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Abstract

Waves can propagate freely without reflection in a certain class of non-uniform one-dimensional waveguides even

though the properties of the waveguide vary rapidly. In these cases, the amplitude of the wave changes as a function of

position but the power associated with the wave is preserved along the waveguide as in uniform waveguides. A generalised

wave approach based on reflection, transmission and propagation of waves is used for the analysis of such non-uniform

waveguides. The positive- and negative-going wave motions are separated so that the problem is always well-posed.

Examples include longitudinal motion of bars and bending motion of Euler–Bernoulli beams, where the cross-section

varies as a power of the length. The energy transport velocity, which is the velocity at which energy is carried by the waves

in these waveguides, is derived using the relationship between power and energy. It is shown that this energy transport

velocity depends on position as well as frequency and differs from the group velocity. Numerical results for wave

transmission through a rectangular connector with linearly tapered thickness and constant width are obtained in a

straightforward manner without approximation errors and at a low computational cost, irrespective of frequency.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behaviour of a structure may be described in terms of waves and their propagation, reflection
and transmission. This is especially suitable in the high-frequency region since it does not require powerful
computing resources and is well conditioned. Of particular concern in this paper are non-uniform waveguides
that have continuous variation in geometric and/or material properties.

When the degree of non-uniformity is relatively small compared to a wavelength, waves can propagate
along the structure with negligible reflection as shown by Lighthill [1]. Langley [2] studied wave propagation
along a slowly varying one-dimensional waveguide with deterministic, periodic and random variation using a
perturbation method. He showed that the power associated with a wave component is preserved along the
waveguide, while the amplitude of the wave changes as a function of position. This, however, does not happen
in a general non-uniform waveguide since the energy of one wave component is transferred to another, e.g. a
positive-going wave is reflected to produce a negative-going, back-scattered wave.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a amplitude of wave
a, b, c, d vectors of amplitudes of waves
A cross-sectional area
cl phase velocity of longitudinal wave
cb phase velocity of bending wave
cE energy transport velocity
D dynamic stiffness matrix for spectral

element
E modulus of elasticity
E energy density, E ¼TþV
f vector of generalised internal forces
fext amplitude of external force
fext vector of amplitudes of external forces
F propagation matrix
h thickness
I the second moment of area
I identity matrix
kl longitudinal wavenumber
kb flexural wavenumber
kb,m effective flexural wavenumber of a

section
K external dynamic stiffness
Kext external dynamic stiffness matrix
L length
M bending moment
P longitudinal force
q vector of amplitudes of waves induced

by external forces
Q shear force
R reflection matrix
t time
T kinetic energy density
T transmission matrix
u longitudinal displacement
V potential energy density
w flexural displacement
w vector of generalised displacements
x position along waveguide axis
x0 position where excitation is applied
aA taper rate for cross-sectional area, real

and positive

aI taper rate for the second moment of
area, real and positive

g Euler’s constant, g � 0:577216
y phase difference between two waves
m flaring index of a non-uniform beam,

real and non-negative constant
n n ¼ ðm� 1Þ=2
P power carried by a wave
r density
t power transmission coefficient
U internal force matrix
W displacement matrix
o angular frequency
0 null matrix

Superscripts

+ denote positive-going direction in x-axis
� denote negative-going direction in x-axis
\ combined with R and T, denote the

case where waves are incident from the
right-hand side

Subscripts

0,1,2 denote position x ¼ x0;1;2, respectively
a the left-hand side of a discontinuity
b denote bending motion or the right-

hand side of a discontinuity
l denote longitudinal motion
N denote nearfield wave

Special functions

H ð1;2Þm Hankel functions of first and second
kind of order m

Km, Im modified Bessel functions of order m

Operators

( � )T transpose
Re( � ) real part of a quantity
/ �S time averaged
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For non-uniform waveguides whose properties vary rapidly, wave motion can be difficult to interpret
because of this reflection. However, there is a class of non-uniform waveguides, where reflection does not
occur. For example, it is well-known that the governing equation of an acoustic horn can be solved for several
specific shapes—the so-called Salmon’s family [3]—which includes conical, exponential and catenoidal horns.
Nagarkar and Finch [4] studied a bell and suggested that a sinusoidal horn could also be included in the
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family. As a more general case, wave propagation in a horn where the area varies as a power of the length can
be described in terms of Bessel functions [5]. The results for non-uniform acoustic waveguides can be equally
applied to structural waveguides with the same variation undergoing longitudinal or torsional motion, since
their governing equations all have the same mathematical form [6]. Kumma and Sujith [7] used the results to
determine natural frequencies of the longitudinal vibration of some non-uniform bars.

