the damping coefficients

In order to determine values of the viscosities IZi in Eq. (26) it is convenient to develop the linearized forms
of the equations of motion (30). To this end, the nodal director displacements Id

�
i and the element director

displacements Idi are introduced such that

Id
�
i ¼ ID

�
i þ Id

�
i ; Idi ¼ IDi þ Idi;

Idi ¼
1
2
ðId
�
i þ Iþ1d

�
i Þ; Id3þi ¼

1
I L
ðIþ1d

�
i � Id

�
i Þ for i ¼ 0; 1; 2: (58)

Then, neglecting quadratic terms in these director displacements, the kinematic quantities Eq. (11) for the
beam–mass system can be approximated by

IF ¼ Iþ IH; IH ¼
P3
i¼1

Idi � ei; IE ¼
1
2
ðIHþ IH

TÞ;

I J ¼ 1þ IE � I; IC ¼ IB ¼ Iþ 2IE; IC
0
¼ IB

0 ¼ Iþ 2IE
0;

IE
0 ¼ IE�

1
3ðIE � IÞI; ID ¼ I

_E; ID
0 ¼ I

_E
0
; Ib1 ¼ Id4; Ib2 ¼ Id5;

Ik11 ¼ I LId4 � e1; Ik21 ¼ I W Id4 � e2; Ik31 ¼ I HId4 � e3;

Ik12 ¼ I HId5 � e1; Ik22 ¼ I LId5 � e2; Ik32 ¼ I W Id5 � e3:

(59)
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Next, with the help of Eqs. (13), (25) and (26), the constitutive equations reduce to

I d1=2
I T̂ ¼ I V ½K�ðIE � IÞIþ 2m�IE

0�; I d1=2
I
�T ¼ I V ½IZ1ðI _E � IÞIþ 2IZ2I

_E
0
�,

I t̂
4
¼ I V ½I LfI K3Ik11 þ I K4Ik22ge1 þW fI K6Ik21 þ I K7Ik12ge2 þHfI K1Ik31ge3�,

I t̂
5
¼ I V ½HfI K7Ik21 þ I K8Ik12ge1 þ I LfI K4Ik11 þ I K5Ik22ge2 þW fK2Ik32ge3�,

I
�t
4
¼ I V ½1

2IZ3ðe2 � I
_d4Þe2 þ IZ4ðe3 � I

_d4Þe3�,

I
�t
5
¼ I V ½1

2IZ3ðe1 � I
_d5Þe1 þ IZ5ðe3 � I

_d5Þe3�,

I t̂
i
¼ ½I d1=2

I T̂� � ei; I
�t
i
¼ ½I d1=2

I
�t� � ei for i ¼ 1; 2; 3. ð60Þ

Moreover, the assigned fields Eq. (28) are given by

I mIB
0 ¼ I mage3; I mIBi ¼ 0 for i ¼ 1; 2; . . . ; 5, (61)

where it is noted that the aerodynamic term is quadratic in velocity so that it vanishes in the linearized theory.
Thus, the equations of motion (30) yield

Im
0
1 ¼

1

I L

I L

2
fI mI

€d0 � I mIB
0g � fI mI y33

I
€d3 þ I t

3g

� �
,

Im
0
2 ¼

1

I L

I L

2
fI mI

€d0 � I mIB
0g þ fI mI y33

I
€d3 þ I t

3g

� �
,

Im
1
1 ¼

1

I L

I L

2
fI mI y11

I
€d1 þ I t

1g � fI mI y44
I
€d4 þ I t

4g

� �
,

Im
1
2 ¼

1

I L

I L

2
fI mI y11

I
€d1 þ I t

1g þ fI mI y44
I
€d4 þ I t

4g

� �
,

Im
2
1 ¼

1

I L

I L

2
fI mI y22

I
€d2 þ I t

2g � fI mI y55
I
€d5 þ I t

5g

� �
,

Im
2
2 ¼

1

I L

I L

2
fI mI y22

I
€d2 þ I t

2g þ fI mI y55
I
€d5 þ I t

5g

� �
. ð62Þ

Also, the linearized form of the kinematic boundary conditions (43) become

1d
�
0 ¼ Rfe1; 1d

�
1 ¼ �fe3; 1d

�
2 ¼ 0 (63)

and initial conditions need to be specified for the quantities

fId
�
i ð0Þ; I

_d
�

i ð0Þg for ðI ¼ 1; 2; . . . ;N þ 1; i ¼ 0; 1; 2Þ: (64)

