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Abstract

In this article, the purpose is to investigate the changes in the magnitude of natural frequencies and modal response

introduced by the presence of a crack on an axially loaded uniform Timoshenko beam using a particular member theory.

A new and convenient procedure based on the coupling of dynamic stiffness matrix and line-spring element is introduced

to model the cracked beam. The application of the theory is demonstrated by two illustrative examples of bending–torsion

coupled beams with different end conditions, for which the influence of axial force, shear deformation and rotatory inertia

on the natural frequencies is studied. Moreover, a parametric study to investigate the effect of the crack on the modal

characteristics of the beam is conducted.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The present paper addresses coupled bending–torsional vibration of axially loaded cracked beams within
the context of the dynamic stiffness matrix (DSM) method of analysing structures. Such coupled vibration is
particularly important for the aerospace industry because of its aeroelastic applications.

Helicopter, propeller and also compressor and turbine blades of a high aspect ratio, all qualify (at least for
their first few vibration modes) as axially loaded beams which usually have non-coincident elastic and inertial
axes [1]. Applications of such elements also include aeroelastic calculations for which coupled bending–
torsional frequencies and modes are essential requirements [2–4]. Moreover, as with the finite element method,
the DSM method can be extended to cover the vibration analysis of structures consisting of many elements.
Some plane or space frames can be represented within reasonable accuracy as an assemblage of axially loaded
coupled beams connected together. Naturally, it is very important to take into account the coupling effects in
vibration and response calculations of this type of structures. The effect of an important parameter, namely
the axial force, which is usually negligible or non-existent for some structures such as aircraft wings (but not so
for helicopter, turbine or propeller blades), has also to be taken into account.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a crack length
A area of the cross-section
b breadth flange of the T-section
d width of the T-section
E Young’s modulus
Es shear centre of the T-section
G shear modulus
Gs mass centre of the T-section
h height of the cross-section
h̄ deflection of the cross-section
H(y) amplitudes of the sinusoidally varying

vertical displacement
I moment of inertia of the section
IG polar mass moment of inertia per unit

length through the centroid
Ia polar mass moment of inertia per unit

length about the Y-axis
k section shape factor
kf stiffness matrix of the line spring
K dynamic stiffness matrix
KI, KII, KIII stress intensity factor for modes I, II

and III
L length of the beam
m mass per unit length

M bending moment
p2 term corresponding to the effect of the

axial force
P axial force
r2 term corresponding to the effect of the

rotatory inertia
s2 term corresponding to the effect of the

shear deformation
S shear force
t time
T torque
xa distance of separation between the elastic

axis and the mass axis
y flexural rotations of the cross-section
Y(y) amplitudes of the sinusoidally varying

bending rotation
lmm, lss, ltt compliances for bending moment,

shear force and torsion
n Poisson’s coefficient
x dimensionless length of the beam element
r density
c torsional rotations of the cross-section
C(y) amplitudes of the sinusoidally varying

torsional rotation
o circular frequency
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Using traditional methods that are based on the derivation of differential equations and application of
boundary conditions, the Bernoulli–Euler beam theory has been available in the literature since the 18th
century [5]. The above theory has been studied by a number of investigators, whereas it was not until around
1941 that the corresponding DSM was developed by Kolousek [6,7] who later included it in a textbook [8].
Exact analytical expressions for displacement functions and element stiffness matrices can thus be established.
Likewise Timoshenko [9,10] solved the vibration problem of a Bernoulli–Euler beam with the effects of shear
deformation and rotatory inertia included (i.e. the Timoshenko beam) in the earlier part of last century and
then, after several years, Cheng [11] and Wang and Kinsman [12] developed the DSM of such beams. Later the
DSM of an axially loaded Timoshenko beam was developed by Howson and Williams [13] and by Cheng and
Tseng [14].

The derivation of the equations of motion for the coupled bending–torsion vibrations of axially loaded
beams, has been studied by different authors (see e.g., [15–17]) and numerous approaches for calculating the
free vibrational natural frequencies and mode shapes have been proposed. The stiffness expressions include
the effects of shear deformation and rotatory inertia, which are significant for beams having large cross-
sectional dimensions in comparison to their lengths and also when higher modes are important.

The stiffness matrix, in this method, is obtained by solving the governing differential equation directly, and
hence all assumptions, being within the limits of the differential equations only, are less severe. For this
reason, results obtained using a DSM are often justifiably called ‘‘exact’’ [16].

The present paper develops the explicit DSM of a cracked axially loaded, bending–torsion coupled beam
with the effects of the rotatory inertia and the shear deformation included.

There are only few applications about the dynamic stiffness method to investigate the vibration
characteristics of cracked beams undergoing coupled bending and torsional displacements. A survey by the
authors shows that there is a gap in the literature in this respect. The central purpose of this paper is to fill this
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gap and extend the elegance of the dynamic stiffness method to the case of a uniform axially loaded
Timoshenko cracked beam. Another aim of this work is to present some accurate data, which might be useful
to other researchers when validating their results. To this end coupled bending–torsional frequencies and
modal shapes of cracked T-beams are presented in this paper for clamped–free and hinged–hinged boundary
conditions by excluding and including the effect of axial force, shear deformation and rotatory inertia.

It should be noted that, unlike the finite element method in which the mass and stiffness matrices of a
structural element are obtained separately, the dynamic stiffness method involves only one frequency-
dependent matrix called the DSM. The matrix in discussion is obtained from the exact analytical solution of
the governing differential equations of motion of the element undergoing free natural vibration.

Once the initial assumptions on the displacement field have been made, the resulting differential equations
are solved in an exact form and no further approximation is introduced. Thus, the resulting element matrix
features exactly the mass and stiffness properties of the element. It is worth noting that the finite element
method uses approximate shape functions of the structural element.

The dynamic stiffness matrices in a structure can be assembled in a manner similar to that of the finite
element method, except that only one overall DSM is obtained (instead of separate mass and stiffness
matrices) for the complete structure. It should be noted that when dealing with free vibration problems, the
dynamic stiffness method leads to a transcendental eigenvalue problem, whereas the finite element method
usually leads to a linear eigenvalue problem. It is also significant that the accuracy of results using the finite
element method depends on the numbers of elements used whereas the dynamic stiffness method has no such
limitation because it accounts for an infinite number of natural frequencies of a vibrating structure and thus
the results are independent of the number of elements used in the analysis. For instance, one single dynamic
stiffness structural element can be used to determine any number of natural frequencies of the element to any
desired accuracy. This is, of course, impossible in traditional finite element method.

Of particular interest in this work, is to study the coupled bending–torsional vibration behaviour of cracked
beams within the context of the DSM method of analysing structures. The authors present a modelling
technique based on the combination of the line-spring element stiffness matrix, used to model an open crack
and dynamic stiffness matrices. The entire structure is first divided into several substructures, depending on
the number of cracks of the beam. The dynamic stiffness matrices of the substructures become the basic
matrices for assembling the global DSM for the original structure. The order of the system eigenvalue
equation is equal to the number of physical coordinates between the substructures and the line-spring stiffness
matrix. The number of modes predicted by the model is not limited by the number of degrees of freedom used
in the model. If only one crack is present in the beam, the structure is divided into two substructures, on the
left and on the right of the crack, and the global DSM can be obtained by applying the standard procedure of
the finite element method. After introducing the boundary conditions at the ends of the beam, one finally
obtains the dynamic equilibrium equation. It is seen that the model established by the proposed method,
which has only a few degrees of freedom, can predict all eigenmodes of the cracked structure within a large
frequency range.

The results are comparable to the FEM results in which a much larger number of elements are necessarily
used.

In order to illustrate the procedure and to show the simplicity and efficiency of the method, illustrative
examples are given for a bending–torsion coupled cantilever and hinged–hinged beams with a T cross-section.
The influence of axial force, shear deformation and rotatory inertia on the natural frequencies and modal
shapes is demonstrated.
2. Theoretical considerations

A straight uniform beam element of length L and of T-cross-section is shown in Fig. 1, with the mass axis
and the elastic axis (i.e. the loci of the mass centre and the shear centre of the cross-section) being separated by
a distance xa. In the right-handed coordinate system of Fig. 1, the elastic axis, which is assumed to coincide
with the y-axis, is permitted flexural translation h̄ðy; tÞ in the z-direction and torsional rotation c(y, t) about
the y-axis, where y and t denote distance from the origin and time, respectively. A constant compressive axial
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Fig. 1. Coordinate system for a coupled bending–torsional axially loaded Timoshenko uncracked beam with T cross-section.
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load P is assumed to act through the centroid (mass centre) of the cross-section. P can be positive or negative,
so that tension is included.