In a class of non-uniform beams undergoing bending motion, waves can also propagate without reflection.
Cranch and Adler [8] considered the case of non-uniform Euler–Bernoulli beams of rectangular cross-section.
They found that when the thickness varies with position x along the beam as x, x2 or x3 while the width varies
as an arbitrary power of x, the motion can be exactly described in terms of Bessel functions. When the cross-
sectional area and moment of inertia of a non-uniform beam vary together as x4, the equation of motion can
be transformed into the wave equation [8,9]. It has also been found that the motion of non-uniform beams
with exponentially varying properties can be expressed simply in terms of exponential functions [8,10]. These
analytical solutions have been used to obtain natural frequencies for beams with various boundary conditions
and with intermediate constraints [11–16]. Banerjee and Williams [17] used the solutions to obtain the exact
dynamic stiffness matrices of some non-uniform beams. Petersson and Nijman [18] studied the dynamic
characteristics of the bending wave horn, featured by a broad-banded transition from vibrations governed by
the properties at the mouth to vibrations governed by those at the throat. Krylov and Tilman [19] showed that
the incident flexural waves are trapped near the edge of the wedges, the thickness of which varies as a power of
x, and the waves are therefore never reflected back.

The aim of this paper is to use a wave approach for the analysis of non-uniform waveguides whose
properties vary rapidly but deterministically and where no wave conversion occurs. This approach facilitates
physical insight into the dynamic behaviour of such waveguides, which is discussed following a description of
the methodology in Section 2. Examples include longitudinal motion of non-uniform bars and bending motion
of non-uniform Euler–Bernoulli beams, considered in Sections 3 and 4, respectively. For simplicity, the
waveguides considered here have only geometric variation as shown in Fig. 1; the material properties are
constant and damping is neglected. The response to external excitation and the spectral elements for the
waveguides are derived in a systematic way. The energy transport velocity, which is the velocity at which
energy is carried by the waves in these structures, is also found. Finally, numerical results are presented for the
transmission of waves through a tapered connector in Section 5.
2. A generalised wave approach

In this section, a generalised approach based on reflection, transmission and propagation of waves for the
analysis of one-dimensional waveguides is reviewed. The systematic formulation for the approach described
here is an extension of the work of Harland et al. [20].
2.1. Representation of wave motion

Consider a one-dimensional structural waveguide lying along the x-axis. At any point, the waves can be
separated into two groups according to the direction in which they travel, i.e. positive- and negative-going
waves. The waves either transport energy in the corresponding direction or, if no energy flow is associated with
the wave its amplitude will decay in that direction (e.g., for nearfield waves). The wave amplitudes are grouped
Fictitious
vertex

x = 0

x

A(x), I(x)

Fig. 1. Section of a non-uniform waveguide.



ARTICLE IN PRESS
S.-K. Lee et al. / Journal of Sound and Vibration 304 (2007) 31–4934
into two vectors a+ and a� where the superscripts ‘+’ and ‘�’ denote the corresponding direction of
propagation (a list of symbols is given in Nomenclature). Throughout this paper the time dependence of the
motion is assumed to be of the form eiot with angular frequency o, but the explicit time dependence is
suppressed for clarity.

In general, the motion in the waveguide is described by a partial differential equation of order 2n. The
solution gives n pairs of positive- and negative-going wave components, so that a+ and a� are n� 1 vectors.

Two illustrative examples are considered: bars undergoing longitudinal motion and Euler–Bernoulli beams
undergoing bending motion. A bar is a single-mode system (i.e. n ¼ 1) where only one propagating wave is
associated with each direction; if the amplitudes of the two waves are given by a+ and a�, the wave vectors
will be aþ ¼ faþg and a� ¼ fa�g. A beam is a two-mode system (n ¼ 2) where a propagating wave and a
nearfield wave are associated with each direction; now aþ ¼ ½ a