In addition, linearization of Eq. (37) yields

Iþ1 �m ¼ e1 �
1

2
I
�t
1
þ

I

I L
I
�t
4

� �
þ e2 �

1

2
I
�t
2
þ

I

I L
I
�t
5

� �

¼
1

2
½e1 � I

�t
1
þ e2 � I

�t
2
� þ

I V

I L
IZ5ðe3 � I

_d5Þe1
�

�IZ4ðe3 � I
_d4Þe2 þ

1

2
IZ3fðe2 � I

_d4Þ � ðe1 � I
_d5Þge3

�
, ð65Þ

which shows that the viscosities of torsion and two bending modes can be determined independently.
Now, with the help of Eqs. (58)–(60) and (62), the kinetic coupling equation (31), the kinematic boundary

conditions (63) and the kinetic boundary conditions (44) yield 3(N+1) vectors equations to determine
the 3(N+1) nodal director displacements Id

�
i . The resulting system of equations represents a set of linear

ordinary differential equations, which are second order in time with constant coefficients. The system can be
solved using standard methods, which introduce auxiliary variables to develop an equivalent set of 6(N+1)
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Table 1

Values of the viscosity coefficients of damping, beam and mass elements and the drag coefficient of the mass

Damping element I ¼ 1 Beam elements I ¼ 2, 3,y,M+1 Mass element I ¼ N

IZ1 (MPa s) 3 3 30

IZ2 (MPa s) 2 2 20

IZ3 (MNs) 0.1 0.1 100

IZ4 (MNs) 50 1 100

IZ5 (MNs) 300 0.05 100

CD ––– ––– 4

ra (g/m3) ––– ––– 1.05
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first-order vector differential equations. Since material dissipation has been included, the real parts of the
solutions of the resulting modal equations are composed of a particular part that oscillates with the forcing
frequency o, and a transient homogeneous part that exhibits sinusoidal oscillation with exponential decay. In
particular, the transient part of the nth modal solution takes the standard form

An expð�znontÞ sinðontþ FnÞ, (66)

where An is its magnitude, on is its natural frequency, zn is its normalized damping coefficient and Fn is its
phase angle.

In Ref. [1], measurements of the natural frequencies and damping coefficients were made of the first
modes of bending in the weak and strong bending planes and of torsion, as well as of the second mode
of bending in the weak bending plane. The coefficients {IZ1, IZ2} control damping of homogeneous
deformations, which were not measured in the experiments. Consequently, the values given in Table 1 were
specified by taking

IZ1 ¼
2

3
IZ2 (67)

and by specifying IZ2 to be reasonably small.
As previously mentioned, aerodynamic drag is a nonlinear phenomena that does not affect the linear

solution. The values of the density ra of air and the drag coefficient CD given in Table 1 for the nonlinear
response were determined by tables in Ref. [18], with the value of CD being restricted to be consistent with the
known range of values associated with the velocity of the mass that was on the order of 0.5m/s.

For all cases, the elastic properties {E*, n*} of each element are the same. The damping coefficients in the
first element (I ¼ 1) are used to model damping in the experimental setup, the damping coefficients in
each of the beam elements (I ¼ 2, 3,y,N�1) are the same, and the damping coefficients in the mass
element (I ¼ N) are taken to be large in order to simulate the mass as a nearly rigid body. More specifically,
by specifying values for the coefficients {IZ3, IZ4, IZ5} and solving the linearized equations it is possible to
predict the natural frequencies of vibration and the normalized damping coefficient z of each mode of
vibration.

The values of the coefficients {IZ3, IZ4, IZ5} were calibrated by matching the measured damping coefficients
for the first torsion mode and the first bending modes in the strong and weak directions of the beam–mass
system reported in Ref. [1]. The calibration procedure for determining the damping coefficients {1Z3, 1Z4, 1Z5}
in the first element and the damping coefficients {2Z3, 2Z4, 2Z5} in the beam elements used the following two
steps. For step 1, the short first element was eliminated and the values of {2Z3, 2Z4} associated with the beam
elements were determined to match the experimentally determined damping values for the first torsion mode
and the first bending mode in the strong bending direction. The value {2Z5} controlling the damping of the
first bending mode in the weak bending direction was specified to be a reasonably low value associated
with steel and was not calibrated to yield the high value measured in the experimental setup. For the final step
2, the full numerical model with the short first element was used and the damping coefficients {2Z3, 2Z4, 2Z5} of
the beam elements (I ¼ 2, 3,y,N�1} were set equal to the values determined in step 1. Then, the values of
{1Z3, 1Z4, 1Z5} were determined to match the experimentally determined damping values for the first torsion
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Table 3

Effect of gravity

a Measured frequency (Hz) Simple model frequency (Hz) Nonlinear theory frequency (Hz)

1 2.76 2.73 2.70

0 2.35 2.45 2.36

�1 1.87 2.07 1.82

Measured natural frequencies of the first bending mode in the weak bending plane and theoretical predictions of the simple model in

Ref. [1] and simulations of the nonlinear theory for different values of a.

