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Abstract

Two Lindstedt–Poinaré perturbation-based methods are used to solve the nonlinear differential equation of a nonlinear

oscillator having the square of the angular frequency quadratic dependence on the velocity. Mickens published two

interesting papers [J. Beatty, R.E. Mickens, A qualitative study of the solutions to the differential equation
€xþ ð1þ _x2Þx ¼ 0, Journal of Sound and Vibration 283 (2005) 475–477; R.E. Mickens, Investigation of the properties of

the period for the nonlinear oscillator €xþ ð1þ _x2Þx ¼ 0, Journal of Sound and Vibration 292 (2006) 1031–1035] about this

oscillator and by using the harmonic balance method he found that the approximate frequency is not defined for

amplitudes of magnitude equal to or larger than two. We show that these standard perturbation methods work better than

the harmonic balance method. In particular, the modified Lindstedt–Poincaré method works well for the whole range of

oscillation amplitudes, and excellent agreement of the approximate frequency with the exact one has been demonstrated

and discussed.

r 2007 Elsevier Ltd. All rights reserved.
The present authors take this opportunity (i) to congratulate with the authors of Refs. [1,2] for their
interesting study, and (ii) to add some interesting results about the angular frequency, o(A), as a function of
the initial amplitude A, obtained by means of a standard perturbation procedure [3], not already included in
Refs. [1,2].

Mickens et al. had published two very interesting papers [1,2] about the nonlinear oscillator

€xþ ð1þ _x2Þx ¼ 0 (1)

with initial conditions xð0Þ ¼ A and _xð0Þ ¼ 0. Eq. (19) corresponds to a generalized conservative system [3]. In
Ref. [2], the author states that this oscillator ‘‘has the interesting feature that its angular frequency, o(A) ¼ 2p/
T(A), is singular or not defined at finite values of A when standard perturbation procedures [1,4–6] are used to
calculate o(A)’’. He also demonstrated following a very interesting procedure that o(A) has not singularity for
0pAoN, and he pointed out that ‘‘the restrictions on the range of applicable A values for o(A), obtained by
use of various perturbation procedures [1,4–6] are only indications of their limitations for calculating the
angular frequency for the nonlinear oscillator given by Eq. (1)’’. Finally, at the end of Ref. [1], the authors
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pointed out that ‘‘the observed singularities occurring in the various methods to calculate approximate
solutions for Eq. (1) are therefore artifacts of the perturbations methods and thus indicate limitations on these
techniques’’. A similar sentence to this one was included at the end of Ref. [2]. However, neither in Ref. [1] nor
in Ref. [2] the authors did not present an approximate expression for the angular frequency for the oscillator
of Eq. (1) by using perturbation methods. They calculated the angular frequency, o(A), by means of the first-
order harmonic balance method [4] and they obtained the following expression [1,2]:

oðAÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� A2
p , (2)

which is not defined for amplitudes of magnitude equal to or larger than two in value. In Refs. [1] and [2], the
authors did not calculate o(A) by means standard perturbation methods but they concluded that the angular
frequency obtained by using standard perturbation methods is also singular. It should also be indicated that
we have calculated o(A) by means of the second-order harmonic balance method [7] and o(A) still has a
singularity as a function of the amplitude.

In this paper, we will obtain the angular frequency for the oscillator of Eq. (1) by using the standard
Lindstedt–Poincaré perturbation method and we will see that this approximate angular frequency has not any
singularity as a function of the amplitude. This technique can be used to construct uniformly valid periodic
solutions to second-order nonlinear differential equation of the form [3]

d2y

dt2
þ y ¼ �F y;

dy

dt

� �
; �40, (3)

where e is a small positive parameter known as perturbation parameter. If we compare Eq. (1) with Eq. (3) we
can see that there is no perturbation parameter in Eq. (1). Then the standard Lindstedt–Poincaré method
could not be directly applied to Eq. (1). However, it is possible to construct an artificial perturbation equation
by embedding an artificial parameter in Eq. (1). The use of a scaling allows to solve this problem. For small
amplitude oscillations we introduce the scaling variable e as follows:

xðtÞ ¼
ffiffi
�
p

yðtÞ, (4)

where e is a small positive parameter and the initial conditions can be written as yð0Þ ¼ A=
ffiffi
�
p
¼ a and

dyð0Þ=dt ¼ 0.
Substitution of Eq. (4) into Eq. (1) gives

d2y

dt2
þ yþ �y

dy

dt

� �2

¼ 0. (5)