The governing partial differential equations of motion for the coupled bending–torsional free natural
vibration of the axially loaded Timoshenko beam shown in Fig. 1 are given by [18]

EIy00 þ kAGðh̄
0
� yÞ � rI €y ¼ 0, (1)

kAGðh̄
00
� y0Þ � Pðh̄

00
� xac

00
Þ �mð €̄h� xa

€cÞ ¼ 0, (2)

GJc00 � PfðIa=mÞc00 � xah̄
00
g � Ia €cþmxa

€̄h ¼ 0, (3)

where E is the Young’s modulus, G is the shear modulus and r is the density of the material, EI, GJ and kAG

are, respectively, the bending, torsional and shear rigidities of the beam, I is the second moment of area of the
beam cross-section about the x-axis, k is the section shape factor, A is the cross-section area, m ¼ rA is the
mass per unit length, Ia is the polar mass moment of inertia per unit length about the y-axis (i.e. an axis
through the shear centre), y is the angle of rotation in radians of the cross-section due to the bending alone (so
that the total slope h̄

0
equals the sum of slope due to bending and due to shear deformation) and primes and

dots denote differentiation with respect to position y and time t, respectively.
Eqs. (1)–(3) together with appropriate end conditions completely define the coupled bending–torsional free

vibration of an axially loaded uniform Timoshenko beam. If a sinusoidal variation of h̄, y and c with circular
frequency o, is assumed, then

h̄ðy; tÞ ¼ HðyÞ sin ot;

yðy; tÞ ¼ YðyÞ sin ot;

cðy; tÞ ¼ CðyÞ sin ot;

(4)
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Fig. 2. Sign convention for positive transverse (shear) force S, bending moment M and torque T end conditions for forces and

displacement of the beam element.
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where H(y), Y(y) and C(y) are the amplitudes of the sinusoidally varying vertical displacement, bending
rotation and twist, respectively.

Substituting Eqs. (4) into Eqs. (1)–(3), the amplitude of h̄, y and c are obtained in terms of a set of arbitrary
constants.

By extensive algebraic manipulation, the solution for the bending displacement H(x), bending rotation Y(x)
and torsional rotation C(x) are obtained from the following:

HðxÞ ¼ A1 cosh axþ A2 sinh axþ A3 cos bxþ A4 sin bxþ A5 cos gxþ A6 sin gx, (5)

YðxÞ ¼ B1 sinh axþ B2 cosh axþ B3 sin bxþ B4 cos bxþ B5 sin gxþ B6 cos gx, (6)

CðxÞ ¼ C1 cosh axþ C2 sinh axþ C3 cos bxþ C4 sin bxþ C5 cos gxþ C6 sin gx, (7)

where A1�A6, B1�B6 and C1�C6 are the three different sets of constants, x ¼ y/L and a, b, g are constants
reported in Refs. [17,18].

Following the sign convention of Fig. 2, the expressions for the bending moment M(x), the transverse force
S(x) and the torque T(x) are obtained from Eqs. (5) to (7), after some simplification, as

MðxÞ ¼ �ðEI=LÞ
dY
dx

, (8)

SðxÞ ¼ � EI=L3
� �

L
d2Y

dx2
þ p2 dH

dx
� xa

dC
dx

� �
þ b2r2YL

� �
, (9)

TðxÞ ¼ ðGJ=LÞ ð1� p2a2
�

b2
Þ
dC
dx
þ fp2a2ð1� c2Þ=ðxab2

Þg

� �
dH

dx
(10)

with

a2 ¼ Iao2L2
�

GJ; b2
¼ mo2L4

�
EI ; c2 ¼ 1�mx2

a

�
Ia ¼ IG=Ia;

p2 ¼ PL2
�

EI ; r2 ¼ I
�

AL2; s2 ¼ EI
�

kAGL2; ð11Þ

where IG is the polar mass moment of inertia per unit length about an axis through the centroid and s2, which
represents the shear deformation, is related to the definition of the constants a, b, g.

The end conditions for displacements and forces of the beam element (see Fig. 2) are, respectively,
displacements:

at end 1! ðx ¼ 0Þ : H ¼ H1; Y ¼ Y1; C ¼ C1;

at end 2! ðx ¼ 1Þ : H ¼ H2; Y ¼ Y2; C ¼ C2
(12)
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forces

at end 1! ðx ¼ 0Þ : S ¼ S1; M ¼M1; T ¼ �T1;

at end 2! ðx ¼ 1Þ : S ¼ �S2; M ¼ �M2; T ¼ T2:
(13)

The DSM which relates the amplitudes of the sinusoidally varying forces to the corresponding displacement
amplitudes can now be derived from the following system:

S1

M1

T1

S2

M2

T2

2
6666666664

3
7777777775
¼

K11 K12 K13 K14 K15 K16

K22 K23 K24 K25 K26

K33 K34 K35 K36

K44 K45 K46

Symmetric K55 K56

K66

2
6666666664

3
7777777775

H1

Y1

C1

H2

Y2

C2

2
6666666664

3
7777777775
, (14)

which can be represented in a compact form as

F ¼ KU, (15)

where K is the required stiffness matrix.
The terms of the required stiffness matrix, see Eq. (15), can be found from

K11 ¼ K44 ¼ ðEI
�

L3ÞðF1=DÞ;

K12 ¼ �K45 ¼ ðEI
�

L2ÞðF2=DÞ;

K13 ¼ K46 ¼ ðxaEI
�

L3ÞðF3=DÞ;

K14 ¼ ðEI
�

L3ÞðF4=DÞ;

K15 ¼ �K24 ¼ ðEI
�

L2ÞðF5=DÞ;

K16 ¼ K34 ¼ ðxaEI
�

L3ÞðF6=DÞ;

K22 ¼ K55 ¼ ðEI=LÞðF7=DÞ;

K23 ¼ �K56 ¼ ðxaEI
�

L2ÞðF8=DÞ;

K25 ¼ ðEI=LÞðF9=DÞ;

K26 ¼ �K35 ¼ ðxaEI
�

L2ÞðF10=DÞ;

K33 ¼ K66 ¼ ðGJ=LÞðF11=DÞ;

K36 ¼ ðGJ=LÞðF12=DÞ;

(16)

where Fi (i ¼ 1,y,12) and D are defined in Ref. [18].
Eqs. (16) give all the terms of the DSM K of Eqs. (14) and (15). Note that none of these terms are zero but

(see Eqs. (16)) that the terms K13, K16, K23, K26, K34, K35, K46, and K56 reduce to zero when xa ¼ 0, i.e. when
the shear centre and the mass centre of the beam cross-section are coincident.

The DSM is then the one for an axially loaded Timoshenko beam, i.e. an axially loaded Bernoulli–
Euler beam with effects of shear deformation and rotatory inertia included, because xa ¼ 0 can be sub-
stituted in the derived expressions without causing any overflow or underflow. In computing the DSM, the
terms corresponding to the effects of axial force, shear deformation and rotatory inertia (p2, s2 and r2,
respectively) can optionally be made zero, with xa non-zero, to give stiffnesses identical to those given,
respectively, by the coupled bending–torsional theories for a Timoshenko beam, an axially loaded
Bernoulli–Euler beam and a Bernoulli–Euler beam with non-coincident mass and shear centre. Additionally,
when xa ¼ 0, p2 ¼ 0, s2 ¼ 0 and r2 ¼ 0, the computed DSM of Eqs. (15) gives the same stiffness as those of a
Bernoulli–Euler beam.

3. Line-spring stiffness matrix and global dynamic stiffness matrix

In order to study the behaviour of a cracked structure, a suitable model of the cracked section is required.
Hereinafter, the cracked section is represented as an elastic hinge [19] with spring constants simulating
flexural, shear and torsional deformations (see Fig. 3).