Table 2

Measured and predicted natural frequencies and damping coefficients for the first four modes of vibration (a ¼ 1)

Mode type Exp. (Hz) Linear theory (Hz) Nonlinear theory (Hz) Exp. z (%) Linear theory z (%)

First bending mode (weak plane) 2.76 2.36 2.70 4.0 5.67

First bending mode (strong plane) 26.75 28.27 29.55 0.187 0.17

Torsional mode 41.82 41.15 40.4 0.119 0.24

Second bending mode (weak plane) 44.03 44.91 — 0.05 0.6
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mode and both the first bending modes in the strong and weak bending directions. Consequently, the
value {1Z5} models the high damping measured in the experimental setup for the first bending mode in the
weak bending direction, which was influenced by damping in the extension bar and bearings. The cali-
brated values of the coefficients summarized in Table 1 are used in the remaining simulations discussed in
this paper.

Table 2 lists the natural frequencies and the normalized damping coefficients z measured in the experiments
and determined by the linearized equations with the viscosity coefficients in Table 1. Table 2 also includes the
natural frequencies predicted by simulations of the nonlinear equations with appropriate initial conditions,
which cause small deformations in the desired modes. In particular, it is noted that with the help of the
damping element (N ¼ 1) the damping coefficients of the resulting theory are in reasonable agreement with
those of the experiment. Also, it can be seen that the linearized theory cannot capture the stiffening effect of
gravity for the first bending mode in the weak bending plane that is observed in the experimental data and in
the small deformation simulation of the nonlinear equations. Table 3 compares the experimental data with the
results of the simple model in Ref. [1] and the results of small deformation simulations of the nonlinear
equations. From this table, it can be seen that the nonlinear equations accurately predict the natural
frequencies for the case when the mass is oriented below the beam’s clamped end (a ¼ 1, as in Table 2); for the
case of no gravity (a ¼ 0); and for the case when the mass is oriented above the beam’s clamped end (a ¼ �1).

6. A preliminary example problem

The accuracy of the numerical simulations of the nonlinear equations of the theory of a Cosserat point was
studied to determine limitations on the maximum time step Dt for the Newmark integration scheme discussed
in Section 4 and for the minimum number M of elements in the spatial discretization of the beam. In this
regard, it is recalled that the beam–mass system was discretized into N ¼M+2, with one damping element
(I ¼ 1), M equal beam elements and one (I ¼ N) element for the mass (at the end of the beam) whose behavior
was dominated by near rigid body motion.

In order to determine the maximum time step, a simple problem was considered in which the beam–mass
system was initially in its stress-free reference configuration, the centroids of the cross-sections were subjected
to linear velocity gradients in two directions and the clamped end remained fixed. For this case, the nodal
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Fig. 3. Plots of the error Ee Eq. (70) in the total energy as functions of time: for different values of the time step Dt with M ¼ 16

(the number of beam elements); and (b) for different values of M with Dt ¼ 20 ms. The curve labels are: (a) ––– Dt ¼ 100ms;
� � � � � Dt ¼ 50 ms; –––o Dt ¼ 20 ms; (b) ––– M ¼ 16; � � � � � M ¼ 32.

Table 4

Excitation frequencies and amplitudes specified in the experiments and in the simulations

Response o (Hz) exp. and sim. f0 (deg) exp. f0 (deg) sim.

Torsion I 35.0 1.11 0.9

Torsion II 27.0 1.50 1.0

Bending II 35.0 1.11 0.9
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director vectors and their velocities were specified by

Id
�
i ð0Þ ¼ ID

�
i for i ¼ 0; 1; 2; Iw

�
0ð0Þ ¼

ðjID
�
0j � RÞ

ðjNþ1D
�
0j � RÞ

� �
½V 1e1 þ V 2e2�,

Iw
�
1ð0Þ ¼ Iw

�
2ð0Þ ¼ 0 for I ¼ 1; 2; . . . ;N þ 1, ð68Þ

where V1 ¼ 0.387m/s and V2 ¼ 6.45E�4m/s. These values of V1 and V2 cause large deformations of the
system, which are on the order of those being studied in the experiments. Moreover, in the absence of gravity
and damping (a ¼ 0; IZi ¼ 0, ICD ¼ 0) the beam–mass system is free of external loads except at the clamped
end, which is fixed so that the total energy E

E ¼KþU (69)

remains constant with time. Consequently, the accuracy of the numerical integration scheme can be examined
by considering the error Ee in the total energy defined by

Ee ¼
E� E0

E0
. (70)

Fig. 3a plots this error as a function of time for different values of the time step Dt with M ¼ 16 equal beam
elements and Fig. 3b plots the same error estimate for Dt ¼ 20 ms and two values of the discretization M of the
beam. These results indicate that the numerical scheme is reasonably converged for this example.