The method of Lindstedt–Poincaré is based on the change of the time variable t ¼ ot. The equation of
motion (5) thus becomes

o2 d
2y

dt2
þ yþ �o2y

dy

dt

� �2

¼ 0. (6)

The solution of Eq. (6) is assumed in the form

yðtÞ ¼ y0ðtÞ þ �y1ðtÞ þ �
2y2ðtÞ þ �

3y3ðtÞ þ � � � (7)

and o2 is also expanded in powers of the parameter e,

o2 ¼ 1þ �a1 þ �2a2 þ �3a3 þ � � � , (8)

where the constants a1, a2, a3, y can be identified by means of no secular terms. Substituting Eqs. (7) and (8)
into Eq. (6), and equating the terms with the identical powers of, we can obtain a series of linear equations,
and we write only the first four linear equations

y00 þ y0 ¼ 0, (9)

y001 þ y1 ¼ �y0ðy
00
0Þ

2
� a1y000, (10)
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y002 þ y2 ¼ �y1ðy
0
0Þ

2
� 2y0y

0
0y01 � a1y0ðy

0
0Þ

2
� a1y001 � a2y000, (11)

y003 þ y3 ¼ � y2ðy
0
0Þ

2
� y0ðy

0
1Þ

2
� 2y0y00y

0
2 � 2y1y00y

0
1 � a1y1ðy

0
0Þ

2
� a1y002

� 2a1y0y00y
0
1 � a2y001 � a2y0ðy

0
0Þ

2
� a3y000 ð12Þ

with the initial conditions

y0ð0Þ ¼ a; y00ð0Þ ¼ 0, (13)

ynð0Þ ¼ 0; y0nð0Þ ¼ 0; n ¼ 1; 2; 3; . . . . (14)

In Eqs. (9)–(14), the prime stands for differentiation with respect to t. We choose the value of the coefficient
an in order to remove any secular term from the perturbation equation of order n and we obtain the
coefficients

a1 ¼
a2

4
; a2 ¼

5a4

128
; a3 ¼

5a6

1536
. (15)

Substitution of Eq. (15) into Eq. (8) gives the approximate angular frequency, oapp, as follows:

oappð�; aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

A2

4
þ �2

5A4

128
þ �3

5A6

1536

s
. (16)

In terms of the original variable x ¼
ffiffi
�
p

y, the last expression can be rewritten, using A ¼
ffiffi
�
p

a, to the form

oappðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A2

4
þ

5A4

128
þ

5A6

1536

s
. (17)

As we can see, this angular frequency is defined for 0pAoN. Note that ea2 ¼ A2 is the true small
parameter, not e. Therefore, this approximation is valid only for small values of the amplitude oscillations A

and we can conclude that the standard Lindstedt–Poincaré method gives excellent approximate frequencies
only for small values of A2.

Comparing the approximate period Tapp(A) ¼ 2p/oapp(A) with the exact value of the period calculated
numerically, it can be seen that the relative error of the approximate value is less than 1%, 2% and 5% for
Ao2.08, Ao2.29 and Ao2.65, respectively. However, this relative error increases quickly for large values of
A. For example the relative error is 84% for A ¼ 10. For small amplitudes it is possible to do the power-series
expansion of the approximate period Tapp(A) ¼ 2p/oapp(A). Doing this gives the result

TappðAÞ ¼ 2p 1�
A2

8
þ

A4

256
þ

5A6

6144
þ � � �

� �
. (18)

It is important to point out that in Eq. (18) the first four terms are the same as the first four terms of the
equation obtained in the power-series expansion of the exact period T for small amplitudes and whose value is
[8]