The DSM Kg of a cracked beam of length L (Fig. 4) can be split into a stiffness matrix with three different
parts: the stiffness of two uncracked beams of length L1 and L2 combined with a ‘‘local’’ stiffness part
composed by ‘‘springs’’ which represent the crack (Fig. 4). These springs have an infinite stiffness when the
crack is closed and a finite stiffness when the crack is open. If we want to extract the local stiffness due to the
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crack from total stiffness, we have to introduce two additional nodes, namely nodes l and r, representing,
respectively, the left- and right-hand sides of the crack faces. Because the length of the line spring is always
zero, the two nodes l and r have the same y coordinate.

The line-spring model as applied to surface cracks initially assumes that the crack is a through-crack
of the same length; shearing forces and bending and torsional moments are directly applied at the cracked
section. Such forces and moments can be related to the deformation of the net ligament through compliance
expressions, as if one were actually replacing the net ligament by ‘‘springs’’ connecting both faces of the
crack. The ‘‘springs’’ have the features of having two nodes and zero length. Since they include the
three degrees of freedom commonly associated with nodes in beam-column elements, they are easily
incorporated into standard beam-column codes. The compliance expressions of such springs at any point
along the crack are obtained from the plane-strain solution of an edge-cracked strip of width equal to the
thickness of the beam and crack length equal to the surface crack depth at the particular point. In the
vibration analysis of an edge-cracked beam, the aforementioned line-spring model should be slightly modified
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so that the closure forces are replaced by shear forces. However, in this paper, the crack will always be
considered open.

In an effort to determine the unknown shear forces and bending and torsional moments acting on the line
spring, static equilibrium and compatibility conditions are enforced. That is, because the length of the line
spring is always zero, the two nodes have the same y coordinate. As shown in Fig. 4, static equilibrium
requires that

Sl ¼ Sr ¼ S,

Ml ¼Mr ¼M,

Tl ¼ Tr ¼ T . ð17Þ

Since the shear force S and the torsion T do not interact with the bending moment M in the zero-length line-
spring model [20,21] the respective cross-compliances are zero. There is interaction only between the shear
force S and the torsion T. In this case, the relative cross-compliances lst ¼ lts are different from zero.

Nevertheless in the general case, the compatibility conditions due to the local flexibility of the crack are
written as

Y ¼ lmmM þ lmsS þ lmtT ,

H ¼ lsmM þ lssS þ lstT ,

C ¼ ltmM þ ltsS þ lttT ð18Þ

in which the rotations Y and C and the deflection H across the line spring are expressed in terms of the nodal
displacements:

Y ¼ Yl �Yr,

C ¼ Cl �Cr,

H ¼ Hl �Hr, ð19Þ

where lmm, lss, ltt and lst ¼ lts, lms ¼ lsm, ltm ¼ lmt are the compliance coefficients, respectively, for bending
moment, shear force and torsion.

Under general loading, the additional displacement ui along the direction of force Pi due to the presence of
the crack will be computed using Castigliano’s theorem and by generalisation of the Paris equation.

To this end, if U is the strain energy due to the crack, Castigliano’s theorem demands that the additional
displacement be

ui ¼ qU=qPi (20)

along the force Pi. The strain energy [22–26] will have the form

U ¼

Z a

0

qU

qa
da ¼

Z a

0

J da, (21)

where a is the crack length and J ¼ qU=qa is the strain energy density function. Therefore,

ui ¼
q
qPi

Z a

0

JðaÞda

� �
ðParis equationÞ. (22)

The flexibility coefficient lij will be

lij ¼
qui

qPj

¼
q

qPiqPj

Z a

0

JðaÞda. (23)

The strain energy density function J has the general form [26]

J ¼
1

E0

X3
q¼1

K Iq

 !2

þ
X3
q¼1

K IIq

 !2

þ a
X3
q¼1

K IIIq

 !2
2
4

3
5, (24)
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where E0 ¼ E for plane stress, E0 ¼ E/(1�n2) for plane strain, a ¼ (1+n); E and n are Young’s modulus and
Poisson’s ratio, respectively. Then, integrating along the cut (z-axis):

lij ¼
1

E0

Z a

0

q2

qPiqPj

X
m

Z d=2

�d=2
em

X
n

Kmn

 !2

dz

2
4

3
5da, (25)

where d is the width of the T-section and em ¼ a for m ¼ III and em ¼ 1 for m ¼ I, II. Furthermore, Kmn is the
stress intensity factor (SIF) of mode m (m ¼ I, II, III) due to the load Pn (n ¼ 1, 2, 3) since the strain energy is
additive.

Developing the sums

lij ¼
1

E0

Z a

0

q2

qPiqPj

Z d=2

�d=2

X
n

K In

 !2

þ
X

n

K IIn

 !2

þ a
X

n

K IIIn

 !2
0
@

1
A dz

2
4

3
5da (26)

or

lij ¼
1

E0

Z a

0

q2

qPiqPj

Z d=2

�d=2
K IS þ K IM þ K ITð Þ

2
þ K IIS þ K IIM þ KIITð Þ

2
þ a K IIIS þ K IIIM þ K IIITð Þ

2
� �

dz

" #
da.

For the T-beam under consideration, being KIS ¼ KIT ¼ 0, KIIM ¼ KIIT ¼ 0 and KIIIM ¼ 0, the components
of interest in the local flexibility matrix can be determined as

lss ¼
1

E0

Z a

0

q2

qS2

Z d=2

�d=2
ðK2

IIS þ aðK IIISÞ
2
Þdz

" #
da, (27)

lmm ¼
1

E0

Z a

0

q2

qM2

Z d=2

�d=2
ðKIM Þ

2 dzda, (28)

ltt ¼
1

E0

Z a

0

q2

qT2

Z d=2

�d=2
aK2

IIIT dzd a, (29)

lst ¼ lts ¼
1

E0

Z a

0

q2

qSqT

Z d=2

�d=2
aðK IIISK IIIT Þdzda. (30)

It should be noted that for the T cross-section, the estimate of the SIFs is based on the simple method
proposed in Ref. [27] for which

K IM ¼Mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bM

Ixh

Ix

Ic
x

� 1

� �s
, (31)

K IIS ¼ Sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wzbS

dA

A

Ac � 1

� �s
, (32)

KIIIT ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT

dJ

J

Jc � 1

� �s
, (33)

where I, Ic denote the moments of inertia, J, Jc, the polar moments of inertia and A, Ac the area of uncracked
and cracked beam portion, respectively. The coefficients bM, bS and bT are discussed and calculated in Ref.
[27]. In fact, usually, adequate information is available for all Kmn, but, if the geometry of the cross-section is
different from those represented in literature, the stress distribution in a beam is not known, as in the case
of the T-cross-section subjected to a torsion T, or if the SIF is variable along the z-axis, as in the case of KIM, it
is possible to evaluate the SIFs at the crack tips using the energy consideration of the cracked components.
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The weight function method in the crack problem falls into this category. Clearly, the computing compliance
method is an approach for evaluating SIFs, which is also based on the energy consideration [27].

From the discussion in Ref. [27], the torsion, the shear and the bending compliances imply an overall
behaviour of the bar and not a local singular behaviour at the crack tip. In this case, the demand for solving the
boundary value problem is not overcritical. It is proved that even though the singular behaviour of stress at the
vicinity of the crack tip has not been modelled in computation, accurate results for SIFs can be obtained [28].

From the above-mentioned derivation we see that there are limitations to the suggested solution technique
but the formulae appear to be handy for practicing engineers and designers to use in design and manufacturing
processes.

Unfortunately, the same energetic considerations can not be immediately extended to the SIF KIIIS which
should be considered in Eqs. (27) and (30). It is not so easy to calculate a mode III SIF caused by the presence
of the shear force S. We are working to find an appropriate expression for KIIIS but, so far, we have not
obtained satisfactory results.

Therefore, in this paper, we decided to consider the expression of the compliance lss as a function of the SIF
KIIS and to put lst equals to zero.

By means of Castigliano’s theorem, the stiffness matrix of the line spring may be derived in Appendix A.
The stiffness matrix of a line spring kf is given as follows:

kf ¼

1=lss 0 0 �1=lss 0 0

0 1=lmm 0 0 �1=lmm 0

0 0 1=ltt 0 0 �1=ltt

�1=lss 0 0 1=lss 0 0

0 �1=lmm 0 0 1=lmm 0

0 0 �1=ltt 0 0 1=ltt

2
6666666664

3
7777777775
. (34)

The formulation of a cracked beam element for structural analysis, as well as the crack effect on stability of
beams under conservative and non-conservative forces have been investigated in Refs. [29–31].