For the simulations described here and in the next section it is recalled from Ref. [1] that the controller in the
experiments could not maintain a constant amplitude nor a pure sine function as the excitation equation (1) of
the beam when dynamic buckling occurred. Therefore, in comparing the simulations with the experiments, the
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Fig. 4. Torsion I: Plots of the out-of-plane component ðe2 � Nd
�
0Þ of the centroid of the beam’s end as a function of time for different values

of the number M of beam elements with Dt ¼ 20 ms. The curve labels are: � � � � � M ¼ 16; ––– M ¼ 32.
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excitation frequency o was taken to be the same as that in the experiments but the excitation amplitude f0 was
adjusted to better match the amplitudes of motion of the mass measured in the experiments. Table 4
summarizes the excitation frequencies and amplitudes specified in the experiments in Ref. [1] and those used in
the simulations reported here.

In order to determine the minimum number M of beam elements for accurate spatial resolution, simulations
were considered for the response Torsion I with an excitation amplitude f0 ¼ 0.651 and frequency
o ¼ 35.0Hz, including gravity, the damping element (I ¼ 1), material damping in the beam elements and
aerodynamic drag on the mass element. Fig. 4 plots the out-of-plane component (e2 � Nd

�
0) of the centroid of

the beam’s end which is attached to the mass as a function of time for two different values of M with
Dt ¼ 20 ms. The results shown in Fig. 4 indicate that the differences between the solutions for the meshes
M ¼ 16 and 32 are much more significant than those observed in Fig. 3b for the same time step Dt ¼ 20 ms. In
this regard, it is emphasized that the simulation in Fig. 3 has no energy input and no dissipation, whereas the
simulation of Torsion I in Fig. 4 includes both energy input and dissipation. Therefore, the results in Fig. 4
represent a complicated balance of nonlinear phenomena. In particular, it is observed that the results in Fig. 4
are consistent with those in the experiment, which indicate that the center of the mass remains on one side of
the vertical (e1–e3) plane. Also, it can be seen from Fig. 4 that the average amplitude of the lateral
displacement is relatively unchanged by increasing the number of elements in the simulation. The decision to
use M ¼ 16 with Dt ¼ 20 ms for the remainder of the simulations in this paper was partially based on the
necessity to reduce the computation effort required to simulate the long-time response of the experiments
using a small time step. This decision was also based on the fact that the model with M ¼ 16 elements is
capable of capturing the main nonlinear responses observed in the experiments for Torsions I and II and
Bending II, which were found to be quite difficult to simulate with a specified set of material and damping
parameters.

7. Comparions of simulations with experimental data

It will be shown presently that the theory of a Cosserat point can be used to simulate most of the
experimental data with reasonable accuracy. Also, with the help of the damping element the simulations
are able to capture the extensive damping of the first mode of bending in the weak bending plane observed
in the experiments of Torsions I and II. However, the simulations do not accurately predict the results
of Torsion III. A small initial perturbation was used for all of the simulations. Specifically, for the res-
ponses Torsion I–III the initial conditions were specified so that the beam and mass were pre-twisted with
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zero initial velocity

1d
�
0ð0Þ ¼ 1D

�
i for i ¼ 0; 1; 2; 1w

�
0ð0Þ ¼ Rf0oe1; 1w

�
1ð0Þ ¼ �f0oe3; 1w

�
2ð0Þ ¼ 0,

Id
�
0ð0Þ ¼ ID

�
0; Id

�
1ð0Þ ¼

ðjID
�
0j � RÞ

ðjNþ1D
�
0j � RÞ

� �
½cos Ye1 þ sin Ye2�,

Id
�
2ð0Þ ¼

ðjID
�
0j � RÞ

ðjNþ1D
�
0j � RÞ

� �
½� sin Ye1 þ cos Ye2�,

Iw
�
i ð0Þ ¼ 0 for I ¼ 1; 2; . . . ;N þ 1 and i ¼ 0; 1; 2; ð71Þ

where the torsion angle Y ¼ 11 and the initial velocity field is consistent with the boundary condition (43).
Also, for the simulation of Bending II, initial conditions of the forms Eq. (68) were used with V1 ¼ 0m/s and
V2 ¼ 6.45E�4m/s, which by themselves cause small deflections.