þ aþN �
T and a� ¼ ½ a

� a�N �
T, where the

subscript N denotes a nearfield wave.
The relationship between the state vector in the physical domain and the state vector in the wave domain is

given by [20]

w

f

� �
¼

Wþ W�

Uþ U�

" #
aþ

a�

� �
, (1)

where w and f are n� 1 vectors of generalised displacements and internal forces, respectively, and W and U are
n� n displacement and internal force matrices describing the transformation. This transformation can always
be normalised such that the elements of the first row of W7 are all unity. For a uniform bar, where the sign
convention of the physical quantities is defined as in Fig. 2(a), w ¼ {u} and f ¼ {P}, and the displacement and
internal force matrices are

Wþ ¼ ½1�; W� ¼ ½1�;

Uþ ¼ �iEAkl½ �; U� ¼ ½iEAkl �;
(2a2d)

where kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2=E

p
is the longitudinal wavenumber. For a uniform Euler–Bernoulli beam, where the sign

convention is defined as Fig. 2(b), w ¼ ½w qw=qx �T and f ¼ ½Q M �T, and the matrices are [20]

Wþ ¼
1 1

�ikb �kb

" #
; W� ¼

1 1

ikb kb

" #
;

Uþ ¼ EI
�ik3

b k3
b

�k2
b k2

b

" #
; U� ¼ EI

ik3
b �k3

b

�k2
b k2

b

" #
;

(3a2d)

where kb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAo2=EI4

p
is the flexural wavenumber. For a uniform waveguide the elements of W and U are

invariant of x, which is not the case for a non-uniform waveguide.
Consider two points x1 and x2, a distance L apart, on a waveguide as shown in Fig. 3. If there is no wave

mode conversion, the amplitudes of the waves at the two points are related by

aþðx2Þ

a�ðx1Þ

( )
¼

Fþ 0

0 F�

" #
aþðx1Þ

a�ðx2Þ

( )
, (4)

where 0 is the null matrix, and F is diagonal and is termed the propagation matrix. If the waveguide is
reciprocal, there is a simple relation between the positive and negative propagation matrices. Furthermore, if
u

P
x

w

∂w

∂x

M

Q

Fig. 2. Sign convention: (a) longitudinal motion, (b) bending motion.
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q−

q+q−

fexte
i�t

q+

fexte
i�tfexte

i�t

(a)

(b) (c)

Fig. 4. A waveguide excited by local harmonic forces: (a) applied at a point, (b) applied at left-hand end, (c) applied at right-hand end.

a+ (x1)

a− (x1)

a+ (x2)

a− (x2)

x = x1 x = x2

x

Fig. 3. Propagation of waves between two points.
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the amplitudes of waves are normalised with respect to the power associated with the waves, then the diagonal
elements of F7 have magnitudes, which are either constant or decrease monotonically as L increases. This
arises from simple conservation of energy considerations. Thus, the analysis can be posed in a well-
conditioned way. For example, the propagation matrices for a uniform bar and beam are, respectively,
given by

F� ¼ ½e�ikl L�; F� ¼
e�ikbL 0

0 e�kbL

" #
. (5a,b)

For a uniform waveguide the elements depend only on the distance between the two points and the
wavenumber, which is independent of position so that the positive and negative propagation matrices are the
same.

2.2. Wave generation by local excitation or discontinuities

Consider a point on the waveguide excited by local harmonic forces fexte
iot as shown in Fig. 4(a). Waves of

amplitudes q
+ and q

� are then induced in the positive and negative directions, respectively. Applying
continuity and equilibrium conditions to Eq. (1) results in

Wþqþ ¼ W�q�; �Uþqþ þU�q� ¼ fext. (6a,b)

Consequently q+ and q� are given by

qþ ¼ ½�Uþ þU�ðW�Þ�1Wþ��1fext; q� ¼ ½U� �UþðWþÞ�1W���1fext. (7a,b)
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(incident)

(reflected)
(transmitted)

a+

a− b+

Kext

Fig. 5. Reflection and transmission of waves at a local discontinuity.
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If the forces are applied at a free boundary of the waveguide as shown in Fig. 4(b,c), then waves will be
induced in one direction only. The amplitudes of these waves can be obtained from Eq. (6b) by setting q+ or
q� to zero as appropriate, to give

q� ¼ �ðU�Þ�1fext. (8a,b)