The global DSM for the whole structure can now be assembled using the above dynamic stiffness matrices
of all substructures and the line-spring stiffness matrix by applying the standard procedure of the finite
element method.

The form of the DSM of the system of two substructures placed as shown in Fig. 4, and consisting of the
line-spring element between the 1th and the 2th substructures of the beam-like structure is given as follows:

Kg ¼ K1 þ Kf þ K2

¼

k1
11 k1

12 k1
13 k1

14 k1
15 k1

16 0 0 0 0 0 0

k1
21 k1

22 k1
23 k1

24 k1
25 k1

26 0 0 0 0 0 0

k1
31 k1

32 k1
33 k1

34 k1
35 k1

36 0 0 0 0 0 0

k1
41 k1

42 k1
43 k1

44 þ ð1=lssÞ k1
45 k1

46 �1=lss 0 0 0 0 0

k1
51 k1

52 k1
53 k1

54 k1
55 þ ð1=lmmÞ k1

56 0 �ð1=lmmÞ 0 0 0 0

k1
61 k1

62 k1
63 k1

64 k1
65 k1

66 þ ð1=lttÞ 0 0 �1=ltt 0 0 0

0 0 0 �1=lss 0 0 k2
11 þ ð1=lssÞ k2

12 k2
13 k2

14 k2
15 k2

16

0 0 0 0 �ð1=lmmÞ 0 k2
21 k2

22 þ ð1=lmmÞ k2
23 k2

24 k2
25 k2

26

0 0 0 0 0 �ð1=lttÞ k2
31 k2

32 k2
33 þ ð1=lttÞ k2

34 k2
35 k2

36

0 0 0 0 0 0 k2
41 k2

42 k2
43 k2

44 k2
45 k2

46

0 0 0 0 0 0 k2
51 k2

52 k2
53 k2

54 k2
55 k2

56

0 0 0 0 0 0 k2
61 k2

62 k2
63 k2

64 k2
65 k2

66

2
666666666666666666666666666666664

3
777777777777777777777777777777775

,

ð35Þ

where K1 and K2 are the extended forms of dynamic stiffness matrices for the 1th and 2th uncracked
substructures, respectively, and Kf is the stiffness matrix for the line-spring element expressed in the extended
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form. It should be noted that, in order to enable the addition of elements of matrices (14) and (34) to the
global system matrix, matrices must first be expanded so that they refer to all the degrees of freedom in the
system.

The global DSM Kg obtained has a 12� 12 dimension in this case (see Eq. (35)).
4. Modal parameter evaluations of cracked beams

Once the global DSM of the system is obtained, after introducing the boundary conditions at the ends of the
beam, one finally obtains the frequency equation. The restrained global stiffness matrix is denoted by Kn

gðoÞ.
The natural frequencies are those values of o for which

K�gðoÞA
�
g ¼ 0, (36)

where An

g is the restrained vector of constants, which allow definition of the modal shapes, namely the vector
of the nodal displacement amplitudes.

The necessary and sufficient condition for non-zero elements in the column vector An

g of Eq. (36) is that
D ¼ jK�gðoÞj shall be zero, and non-trivial solutions are calculated by imposing the vanishing of D:

D ¼ jK�gðoÞj ¼ 0. (37)

The nonlinear Eq. (37) is the frequency equation, which can be numerically solved to give the values of o
that make the determinant singular. For any non-trivial values of o the expression for D given by Eq. (37) has
been used in locating the natural frequencies by successively tracking the change of its sign (see, for example,
Refs. [32–34]).

The only way of computing the natural frequencies of an infinite system is to vary o in small steps,
calculating the determinant of Kg at each step, and to seek the values which make the determinant zero. There
are, however, numerous disadvantages and dangers in such a procedure. In fact, it is quite conceivable that
even innocent-looking structures may have very close natural frequencies. To be sure of not missing any of
them it is obvious that the step-size used for o would have to be very small indeed. Finally, the determinant
may change sign not only by passing through zero but also via infinity. Expanding the determinant D
algebraically is quite a formidable task, but became feasible with recent advances in symbolic computing. Thus
most of the work reported here, was carried out using the software MATLAB in expanding the determinant D,
and more importantly in simplifying the expression for D.

Therefore, the required natural frequencies are given by the zeros of a plot of D versus o. If D is calculated
as o is increased from zero by small increments do, a change of sign of D is a necessary and sufficient
condition for a natural frequency to have been passed. Clearly, the increment do must be less than the
minimum separation of natural frequencies, as otherwise a pair of natural frequencies could be undetected due
to them both lying between two consecutive values of o. Therefore, do must be chosen carefully to avoid this
danger. Moreover, the roots of the nonlinear Eq. (37) were also obtained by using the Matlab function
fzero( � ).

Once the frequencies of the cracked beam are found, the starting point to obtain the cracked mode shapes of
the beam (see Eqs. (5)–(7)) is the derivation of the assumed shape functions for bending displacements
Hn
¼ Hn(y), torsional rotation Cn

¼ Cn(y) and anticlockwise rotations Yn
¼ Yn(y) for each substructure. In

this case n ¼ 1, 2 is the number of the beam substructures.
These functions are developed so that they exactly satisfy, for each substructure (n ¼ 1, 2) of the beam, the

homogeneous equations of equilibrium of an unstressed beam. Moreover, the above functions must also
satisfy certain conditions at the cracked section and at the ends of the substructure.

Because the dynamic stiffness matrices of the basic elements such as beams are exact, the number of modes
predicted by the model is not limited by the number of degrees of freedom used in the model itself.

In spite of the apparent complexity of the frequency and mode shape equations given above, results for the
degenerate case of the bending–torsion coupled Timoshenko beam and Bernoulli–Euler beam with xa non-
zero, i.e. with non-coincident mass and shear centre, can be obtained by substituting in the data p2 ¼ 0 and
p2 ¼ r2 ¼ s2 ¼ 0, respectively. Note that any one or more of the terms p2, r2, s2 which uniquely describe the
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effect of axial load, rotatory inertia and shear deformation, respectively, can be set to zero, either individually
or in any combination, to obtain the degenerate cases.

Additionally, when xa ¼ 0, p2 ¼ r2 ¼ s2 ¼ 0, the computed DSM of Eqs. (35) gives the same stiffnesses as
those of a Bernoulli–Euler beam.
5. Numerical examples

5.1. Frequency equation

A simple cantilever T-beam is used to demonstrate and validate the method outlined above. The material
properties and other data used in the analysis are listed in Table 1. The end conditions for displacements and
forces (see Fig. 4) for the cantilever beam are as follows:

displacements : at the built�in end 1! ðx1 ¼ 0Þ : H1 ¼ 0;Y1 ¼ 0;C1 ¼ 0, (38)

forces : at the free end 2! ðx2 ¼ 1Þ : S2 ¼ 0;M2 ¼ 0;T2 ¼ 0. (39)

Substituting Eqs. (38) into Eqs. (5)–(7) and (39) into Eqs. (8)–(10) the end conditions for displacements and
forces are applied at the built-in end 1 of the first uncracked substructure K1 and at the free end 2 of the second
uncracked substructure K2 which compose the matrix Kn

gðoÞ together with the matrix Kf. Once the global
stiffness matrix Kn

gðoÞ has been obtained by using Eq. (36), one can calculate the natural frequencies of the
cracked beam, as described in the previous section.
5.2. Mode shapes

If the crack is located a distance L1 and L2 from the left and right ends of the beam, respectively (see Fig. 5),
the derivation of the shape functions (see Eqs. (5)–(7)) for bending displacements Hn

¼ Hn(y), torsional
rotation Cn

¼ Cn(y) and anticlockwise rotations Yn
¼ Yn(y) (n ¼ 1, 2), is the starting point to obtain the

cracked mode shapes of the beam.
Table 1

Material properties and other data used in the free vibration analysis of an axially loaded bending–torsion coupled Timoshenko beam

Beam parameter Numerical value

E (N/m2) 2.1� 1011

n 0.33

G (N/m2) 78.94736� 109

r (kg/m3) 7800

h (m) 0.05

b (m) 0.05

d (m) 0.01

I (m4) 19.638� 10�8

K 0.5

EI (Nm2) 41241.669

GJ (Nm2) 2368.421

m (kg/m) 7.02

Ia (kgm) 3.237� 10�3

xa (m) 0.0111

L (m) 1.00

P (N) 15000

p2 0.5237

r2 1.5153� 10�4

s2 8.0616� 10�4
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In Fig. 5, a Cartesian coordinate system (0xyz) is defined. The y-axis is coincident with the centroidal axis of
the uncracked beam, and x and z are coincident with the principal axes of the cross-section at the left end of
the beam. The origin 0 of the coordinate system is at the intersection point between the centroidal axis and the
left end cross-section.