The camera angle used in the experiments reported in Ref. [1] prevented the accurate measurement of
displacements in the e1 direction. Therefore, the analysis of the torsion angle used an approximation, which
assumed that this displacement was reasonably small. In order to compare with this experimental data, this
same approximation is used to analyze the results of the simulations. Specifically, let Ny be the approximate
value of the torsion angle at the beam’s end, which is attached to the mass. To develop an expression for Ny it
is convenient to define an auxiliary orthonormal triad e0i associated with the beam’s end, such that

e01 ¼ e1; e02 ¼ e03 � e01; e03 ¼
Nd
�
3 � ðNd

�
3 � e1Þe1

jNd
�
3 � ðNd

�
3 � e1Þe1j

; Nd
�
3 ¼ Nd

�
1 � Nd

�
2, (72)

where Nd
�
3 is normal to the cross-section of the beam’s end, and e03 is the unit vector in the direction of the

projection of this normal into the vertical plane normal to e1. Next, the projections fN d̄
�

1; N d̄
�

2g of the nodal
vectors into the e01 � e02 plane are specified by

N d̄
�

1 ¼ N d̄
�

1 � ðN d̄
�

1 � e
0
3Þe
0
3; N d̄

�

2 ¼ Nd
�
2 � ðNd

�
2 � e

0
3Þe
0
3, (73)

so that the torsion angle Ny at the beam’s end can be approximated by the expressions

Ny ¼ 1
2
ðNy1 þ Ny2Þ;

Ny1 ¼ tan�1
N d̄
�

1 � e
0
2

N d̄
�

1 � e
0
1

" #
; Ny2 ¼ �tan�1

N d̄
�

2 � e
0
1

N d̄
�

2 � e
0
2

" #
. ð74Þ

In the following comparisons with the experimental data use is made of the constants reported in the tables
in Ref. [1], which provide analytical expressions for parametric functions of time and polynomial functions of
space that yield smooth fits of the raw experimental data.

Figs. 5–7 compare predictions of the numerical simulations with results of the experimental data,
respectively, for Torsions I and II, and Bending II in Ref. [1]. Figs. 5a, 6a, 7a show the values of ðe2 � Nd

�
0Þ

associated with the out-of-plane motion of the centroid of the beam’s end; Figs. 5b, 6b, 7b compare the
predictions of the torsion angle Ny of the beam’s end with the parametric approximations of the experimental
data; and Figs. 5c, 6c, 7c compare the shapes of the centroid of the beam in the simulations with the
polynomial approximations of the experiments for different times. In general, the results in Figs. 5–7 show
reasonably good agreement with the experimental data.

In the experiments Torsions I–III described in Ref. [1] it was observed that the damping in the weak bending
plane was high enough to keep the end of the beam (attached to the mass) nearly stationary on one side of the
vertical plane as the beam oscillated. The results in Figs. 5a and 6a show that the simulations predict that the
beam’s end remains on one side of the vertical plane but they exhibit an additional oscillation of magnitude
1mm (Fig. 5a) and 4mm (Fig. 6a) at a frequency of about 3.5Hz, which is near the frequency of first mode of
bending in the weak bending plane. The simulation of Torsion III, which is not shown here, cannot capture
this phenomena since in the simulation the beam’s end oscillates on both sides of the vertical plane. The fact
that the experiments do not exhibit this low-frequency oscillations may be partially due to added damping in
the experimental system and the inability of the controller to maintain a sinusoidal excitation during dynamic
buckling.
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Fig. 5. Torsion I: Comparison of the simulations and the experimental data. The curve labels are: (a, b) � � � � � Exp.; –––Sim.;

(c) –––o Sim. 0ms; –––+ Sim. 8ms; –––* Sim. 16ms; � � � � � Exp.
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8. Comparison with ansys

It is of interest to compare the predictions of the Cosserat model with those of the nonlinear beam element
BEAM 189 in the commercial program ANSYS [19]. In the previous section it was found that the results of the
simulations of the responses to the torsional modes are sensitive to the magnitude of damping. Therefore, in
order to perform a representative simulation in ANSYS it is necessary to determine damping coefficients.
These coefficients in ANSYS have forms based on linearized equations of motion which can be written as

M €xþ C _xþ Kx ¼ 0, (75)

where x is the vector of unknowns, M the symmetric mass matrix, K the symmetric stiffness matrix and C the
damping matrix. Specifically, ANSYS admits a damping matrix C of the form

C ¼ ZMMþ ZKK, (76)

where {ZM, ZK} are damping coefficients. The linearized equations of the theory of a Cosserat point developed
in Section 5 yield a different damping matrix C from that obtained by the form equation (76). In this regard, it
is noted that the constitutive Eq. (26) have been motivated by the desire to model damping of physical
structural modes of vibration of the element instead of by the pure mathematical convenience of being able
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Fig. 6. Torsion II: Comparison of the simulations and the experimental data. The curve labels are: (a, b) � � � � � Exp.; –––Sim.;