TðAÞ ¼ 2p 1�
A2

8
þ

A4

256
þ

5A6

6144
�

7A8

262144
�

133A10

10485760
þ � � �

� �
. (19)

An important property of the period of this oscillator is its behaviour for small and large amplitudes A.
Mickens found that T-2p when A-0 and T-0 when A-N [2]. As we can see, the approximate period in
Eq. (18) obtained by applying the standard Lindstedt–Poincaré method shows this behaviour for small as well
as for large amplitudes of oscillation. However, it has been recently shown that for large amplitudes of
oscillation the exact period T(A) of this oscillator satisfies [8]

Lim
A!1
ðATðAÞÞ ¼ 2p, (20)
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however, from Eq. (17)

Lim
A!1

ðATappðAÞÞ ¼ 0; Lim
A!1

TappðAÞ

TðAÞ
¼ 0. (21)

This result confirms the fact that the standard Lindsted–Poincaré method is valid only for small
perturbation parameters, in this example, for small values of A2.

The problems appear for higher-order approximations because it is obtained that a4 is negative

a4 ¼ �
3a8

131; 072
(22)

and the new approximate frequency up to this new approximation is

oð4ÞappðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A2

4
þ

5A4

128
þ

5A6

1536
�

3A8

131; 072

s
, (23)

which is more accurate than Eq. (17) for small amplitudes; however, it is not defined for amplitudes
of magnitude equal to or larger than 12.40 in value. In other words, it presents a similar problem to that
of Eq. (2).

It is possible to obtain a more accurate approximate frequency (and period) for this oscillator by using a
modified Lindstedt–Poincaré method. In this method, the original parameter e in Eq. (6) is transformed into a
new small parameter d defined as follows [9]:

d ¼
�a1

1þ �a1
. (24)

Eq. (24) is essentially the Shohat transformation [10] and Section 2.6 of Mickens’ book [6] discusses this
transformation and presents its application to the Duffing and van der Pol equations. It is easy to verify that
d-0 as ea1-0 while d-1 as ea1-N. From Eq. (24) we have

� ¼
d

a1ð1� dÞ
(25)

and

1þ �a1 ¼
1

1� d
. (26)

Then Eq. (8) can be rewritten as follows:

o2 ¼
1

1� d
ð1þ d2b2 þ d3b3 þ � � �Þ, (27)

where [9]

bn ¼
an

an
1

ð1þ �a1Þ
n�1; n ¼ 2; 3; 4; . . . (28)

are unknown which will be successfully determined in the later perturbation steps.
Substituting Eqs. (25) and (27) into Eq. (6) yields

ð1� dÞð1þ d2b2 þ d3b3 þ � � �Þ
d2y

dt2
þ ð1� dÞ2y

þ
d
a1
ð1þ d2b2 þ d3b3 þ � � �Þy

dy

dt

� �2

¼ 0. ð29Þ

Now we expand the solution of Eq. (6) into a power series in the new parameter d

yðtÞ ¼ ȳ0ðtÞ þ dȳ1ðtÞ þ d2ȳ2ðtÞ þ d3ȳ3ðtÞ þ � � � (30)

yn(t) in Eq. (7) and ȳnðtÞ in Eq. (30) are different. Substituting Eq. (30) into Eq. (29) and equating
the coefficients of the same power of d, a new set of linear differential equations can be obtained instead of



ARTICLE IN PRESS
A. Beléndez et al. / Journal of Sound and Vibration 303 (2007) 925–930 929
Eqs. (9)–(12). The usual steps in the Lindstedt–Poincaré method may be applied to solve these perturbation
equations and the solution of Eq. (6) can be obtained to any desired order of d. Following a similar procedure
to eliminate secular terms than that used previously, the following results can be obtained:

a1 ¼
a2

4
¼

A2

4�
(31)

and

b2 ¼
5

8
; b3 ¼

5

6
; b4 ¼

1591

1536
; b5 ¼

383

320
. (32)