Moreover, it may be useful to consider two other auxiliary coordinate systems, i.e., 01x1y1z1 and 02x2y2z2, as
shown in Fig. 5, where z, z1 and z2 axes have to be considered orthogonally to the x– y plane.

The shape functions are developed so that they exactly satisfy, for each segment (n ¼ 1, 2) of the beam, the
homogeneous equations of equilibrium of an unstressed beam. Moreover, the above functions must also
satisfy certain conditions at the cracked section and at the ends of the beam elements.

Displacements H and rotations C and Y may be described by

HnðyÞ ¼
H1ðy1Þ

H2ðy2Þ

(
0py1pL1;

0py2pL2;
(40)

CnðyÞ ¼
C1ðy1Þ

C2ðy2Þ

(
0py1pL1;

0py2pL2;
(41)

YnðyÞ ¼
Y1ðy1Þ

Y2ðy2Þ

(
0py1pL1;

0py2pL2:
(42)

The three boundary conditions at the left end of the cantilever beam can be expressed as

H1ðy1 ¼ 0Þ ¼ 0,

C1ðy1 ¼ 0Þ ¼ 0,

Y1ðy1 ¼ 0Þ ¼ 0. ð43Þ
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The three boundary conditions at the right end of the cantilever beam can be expressed as

S2ðy2 ¼ L2Þ ¼ 0,

M2ðy2 ¼ L2Þ ¼ 0,

T2ðy2 ¼ L2Þ ¼ 0. ð44Þ

At the crack location, y1 ¼ L1 or y2 ¼ 0, where the elastic hinge is located, the local flexibility concept can
be expressed as
(1)
 continuity of the bending moment:

Mlðy1 ¼ L1Þ �Mrðy2 ¼ 0Þ ¼ 0, (45)
(2)
 continuity of the shear force:

Slðy1 ¼ L1Þ � Srðy2 ¼ 0Þ ¼ 0, (46)
(3)
 continuity of the torsional moment:

Tlðy1 ¼ L1Þ � Trðy2 ¼ 0Þ ¼ 0, (47)
(4)
 discontinuity of the transverse displacement:

H2ðy2 ¼ 0Þ ¼ H1ðy1 ¼ L1Þ þ lssSrðy2 ¼ 0Þ, (48)
(5)
 discontinuity of the cross-sectional rotation:

Y2ðy2 ¼ 0Þ ¼ Y1ðy1 ¼ L1Þ þ lmmMrðy2 ¼ 0Þ, (49)
(6)
 discontinuity of the torsional angle:

C2ðy2 ¼ 0Þ ¼ C1ðy1 ¼ L1Þ þ lttTrðy2 ¼ 0Þ. (50)
For the beam in coupled bending–torsion, the crack will result in 6 additional boundary conditions at the
crack location. Note that there is no coupling between the transverse displacement, the cross-sectional rotation
and the torsional angle due to the presence of crack.

Substituting Eqs. (43)–(50) as required in Eqs. (5)–(7) and (8)–(10), written for 0px1p1 and 0px2p1,
where x1 ¼ y1/L1 and x2 ¼ y2/L2, leads to the system of 12 homogeneous linear equations in 12 unknowns Ai

(i ¼ 1, 2,y,12) reported in Appendix B.
The modal vector is Ai, in which one element may be fixed arbitrarily, and the remaining eleven constants

can be solved in terms of the arbitrarily chosen one.
Thus, if A1 is the chosen constant and the remaining constants A2–A12 are expressed in terms of A1, by using

the symbolic computing package MATLAB, the mode shapes of the bending–torsion coupled beam are given
in explicit form by rewriting Eqs. (40) and (41).

Once the 12 constants Ai (i ¼ 1, 2,y,12) are found, substituting in the expressions of the bending
displacements (Eq. (40)) and the torsional rotation (Eq. (41)) gives the displacements Hn(y) and the torsional
rotation Cn(y) for each substructure.

The first four natural frequencies of the uncracked and cracked cantilever beam obtained from
D ¼ jK�gðoÞj ¼ 0, with and without the inclusion of the effects of shear deformation and rotatory inertia,
are given in Tables 2 and 3, respectively, for three different loading cases, namely when the axial load is zero
(P ¼ 0), tensile (P ¼ �15,000N) and compressive (P ¼ 15,000N), respectively. Note that the axial load
applied is less than the 40% of the lowest uncoupled Euler critical buckling load of the cantilever. The cracked
section is located at L1 ¼ 0.5L distance from the built-in end and the crack depth is a/h ¼ 0.5. Tables 2 and 3
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Table 2

Natural frequencies of an uncracked axially bending–torsion coupled Timoshenko T-beam with cantilever end conditions

Frequency number (rad/s) P ¼ 0 (p2 ¼ 0) P ¼ 15,000N (p2 ¼ 0.5237) P ¼ �15,000N (p2 ¼ �0.5237)

r2 ¼ s2 ¼ 0 r2 6¼0, s2 6¼0 r2 ¼ s2 ¼ 0 r2 6¼0, s2 6¼0 r2 ¼ s2 ¼ 0 r26¼0, s26¼0

1 267.85 266.94 248.69 247.78 285.33 284.44

2 1478.23 1467.41 1467.9 1455.96 1487.83 1478.05

3 1762.46 1738.79 1750.41 1727.69 1775 1750.39

4 4080 3971.84 4064.5 3955.41 4095.36 3988.16

Table 3

Natural frequencies of a cracked axially bending–torsion coupled Timoshenko T-beam with cantilever end conditions, L1 ¼ 0.5L, a/

h ¼ 0.5

Frequency number (rad/s) P ¼ 0 (p2 ¼ 0) P ¼ 15,000N (p2 ¼ 0.5237) P ¼ �15,000N (p2 ¼ �0.5237)

r2 ¼ s2 ¼ 0 r2 6¼0, s2 6¼0 r2 ¼ s2 ¼ 0 r2 6¼0, s2 6¼0 r2 ¼ s2 ¼ 0 r26¼0, s26¼0

1 179.103 178.755 118.75 118.49 219.67 219.22

2 842.227 837.1 814.88 808.8 866.22 862.13

3 1006.3 1000.14 994.82 989.65 1020.64 1013.01

4 3035.99 3012.5 3029.08 3005.11 3042.93 3019.86
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show also the influence of rotatory inertia and/or shear deformation on the first four frequencies when p2 ¼ 0,
p2o0 and p240. The frequencies given in Table 2 agree completely with published results [16,18,32] for the
uncracked beam, i.e., compressive axial forces usually lower the natural frequencies, while tensile axial forces
increase them. The results showing the effects of shear deformation, rotatory inertia and axial force are given
in columns 5 and 7. As can be seen, the shear deformation did not make much difference for this particular
problem investigated. The same considerations can be made for the cracked cantilever beam, as shown in
Table 3. As expected, the frequencies related to the cracked beam are always lower than those of the
uncracked beam. Some additional related studies can also be found in Refs. [35–37].

The plot of D against frequency (o) which identifies the first three natural frequencies of the cracked beam is
illustrated in Figs. 6(a)–(c), respectively, for three representative cases when (a) P ¼ 0, (b) P ¼ 15,000N, and
(c) P ¼ �15,000N, with r2 6¼0 and s2 6¼0.

Figs. 7–9 show the first four coupled bending–torsional modal shapes of the uncracked and cracked
cantilever T-beams. In fact, plotting the bending displacements H1(x1), H2(x2) and the torsional displacements
xaC

1(x1), xaC
2(x2), for the cracked cantilever beam, a comparison between the flexural displacements H and

torsional displacements xaC of the uncracked beam, for P ¼ 0 with r 6¼0, s 6¼0, is given in these figures. In Figs.
7–9, in order to be consistent with the unit used for the bending displacement H and also to make the results
more meaningful, the torsional rotation C was multiplied by xa. It should be noted that, xaC(x) represents the
vertical displacements of the mass centre relative to the shear centre as a result of the twisting action.