(c) –––o Sim. 0ms; –––+ Sim. 12ms; –––* Sim. 24ms; � � � � � Exp.
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to diagonalize the resulting damped system of equations. Consequently, in order to calibrate the constants
{ZM, ZK} for the ANSYS model, the damping matrix C obtained from the Cosserat theory of Section 5 was
replaced by the form equation (76), the short damping element was eliminated and the resulting equations
were solved to obtain values for the natural frequencies and the normalized damping coefficients of the first
four modes of vibration. The calibrated values of {ZM, ZK} are given in Table 5a and the associated predictions
of the resulting linearized equations (in the absence of gravity, a ¼ 0) are given in Table 5b, where comparison
is also made with the results using the linearized equations of the full Cosserat model (including the short
damping element) together with the viscosity coefficients given in Table 1. Since the values of the constants
{ZM, ZK} affect all modes it is only possible to match the Cosserat results in an average sense.

An ANSYS simulation of Torsion I was performed using a discretization with no short damping element,
16 equal beam elements and 1 mass element and using the damping coefficients in Table 5a. Also, the effect of
gravity (a ¼ 1) was included and the boundary condition at the clamped end was the same Eq. (43) as that
used on the clamped end of the damping element in the Cosserat simulations. Fig. 8 compares the simulations
of the full Cosserat model (with the short damping element) and the ANSYS model for the motion of the
centroid (e2 � Nd

�
0) (Fig. 8a) and the torsion angle Ny (Fig. 8b) at the beam’s end for Torsion I. Although the

ANSYS model had more damping in the first bending mode in the weak bending plane than the Cosserat
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Fig. 7. Bending II: Comparison of the simulations and the experimental data. The curve labels are: (a, b) � � � � � Exp.; ––– Sim.;

(c) –––o Sim. 0ms; –––+ Sim. 7ms; –––* Sim. 14ms; –––◊ Sim. 21ms; � � � � � Exp.

Table 5a

Values of the damping coefficients used in ANSYS

ZM (s�1) 2

ZK (s) 0.0001

Table 5b

Natural frequencies and damping coefficients for the first four modes of vibration based on the linearized equations using the coefficients

for the Cosserat and ANSYS models (with a ¼ 0)

Mode type Cosserat (Hz) ANSYS (Hz) Cosserat z (%) ANSYS z (%)

First bending mode (weak plane) 2.357 2.383 5.67 5.81

First bending mode (strong plane) 28.27 28.58 0.17 1.37

Torsional mode 41.15 42.30 0.24 1.62

Second bending mode (weak plane) 44.91 45.30 0.6 1.71

O. Yogev et al. / Journal of Sound and Vibration 303 (2007) 832–857 851
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Fig. 8. Torsion I: Comparison of the simulations of the Cosserat and ANSYS models for (a) the centroid ðe2 � Nd
�
0Þ and (b) the torsion

angle Ny at the beam’s end. The curve labels are: — Cosserat; –––o ANSYS.
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model, the ANSYS calculation took longer to reach near steady state. In particular, it is noted that the
ANSYS simulation also exhibits oscillations of the centroid of the beam’s end at a low frequency near that of
the first bending mode in the weak bending plane.
9. Conclusions

The theory of a Cosserat point has been used to develop a numerical model for the nonlinear dynamic
response of an elastic beam–mass system with viscous damping and aerodynamic drag. The Cosserat
equations have been solved using the Newmark time-integration scheme and an analytical expression for the
tangent stiffness of the resulting Newton–Raphson iteration procedure has been developed. Comparison with
the experimental data in Ref. [1] shows that the Cosserat model accurately predicts the nonlinear stiffening
and weakening effect of gravity when the mass is located below and above the beam’s clamped end,
respectively.

The simulations reproduce the experimental result that two different nonlinear modes of vibration
(Torsion I and Bending II) occur at the same excitation amplitude and frequency. Torsion I is a dynamic
lateral torsional post-buckling mode associated with out-of-plane motion of the beam–mass system which is
dominated by oscillating torsion of the beam. Bending II is dominated by a nonlinear second bending mode in
the weak bending plane. The simulations of the Cosserat model are in reasonably good quantitative agreement
with the experimental results for these two modes of vibration.

For the responses Torsions I–III the end of beam remained on one side of the vertical plane. The
simulations were able to capture this phenomena for Torsion I and II but not for Torsion III. Moreover, the
simulations indicated a low-frequency oscillation in the weak bending plane, which was not observed in
the experiments. Damping of this mode in the experiments is presumed to be due to flexibility of the extension
bar, damping in the bearings and effects of the controller, and is modeled by a small damping element located
at the clamped end of the beam. Also, simulations were performed for Torsions I and II in which the effect of
aerodynamic drag on the mass was eliminated. The results indicated that aerodynamic drag has a significant
effect and cannot be neglected.