Substitution of Eq. (31) into Eqs. (24) and (26) gives

d ¼
A2

4þ A2
(33)

and

1

1� d
¼ 1þ

A2

4
, (34)

while substitution of Eqs. (32), (33) and (34) into Eq. (27) gives the following new expression for the
approximate frequency:

oappðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A2

4

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

5A4

128ð1þ ðA2=4ÞÞ2
þ

5A6

384ð1þ ðA2=4ÞÞ3
þ

1591A8

393; 216ð1þ ðA2=4ÞÞ4
þ

383A10

327; 680ð1þ ðA2=4ÞÞ5

s
. (35)

For higher-order approximations we have obtained that b640 and b740; so we can state that to this new
approximation the approximate frequency is defined by 0pAoN. Comparing the approximate period
Tapp(A) ¼ 2p/oapp(A) with the exact value of the period calculated numerically, it can be seen that the relative
error of the approximate value is less than 1%, 2% and 5% for Ao1.94, Ao2.22 and Ao3.10, respectively.
Unlike what happened by applying the standard Lindstedt–Poincaré method, the relative error does not grow
much for large values of A. For example, it is 4.8% for A ¼ 10. For small amplitudes it is possible to expand in
the power series the new approximate period Tapp(A) ¼ 2p/oapp(A). Doing this the following result is
obtained:

TappðAÞ ¼ 2p 1�
A2

8
þ

A4

256
þ

5A6

6144
�

7A8

262; 144
�

133A10

10; 485; 760
þ � � �

� �
. (36)

It is important to point out that in Eq. (36) the first six terms are the same as the first six terms of the
equation obtained in the power-series expansion of the exact period T for small amplitudes and whose value is
given in Eq. (16). The new approximate period satisfies the requirements that T-2p when A-0 and T-0
when A-N and also it has the following behaviour for large amplitudes:

Lim
A!1
ðATappðAÞÞ ¼ 0:9234ð2pÞ; Lim

A!1
ðTappðAÞ=TðAÞÞ ¼ 0:9234. (37)

Therefore, the relative error for this new approximate period is less than 7.7% for large values of
the amplitude oscillation, while for the standard Lindstedt–Poincaré method this relative error was 100%.
In Fig. 1, we have plotted the percentage error defined as

relative error ð%Þ ¼ 100
TðAÞ � TappðAÞ

TðAÞ

����
���� (38)

for the approximate periods obtained by means of the standard and the modified Lindstedt–Poincaré
perturbation methods considered in this paper. As we can see, the second method provides better results for
the whole range of oscillation amplitudes. The essential idea of the Lindstedt–Poincaré method is to expand
the square of the unknown frequency o2 in power series in terms of e near the linear frequency 1, however,
when e is large (A2 for our oscillator) this method is not suitable. The essential idea of this modified
Lindstedt–Poincaré method is to expand o2 in power series near a new position 1+ea1 in terms of a new
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Fig. 1. Percentage error for the approximate periods obtained by means of the standard (K) and the modified (J) Lindstedt–Poincaré

perturbation methods considered in this paper. The period is Tapp(A) ¼ 2p/oapp(A) and in the first case oapp is obtained by Eq. (17) while

in the second one oapp is obtained by Eq. (35).
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parameter d, which keeps a small value regardless of the magnitude of e. Therefore, Eq. (27) will lead to better
results than that Eq. (8). In summary, this paper shows how the difficulties arising in Mickens’ previous works
[1,2] on this oscillator can be resolved using a modified Lindstedt–Poincaré perturbation method.

This work was supported by the ‘‘Ministerio de Educación y Ciencia’’, Spain, under project FIS2005-05881-
C02-02, and by the ‘‘Generalitat Valenciana’’, Spain, under project ACOMP006/007. The authors express
their gratitude to the reviewer and to Mickens for their useful suggestions and for their comments, which
significantly improved the original manuscript.
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[9] G.M. Abd El-Latif, On a problem of modified Lindstedt–Poinaré for certain strongly non-linear oscillators, Applied Mathematics and

Computation 152 (2004) 821–836.

[10] J. Shohat, On Van der Pol’s and related non-linear differential equations, Journal of Applied Physics 15 (1944) 568–574.


	Comments on ’’investigation of the properties of the period �for the nonlinear oscillator  x+(1+ x^2)x=0’’
	References