Figs. 7–9 show that there is substantial coupling between bending displacements and torsional rotations in
all the four modes.

To justified the discontinuity of the transverse displacement H and the product xaC at the cracked section,
shown in Figs. 7–9, expressions (48) and (50) have to be considered.

Eqs. (48) and (50) show that the plot of the H and xaC functions is continuous only if the value of the
products lssSrðy2 ¼ 0Þ and lttTrðy2 ¼ 0Þ, at the cracked section, is zero. This means that the shear force
Sr(y2 ¼ 0) and the torsion Tr(y2 ¼ 0) have to be zero, the coefficients lss and ltt always being different from
zero, at the cracked section. Figs. 10–12 plot the expression of the transverse displacement H and the product
xaC for the first four modal shapes together with the behaviour of the shear force S(x) and the torsion T(x),
when r 6¼0, s 6¼0 and P ¼ 0. For the modal shapes and the boundary conditions considered, the S(x) and T(x)
expressions are always different from zero at the cracked section, even if, in the case of the first modal shape,
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their values are so small that they had to be multiplied by 100 units. Therefore, the expressions of H and of the
product Cxa are discontinuous at this section, depending on the values of the shear force, the torsion and
the coefficients lss and ltt. This is particularly evident in the fourth modal shape (see Fig. 12). In fact, at the
cracked section, the value of the shear force Sr(y2 ¼ 0) is bigger than the torsion Tr(y2 ¼ 0). Being lttblss,
the discontinuity of the xaC function ðlttTrðy2 ¼ 0ÞÞ is larger than that of the H function ðlssSrðy2 ¼ 0ÞÞ.

In Figs. 13–16, the variation of the first fourth bending modal shapes of the cracked cantilever beam are
represented in succession as a function of the crack position together with those of the uncracked beam. In
case A, the crack is located at L1 ¼ 0.3L distance from the built-in end, in case B, L1 ¼ 0.5L and in case C,
L1 ¼ 0.7L. The crack depth is a/h ¼ 0.3 in all these cases. The results displayed in these graphs reveal that the
first frequencies are the lowest ones and are sensitive to the variation of the crack position. In this sense, when
the crack is located closer to the beam root, the fundamental frequency is much lower than in the case of the
crack located toward the beam tip. As concerns the implication of the position on the higher frequencies, these
appear more complex than in the case of the fundamental frequency. The largest decreases of natural
frequencies are experienced when the crack is located at positions of maximum curvature of the respective
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modal shapes. When the crack is located at points of minimum curvature of modal shapes, the influence of the
crack upon the natural frequencies is much smaller. For the second, third and fourth frequencies their
variations depend strongly on how close the crack is to the nodal or antinodal points of the respective modal
shapes. Indeed, in these figures the case of three cracks located according to the scenarios labelled as A–C, are
considered. For the first natural frequency, it becomes clear that when the crack is remote from the root
section, its value continuously increases. In this sense, it is readily seen that the fundamental frequency of case
C is larger than in cases A and B, while the fundamental frequency corresponding to the case B is smaller than
that corresponding to case C and larger than that of case A.

A change from this rule intervenes for the second, third and fourth frequencies, for cases A–C. In this sense,
the results reveal, for example, that for case A, the second and third frequencies are not the lowest ones,
but the ones associated with case B. Even in the case of the fourth modal frequency, the minimum one is
that associated with case B. This change in trend can easily be explained by examining the variation of
the corresponding modal shapes. From Figs. 13 to 16, for the second and third frequencies, it is readily
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seen that for case B, in the region of the location of the crack, the maximum curvature of the corres-
ponding modal shapes is experienced. The same conclusion can be obtained when examining the fourth
modal shape associated with case B, that exhibits the minimum natural frequency even if, in this mode,
when the crack is located at L1 ¼ 0.3L (case A), the corresponding frequency is not very far from the one of
the case B. In fact, for this position the crack is located at one point of local maximum curvature of the modal
shape.

The first four bending modal shapes (H) corresponding to the various crack conditions are shown in
Figs. 17–20, for the cracked and uncracked hinged–hinged beams having the same material properties and
other data listed in Table 1. In this example, P ¼ 0, r2 6¼0, s2 6¼0, the crack is located at L1 ¼ 0.3L (x ¼ 0.3) and
L1 ¼ 0.5L (x ¼ 0.5) distances from the hinged end and two different crack depths have been considered,
a/h ¼ 0.3 and a/h ¼ 0.5, respectively. As the deeper crack is closer to the antinodal point in the case of the
first mode, the change in eigenfrequency with crack present is quite significant. But when the crack is located
at L1 ¼ 0.5L, the second and third frequencies, for which the nodal points of the mode shapes are located
at the midpoint of the span, give one more piece of information about the crack position: in fact, if the
crack is located on a nodal point of a certain mode, the corresponding frequencies should be the same for
all sizes of cracks and the same in turn as those for no crack. The nodal point of a flexural modal shape
can be taken as point of inflection at which the bending moment vanishes. From Figs. 17 to 20, it can be
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Fig. 10. Comparison between the vertical displacement H and the torsional rotation Cxa and the shear force S(x) and the torsion T(x) for
the first modal shape of the cracked T-beam when r6¼0, s6¼0 and P ¼ 0, x ¼ 0.5, a/h ¼ 0.5. –––– H(x); – – – 100S(x); 100Cxa(x);

100T(x).
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Fig. 11. Comparison between the vertical displacement H and the torsional rotation Cxa and the shear force S(x) and the torsion T(x)
for the second modal shape of the cracked T-beam when r6¼0, s6¼0 and P ¼ 0, x ¼ 0.5, a/h ¼ 0.5. –––– H(x); – – – S(x); Cxa(x);

T(x).
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seen that, in the case of bending–torsional coupled beam, this is not true. The frequencies corresponding to
the cases of the uncracked beam and the cracked beam for which L1 ¼ 0.5L, a/h ¼ 0.3 and 0.5, are not
the same. This effect is related to the presence of the torsion, which is different from zero at the section
considered.

Plotting the bending displacements H1(x1), H2(x2) and the torsional displacements xaC
1(x1), xaC

2(x2), for
the cracked cantilever beam, the first four modal shapes are shown in Figs. 21–23, for the case when P ¼ 0,
r2 6¼0, s2 6¼0, P ¼ 15,000N (P40), r2 6¼0, s2 6¼0 and P ¼ �15,000N (Po0), r2 6¼0 and s2 6¼0.

From Tables 2 to 3 and Figs. 21 to 23, it is possible to see that the influence of the axial force P is bigger for
the first frequency than for the higher frequencies. In fact, as can be seen, regarding flexural and torsional
displacements, the influence of the axial forces on the first mode is visible, whereas the other modes are much
less affected. Compressive axial forces are usually lower the natural frequencies, while tensile axial forces
increase them. Therefore, a compressive axial force renders the beam less stiff, whereas a tensile one has a
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Fig. 12. Comparison between the vertical displacement H and the torsional rotation Cxa and the shear force S(x) and the torsion T(x) for
(a) the third and (b) the fourth modal shapes of the cracked T-beam when r6¼0, s6¼0 and P ¼ 0, x ¼ 0.5, a/h ¼ 0.5. –––– H(x); – – – S(x);

Cxa(x); T(x).
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Fig. 13. Variation of the first bending modal shapes (H) for the case of the uncracked cantilever beam and of three cracks distributed

differently, as indicated (a/h ¼ 0.3). – – – 179.66 rad/s (A: L1 ¼ 0.3L); 224.65 rad/s (B: L1 ¼ 0.5L); 258.46 rad/s (C: L1 ¼ 0.7L);

–––– 266.94 rad/s (uncracked beam) for P ¼ 0; r6¼0, s6¼0.
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Fig. 14. Variation of the second bending modal shapes (H) for the case of the uncracked cantilever beam and of three cracks distributed

differently, as indicated (a/h ¼ 0.3). – – – 1090.55 rad/s (A: L1 ¼ 0.3L); 1055 rad/s (B: L1 ¼ 0.5L); 1134.45 rad/s (C: L1 ¼ 0.7L);

–––– 1467.41 rad/s (uncracked beam) for P ¼ 0; r6¼0, s6¼0.
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Fig. 15. Variation of the third bending modal shapes (H) for the case of the uncracked cantilever beam and of three cracks distributed

differently, as indicated (a/h ¼ 0.3). – – – 1576.93 rad/s (A: L1 ¼ 0.3L); 1297.71 rad/s (B: L1 ¼ 0.5L; 1414.13 rad/s (C:

L1 ¼ 0.7L); –––– 1738.79 rad/s (uncracked beam) for P ¼ 0; r6¼0, s6¼0.
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Fig. 16. Variation of the fourth bending modal shapes (H) for the case of the uncracked cantilever beam and of three cracks distributed

differently, as indicated (a/h ¼ 0.3). – – – 3411.21 rad/s (A: L1 ¼ 0.3L); 3340.20 rad/s (B: L1 ¼ 0.5L); 3693.42 rad/s (C:

L1 ¼ 0.7L); –––– 3971.84 rad/s (uncracked beam) for P ¼ 0; r6¼0, s6¼0.
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Fig. 17. First bending modal shapes (H) for the uncracked and cracked hinged–hinged beam as a function of the crack positions x ¼ 0.3

and 0.5 and the depths a/h ¼ 0.3 and a/h ¼ 0.5. 847.9 rad/s (uncracked beam): – – – 571.78 rad/s (a/h ¼ 0.3, x ¼ 0.3);

397.32 rad/s (a/h ¼ 0.5, x ¼ 0.3); 342.4 rad/s (a/h ¼ 0.5, x ¼ 0.5); 509.50 rad/s (a/h ¼ 0.3, x ¼ 0.5), for P ¼ 0; r6¼0, s6¼0.
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Fig. 18. Second bending modal shapes (H) for the uncracked and cracked hinged–hinged beam as a function of the crack positions x ¼ 0.3

and 0.5 and the depths a/h ¼ 0.3 and a/h ¼ 0.5. 2333.59 rad/s (uncracked beam): – – – 1753.73 rad/s (a/h ¼ 0.3, x ¼ 0.3);

1279.32 rad/s (a/h ¼ 0.5, x ¼ 0.3); 1195.4 rad/s (a/h ¼ 0.5, x ¼ 0.5); 1717.32 rad/s (a/h ¼ 0.3, x ¼ 0.5), for P ¼ 0; r6¼0, s6¼0.
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stiffening effect [38]. So, in the absence of axial forces, the first frequencies are higher than the frequencies
calculated for a compressive load and lower than those for a tensile load.

A justification of the influence of the axial force on the first modal shape (see Fig. 7) is related to the fact
that it is predominantly a bending mode. In the plot of the first modal shape, shown in Fig. 7, it is possible to
see that the values of the torsional displacements xaC(x) had to be multiplied by 100 units to be visible and
comparable, in the figure, with the flexural displacements H. It means that, in the first modal shape, the
influence of the torsion is very low.

Fig. 23(b) shows that, for the cracked cantilever beam considered, the influence of the axial force P is almost
negligible in the fourth modal shape.

6. Conclusions

The analysis of the natural vibrations and modal shapes of cracked axially loaded bending–torsional
coupled Timoshenko T-beams has been presented. When the effects of shear deformation and rotatory inertia
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Fig. 19. Third bending modal shapes (H) for the uncracked and cracked hinged–hinged beam as a function of the crack positions x ¼ 0.3

and 0.5 and the depths a/h ¼ 0.3 and 0.5. 3725.83 rad/s (uncracked beam): – – – 2705.45 rad/s (a/h ¼ 0.3, x ¼ 0.3);

2327.92 rad/s (a/h ¼ 0.5, x ¼ 0.3); 3370.15 rad/s (a/h ¼ 0.5, x ¼ 0.5); 3485.36 rad/s (a/h ¼ 0.3, x ¼ 0.5); for P ¼ 0; r6¼0, s6¼0.
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Fig. 20. Fourth bending modal shapes (H) for the uncracked and cracked hinged–hinged beam as a function of the crack positions x ¼ 0.3

and 0.5 and the depths a/h ¼ 0.3 and a/h ¼ 0.5. 5011.03 rad/s (uncracked beam): – – – 4216.21 rad/s (a/h ¼ 0.3, x ¼ 0.3);

4012.66 rad/s (a/h ¼ 0.5, x ¼ 0.3); 4427.42 rad/s (a/h ¼ 0.5, x ¼ 0.5); 4575.28 rad/s (a/h ¼ 0.3, x ¼ 0.5); for P ¼ 0; r6¼0, s6¼0.
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are neglected, the errors associated with them become increasingly large as the beams thickness increases and
as the modal index increases. The general effect of including shearing effects is to decrease the natural
frequencies. Some accurate data, which might be useful for others researchers to compare their results have
been presented for uncracked and cracked T-beams. In the present study the transverse crack has always been
considered as open, whether in the presence of an axial force or not.

The stiffness matrix is obtained within the context of the DSM method by directly solving the governing
differential equation. In order to determine the local flexibility characteristics induced by an individual crack,
the concept of the massless rotational spring is applied. A new procedure based on the coupling of DSM and
line-spring element is introduced to model the cracked beam. The whole structure is first divided into two
substructures, since only one crack is considered into the structure itself. For each substructure, the DSM is
obtained, and the global DSM of the whole structure can be deduced by applying the standard procedure of
the finite element method. The existence of a crack results in a reduction of the local stiffness, and this
additional flexibility also alters the global dynamic response. In this sense, the results obtained have revealed



ARTICLE IN PRESS

-1.5

-1

-0.5

0

0.5

1

1.5

D
is

p
la

ce
m

en
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�

Fig. 21. First coupled bending–torsional modal shape of the cracked T-beam: flexural displacement (H) and torsional displacement (Cxa)

for r6¼0, s6¼0, crack position x ¼ 0.5, crack depth a/h ¼ 0.5. —— H; P ¼ 0: – – – H; Po0; —— H; P40; 100Cxa; P ¼ 0;

100Cxa; Po0; 100Cxa; P40.
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Fig. 22. Second coupled bending–torsional modal shape of the cracked T-beam: flexural displacement (H) and torsional displacement

(Cxa) for r6¼0, s6¼0, crack position x ¼ 0.5, crack depth a/h ¼ 0.5. —— H; P ¼ 0: – – – H; Po0; —— H; P40; Cxa; P ¼ 0;

Cxa; Po0; Cxa; P40.
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that a good prediction of changes in frequencies and mode shapes can contribute to the determination of the
location and size of cracks.

A parametric study has been conducted considering two beams having different end conditions, a cantilever
and a hinged–hinged beam, different crack positions and depths. The following observations can be made
from the parametric study:
1.
 Any variation in the frequency of a mode is larger if the crack is closer to the nodal or the antinodal point
of that mode shape. When the crack is located at the nodal point of a certain mode, the corresponding
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Fig. 23. (a) Third and (b) fourth coupled bending–torsional modal shapes of the cracked T-beam: flexural displacement (H) and torsional

displacement (Cxa) for r 6¼0, s6¼0, crack position x ¼ 0.5, crack depth a/h ¼ 0.5. —— H; P ¼ 0: – – – H; Po0; —— H; P40; Cxa;

P ¼ 0; Cxa; Po0; Cxa; P40.
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frequencies are not the same for all sizes of cracks and the same in turn as those for no crack. So, even if the
nodal point of a mode shape can be taken as point of inflection at which the bending moment vanishes, the
value of the torsion determines different values of the frequency.
2.
 It can be noticed that when cracks of different depths are considered, the larger crack has the more
significant effect on the frequency.
3.
 The frequency of the uncracked and cracked beam is also reduced because of compressive axial loads, while
it increases with tensile loads, although not as fast as it reduces with compressive loads.