Even though the Cosserat theory was not able to accurately simulate the results of Torsion III, which
produced the largest amplitude vibrations, the Cosserat simulations were in reasonably good agreement with
the experimental data for Torsions I and II. This demonstrates that the simulations capture the experimental
observation that similar post-buckling responses can occur for a range of excitation amplitudes and
frequencies.
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Comparison was also made with the commercial code ANSYS for simulations of Torsion I, which indicate
similar results to those of the Cosserat simulation with a persistent oscillation of the centroid of the beam’s end
at a low frequency near that of the first bending mode in the weak bending plane.
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Appendix A. Details of the tangent stiffness

The objective of this Appendix A is to present explicit expressions for the tensors fI K̂
ij
; I
�K

ij
; IN

0j ; IM
ij
ag,

which determine the tensors in Eq. (57) associated with the tangent stiffness Eq. (51). To this end, it is
convenient to generalize the definition of the Kronecker delta, such that

dj
m ¼ 1 for m ¼ j; dj

m ¼ 0 for maj with m; j ¼ 0; 1; . . . ; 5. (77)

Then, with the help of Eqs. (13), (28), (30), (41) and (54) it follows that

IM
0j
1 ¼

1

2
½I ma3d

j
0I� IN

0j� �
1

I L
½I mI y33a3d

j
3Iþ IK

3j�,

IM
0j
2 ¼

1

2
½I ma3d

j
0I� IN

0j� þ
1

I L
½I mI y33a3d

j
3Iþ IK

3j�,

IM
1j
1 ¼

1

2
½I mI y11a3d

j
1Iþ IK

1j� �
1

I L
½I mI y44a3d

j
4Iþ IK

4j�,

IM
1j
2 ¼

1

2
½I mI y11a3d

j
1Iþ IK

1j� þ
1

I L
½I mI y44a3d

j
4Iþ IK

4j�,

IM
2j
1 ¼

1

2
½I mI y22a3d

j
2Iþ IK

2j� �
1

I L
½I mI y55a3d

j
5Iþ IK

5j�,

IM
2j
1 ¼

1

2
½I mI y22a3d

j
2Iþ IK

2j� þ
1

I L
½I mI y55a3d

j
5Iþ IK

5j�,

for j ¼ 0; 1; . . . ; 5 and I ¼ 1; 2; . . . ;N, ð78Þ

where it is noted that the constant body force does not influence the tangent stiffness, and use has been made
of Eq. (47) to deduce that

DðIwmÞ ¼
X5
j¼0

a1a3d
j
mDðIdjÞ; DðI _wmÞ ¼

X5
j¼0

a3d
j
mDðIdjÞ for m ¼ 0; 1 . . . ; 5. (79)

Next, in order to develop expressions for the tensors fI K̂
ij
; I
�K

ij
; IN

0jg it is convenient to introduce additional
auxiliary tensors, such that

DðI JÞ ¼
X5
j¼1

Ia
j
0 � DðIdjÞ; DðIbaÞ �D

i ¼
X5
j¼1

Ia
ij
a � DðIdjÞ,

DðIdiÞ ¼
X5
j¼1

Ia
ij
3 � DðIdjÞ; DðIB0Þ � Id

i ¼
X5
j¼1

Ia
ij
4 � DðIdjÞ; DðIB0Þ � I ¼

X5
j¼1

Ia
j
5 � DðIdjÞ,
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DðI d1=2
ITÞ � Id

i ¼
X5
j¼1

Is
ij � DðIdjÞ; DðI d1=2

I T̂Þ � Id
i ¼

X5
j¼1

I ŝ
ij
� DðIdjÞ,

DðI d1=2
I
�TÞ � Id

i ¼
X5
j¼1

I �s
ij � DðIdjÞ; Is

ij ¼ I ŝ
ij
þ I �s

ij for a ¼ 1; 2 and i ¼ 1; 2; 3 and I ¼ 1; 2; . . . ;N þ 1.