As far as the effect of the axial force is concerned, the aim of the authors is to demonstrate that, even in the
case of cracked beams, the effect of a compressive axial force is to render the beam less stiff, whereas a tensile
one has a stiffening effect.
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In this work, warping stiffness has been neglected. The aim of the authors is to extend in a future paper the
analysis of coupled vibrations of cracked Timoshenko beams including the effect of warping, as well as the
coupling effects at the cracked section.
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Appendix A. Determination of the stiffness matrix of a line-spring model

Let us consider a model to evaluate the stiffness matrix kf of a line spring, as shown in Fig. 4 which indicates
the sign convections for forces (shear forces: Sl and Sr; bending moments Ml and Mr; torsion Tl and Tr). The
corresponding deflections and rotations are respectively denoted by Hl and Hr; Yl and Yr; and Cl and Cr.
Then the following relation is obtained:

Ff ¼ kf qf , (A.1)

where

Ff ¼ ½Sr;Mr;Tr;Sl ;Ml ;Tl �
T; qf ¼ ½Hr;Yr;Cr;Hl ;Yl ;Cl �

T. (A.2)

For a linear elastic body under an infinitesimal small displacement condition, the displacements ui at the
loading points can be written as follows using the principle of superposition:

ui ¼
Xn

j¼1

lijPj , (A.3)

where Pj are generalised forces and lij are compliances. From Eq. (A.3), the deflection H at the point where a
shear force S is applied can be written by considering the effects of both a bending moment M and a torsion T

as

H ¼ lssS þ lsmM þ lstT . (A.4)

Similarly, it is possible to obtain

Y ¼ lmsS þ lmmM þ lmtT , (A.5)

C ¼ ltsS þ ltmM þ lttT . (A.6)

With the following positions for displacements, forces and compliances

u1 ¼ H; P1 ¼ S;

u2 ¼ Y; P2 ¼M;

u3 ¼ C; P3 ¼ T ;

l11 ¼ lss l21 ¼ lms l31 ¼ lts;

l12 ¼ lsm l22 ¼ lmm l32 ¼ ltm;

l13 ¼ lst l23 ¼ lmt l33 ¼ ltt;

ðA:7Þ

where lij ¼ lji for i, j ¼ 1, 2, 3.
The strain energy W in the line spring is given by

W ¼
1

2
ðSH þMYþ TCÞ or W ¼

1

2

X3
i¼1

Piui. (A.8)



ARTICLE IN PRESS
E. Viola et al. / Journal of Sound and Vibration 304 (2007) 124–153150
It is possible to obtain another expression of W by substituting Eqs. (A.4)–(A.6) into Eq. (A.8):

W ¼
1

2D
ða11H2 þ a22Y2 þ a33C2 þ 2a12HYþ 2a13HCþ 2a23YCÞ, (A.9)

where

a11 ¼ lmmltt � l2mt a12 ¼ lmtlst � lsmltt;

a22 ¼ lppltt � l2pt a13 ¼ lsmlmt � lstlmm;

a33 ¼ lmmlpp � l2mp a23 ¼ lsmlst � lmtlss;

D ¼ det

lss lsm lst

lms lmm lmt

lts ltm ltt

2
664

3
775. ðA:10Þ

Using the relations H ¼ Hl�Hr, Y ¼ Yl�Yr, C ¼ Cl�Cr, one can express the strain energy W with nodal
displacements and obtain the following relations by partial differentiation with respect to each nodal
displacement:

Sl ¼
qW

qHl

¼ ½a11ðHl �HrÞ þ a12ðYl �YrÞ þ a13ðCl �CrÞ�, (A.11)

Ml ¼
qW

qYl

¼ ½a12ðHl �HrÞ þ a22ðYl �YrÞ þ a23ðCl �CrÞ�, (A.12)

Tl ¼
qW

qCl

¼ ½a13ðHl �HrÞ þ a23ðYl �YrÞ þ a33ðCl �CrÞ�, (A.13)

Sr ¼
qW

qHr

¼ �Sl , (A.14)

Mr ¼
qW

qYr

¼ �Ml , (A.15)

Tr ¼
qW

qCr

¼ �Tl . (A.16)

Thus the stiffness matrix of a line spring is given as follows:

kf ¼
1

D

a11 a12 a13 �a11 �a12 �a13

a22 a23 �a21 �a22 �a23

a33 �a31 �a32 �a33

a11 a12 a13

Sym a22 a23

0 a33

2
6666666664

3
7777777775
. (A.17)
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For the case under consideration, being lmt ¼ lms ¼ lst ¼ 0, the stiffness matrix becomes

kf ¼

1=lss 0 0 �1=lss 0 0

0 1=lmm 0 0 �1=lmm 0

0 0 1=ltt 0 0 �1=ltt

�1=lss 0 0 1=lss 0 0

0 �1=lmm 0 0 1=lmm 0

0 0 �1=ltt 0 0 1=ltt

2
6666666664

3
7777777775
. (A.18)

Appendix B. System of 12 homogenous linear equations for cantilever T-beams

System of twelve homogeneous linear equations in twelve unknowns Ai (i ¼ 1, 2,y,12):

A1 þ A3 þ A5 ¼ 0, (B.1)

A2
a1
L1
þ A4

b1
L1
þ A6

g1
L1
¼ 0, (B.2)

ðA1ka1 þ A3kb1 þ A5kg1Þ
�

xa ¼ 0, (B.3)

ð�A1 cosh a1 � A2 sinh a1 � A3 cos b1 � A4 sin b1 � A5 cos g1 � A6 sin g1

þ A7 þ A9 þ A11Þ
1

lss

þ A8W 32ā2ga2 � A10W 32b̄2gb2 � A12W 32ḡ2gg2 ¼ 0, ðB:4Þ

ð�A1
ā1
L1

sinh a1 � A2
ā1
L1

cosh a1 þ A3
b̄1
L1

sin b1 � A4
b̄1
L1

cos b1 þ A5
ḡ1
L1

sin g1 � A6
ḡ1
L1

cos g1

þ A8
ā2
L2
þ A10

b̄2
L2
þ A12

ḡ2
L2
Þ

1

lmm

� A7W 22ā2a2 þ A9W 22b̄2b2 þ A11W 22ḡ2g2 ¼ 0, ðB:5Þ

ð�A1ka1 cosh a1 � A2ka1 sinh a1 � A3kb1 cos b1 � A4kb1 sin b1 � A5kg1 cos g1 � A6kg1 sin g1

þ A7ka2 þ A9kb2 þ A11kg2Þ
1

xaltt

� A8
W 12ea2a2

xa
� A10

W 12eb2b2
xa

� A12
W 12eg2g2

xa
¼ 0, ðB:6Þ

ðA1W 11ea1 sinh a1 þ A2W 11ea1 cosh a1 � A3W 11eb1 sin b1 þ A4W 11eb1 cos b1 � A5W 11eg1 sin g1
þ A6W 11eg1 cos g� A8W 12ea2a2 � A10W 12eb2b2 � A12W 12eg2g2Þ=xa ¼ 0, ðB:7Þ

� A1W 21a1ā1 cosh a� A2W 21a1ā1 sinh aþ A3W 21b1b̄1 cos bþ A4W 21b1b̄1 sin b

þ A5W 21g1ḡ1 cos gþ A6W 21g1ḡ1 sin gþ A7W 22a2ā2 � A9W 22b2b̄2 � A11W 22g2ḡ2 ¼ 0, ðB:8Þ

A1W 31ā1ga1 sinh a1 þ A2W 31ā1ga1 cosh a1 þ A3W 31b̄1gb1 sin b1 � A4W 31b̄1gb1 cos b1
þ A5W 31ḡ1gg1 sin g1 � A6W 31ḡ1gg1 cos g1 � A8W 32ā2ga2 þ A10W 32b̄2gb2 þ A12W 32ḡ2gg2 ¼ 0, ðB:9Þ

� A7W 32ā2ga2 sinh a2 � A8W 32ā2ga2 cosh a2 � A9W 32b̄2gb2 sin b2 þ A10W 32b̄2gb2 cos b2
� A11W 32ḡ2gg2 sin g2 þ A12W 32ḡ2gg2 cos g ¼ 0, ðB:10Þ

A7W 22a2ā2 cosh a2 þ A8W 22a2ā2 sinh a2 � A9W 22b2b̄2 cos b2 � A10W 22b2b̄2 sin b2
� A11W 22g2ḡ2 cos g2 � A12W 22g2ḡ2 sin g2 ¼ 0, ðB:11Þ
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ðA7W 12ea2a2 sinh a2 þ A8W 12ea2a2 cosh a2 � A9W 12eb2b2 sin b2
þ A10W 12eb2b2 cos b2 � A11W 12eg2g2 sin g2 þ A12W 12eg2g2 cos g2Þ=xa ¼ 0 ðB:12Þ

with

W 11 ¼ GJ=L1; W 21 ¼ EI=L2
1; W 31 ¼ EI=L3

1, (B.13)

W 12 ¼ GJ=L2; W 22 ¼ EI=L2
2; W 32 ¼ EI=L3

2. (B.14)
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