ð80Þ

where the tensors fIa
j
0; Ia

ij
a ; Ia

ij
3 ; Ia

ij
4 ; Ia

j
5 for i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ; 5g, fI ŝ
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sently. Specifically, using the results
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it follows that
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Then, with the help of Eqs. (19), (25), (54) and (80) it can be shown that
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For the dissipation terms, Eqs. (11), (12), (40) and (81) are used to rewrite Eq. (26) in the forms
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2

þ IZ4fId
3 � Iw4 � ðId

3 � Id4Þ
X3
m¼1

ðId
m � IwmÞg � Id

3�,

I �t
5
¼ I D1=2

I V ½1
2IZ3fId

1 � Iw5 � ðId
1 � Id5Þ

X3
m¼1

ðId
m � IwmÞgId

1

þ IZ5fId
3 � Iw5 � ðId

3 � Id5Þ
X3
m¼1

ðId
m � IwmÞgId

3�, ð84Þ

so that

I �s
ij
¼ I D1=2

I V
X3
m¼1

½fIZ1 � ð2IZ2=3Þg fa1a3d
j
mId

i � Id
m þ ðId

i � IwmÞIa
mj
3 g

þ 2IZ2fa1a3d
i
mðId

i � Id
mÞIþ ðIwm � Id

iÞIa
mj
3 þ ðId

i � IwmÞIa
mj
3

þ aI a3d
j
mðId

m � Id
iÞ� for i;m ¼ 1; 2; 3 and j ¼ 1; 2; . . . ; 5,

I
�K
4j
¼ 1

2IZ3I D1=2
I V ½ðId

2 � Iw4ÞIa
2j
3 þ a1a3d

j
4ðId

2 � Id
2Þ

�
X3
m¼1

ðId
m � IwmÞfðId

2 � Id4ÞIa
2j
3 þ dj

4ðId
2 � Id

2Þg

� ðId
2 � Id4Þ

X3
m¼1

fðId
2 � IwmÞIa

mj
3 þ a1a3d

j
mðId

2 � Id
mÞg�

þ fId
2 � Iw4 � ðId

2 � Id4Þ
X3
m¼1

ðId
m � IwmÞgIa

2j
3 �

þ IZ4I D1=2
I V ½ðId

3 � Iw4ÞIa
3j
3 þ a1a3d

j
4ðId

3 � Id
3Þ

�
X3
m¼1

ðId
m � IwmÞfðId

3 � Id4ÞIa
3j
3 þ dj

4ðId
3 � Id

3Þg

� ðId
3 � Id4Þ

X3
m¼1

fðId
3 � IwmÞIa

mj
3 þ a1a3d

j
mðId

3 � Id
mÞg

þ fId
3 � Iw4 � ðId

3 � Id4Þ
X3
m¼1

ðId
m � IwmÞgIa

3j
3 �,

I
�K
5j
¼ 1

2IZ3I D1=2
I V ½ðId

1 � Iw5ÞIa
1j
3 þ a1a3d

j
5ðId

1 � Id
1Þ

�
X3
m¼1

ðId
m � IwmÞfðId

1 � Id5ÞIa
1j
3 þ dj

5ðId
1 � Id

1Þg � ðId
1 � Id5Þ

�
X3
m¼1

fðId
1 � IwmÞIa

mj
3 þ a1a3d

j
mðId

1 � Id
mÞg þ fId

1 � Iw5 � ðId
1 � Id5Þ
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�
X3
m¼1

ðId
m � IwmÞgIa

1j
3 � þ IZ5I D1=2

I V ½ðId
3 � Iw5ÞIa

3j
3 þ a1a3d

j
5ðId

3 � Id
3Þ

�
X3
m¼1

ðId
m � IwmÞfðId

3 � Id5ÞIa
3j
3 þ dj

5ðId
3 � Id

3Þg � ðId
3 � Id5Þ

�
X3
m¼1

fðId
3 � IwmÞIa

mj
3 þ a1a3d

j
mðId

3 � Id
mÞg þ fId

3 � Iw5 � ðId
3 � Id5Þ

�
X3
m¼1

ðId
m � IwmÞgIa

3j
3 � for j ¼ 1; 2; . . . ; 5. ð85Þ

Next, with the help of Eqs. (13), (25), (26), (54) and (80), it can be seen that the tensors {IK
ij ; I K̂

ij
; I
�K

ij
for

i ¼ 1, 2, 3} all satisfy equations of the forms

IK
ij ¼ Is

ij � ðId4 � Id
iÞIK

4j � ðI t
4 � Id

iÞdj
4 � ðId5 � Id

iÞIK
5j � ðI t

5 � Id
iÞdj

5

þ ðI d1=2
IT� I t

5 � Id4 � I t
5 � Id5ÞIa

ij
3 for i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ; 5: ð86Þ

Finally, using Eq. (28) it can be shown that

DðI mIB
0Þ ¼ �I CDraA

Iw0

jIw0j
� DðIw0Þ

	 

Iw0 þ jIw0jDðIw0Þ

� �
,

IN
0j ¼ �a1a3CDraA Iw0 �

Iw0

jIw0j

	 

þ jIw0jI

� �
dj
0 for j ¼ 0; 1; . . . ; 5: (87)
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