If there is a point discontinuity in the propagation path, waves incident on the discontinuity may be
reflected and transmitted. The amplitudes of the reflected and transmitted waves are then obtained by
considering the continuity and equilibrium conditions at the point. For example, consider the situation in
Fig. 5, where two coaxial waveguides with different properties are joined together and there are external
components, represented by the dynamic stiffness matrix Kext. The continuity and equilibrium conditions at
the point are given by

wa ¼ wb; �fa þ fb ¼ Kextwa, (9a,b)

where the subscripts a and b denote the left- and right-hand waveguides, respectively. Note that Eqs. (9a,b) do
not cover all possible situations—for example, a junction between two waveguides with different numbers of
wave modes [20], or a beam with a simple support. Let the amplitudes of the incident, reflected and
transmitted waves, respectively, be a+, a� and b+ as shown in the figure. Combining Eqs. (9a,b) with
Eq. (1) gives

Wþa a
þ þW�a a

� ¼ Wþb b
þ; �Uþa a

þ �U�a a
� þUþb b

þ ¼ KextW
þ
b b
þ. (10a,b)

Thus, the amplitudes of the reflected and transmitted waves are given by

a� ¼ Raþ; bþ ¼ Taþ, (11a,b)

where R and T are reflection and transmission matrices, and are given by

R ¼ � ½KextW
�
a �Uþb ðW

þ
b Þ
�1W�a þU�a �

�1 ½KextW
þ
a �Uþb ðW

þ
b Þ
�1Wþa þUþa �,

T ¼ ½KextW
þ
b þU�a ðW

�
a Þ
�1Wþb �Uþb �

�1 ½U�a ðW
�
a Þ
�1Wþa �Uþa �. ð12a;bÞ

If the system is symmetric about the discontinuity, R
_
¼ R and T

_
¼ T, where �

_
denotes the case where waves

are incident from the right-hand side of the junction. If the discontinuity represents a boundary, so that there
are no transmitted waves, the reflection matrix at the boundary can be obtained from Eq. (12a) by setting the
terms with the subscript b to zero.
2.3. Spectral element

A spectral element is a finite (or semi-infinite) section of a structure described by a dynamic stiffness matrix,
which relates the displacements and internal forces at the ends of the element [21]. Consider again the two
points x1 and x2 on the waveguide in Fig. 3. The displacements at these points are related to the amplitudes of
the waves by

w1 ¼ Wþ1 a
þ
1 þW�1 a

�
1 ; w2 ¼ Wþ2 a

þ
2 þW�2 a

�
2 , (13a,b)
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where the subscripts 1 and 2 denote the positions. Since the amplitudes of the waves are related by the
propagation matrices as in Eq. (4), Eqs. (13a,b) can be written as

w1

w2

( )
¼

Wþ1 W�1 F
�

Wþ2 F
þ W�2

" #
aþ1

a�2

( )
. (14)

Similarly, the internal forces at the two points are given by

f1

f2

( )
¼

Uþ1 U�1 F
�

Uþ2 F
þ U�2

" #
aþ1

a�2

( )
. (15)

Combining Eqs. (14) and (15) gives

�f1

f2

( )
¼ D

w1

w2

( )
, (16)

where D is the dynamic stiffness matrix for the section of the waveguide and is given by

D ¼
�Uþ1 �U�1 F

�

Uþ2 F
þ U�2

" #
Wþ1 W�1 F

�

Wþ2 F
þ W�2

" #�1
. (17)

For a semi-infinite element (referred to as a ‘‘throw-off’’ element in Ref. [21]), the dynamic stiffness matrix
(spectral element) is

D�1 ¼ �U�ðW�Þ�1, (18a,b)

where W and U are now the displacement and internal force matrices at the boundary of the semi-infinite
waveguide, with the superscript denoting the appropriate direction.
3. Longitudinal waves in a non-uniform bar

In this section, the wave approach described in Section 2 is used in the analysis of the longitudinal wave
motion in a non-uniform bar where the area varies as a power of the length. Note again that the vectors and
matrices for this case consist of only one element.
3.1. Representation of wave motion

Consider the waveguide in Fig. 1 as a non-uniform bar undergoing longitudinal motion. The displacement
u(x,t) for free vibration is governed by [7]

q
qx

EA
qu

qx

� �
¼ rA

q2u
qt2

. (19)

The material properties E and r of the bar are assumed to be constant while the cross-sectional area A varies
with x as

AðxÞ ¼ aAxm, (20)

where aA40, x40 is the position from the fictitious vertex, and mX0 is the flaring index. When m ¼ 0,1,2, the
bar could be uniform, linearly tapered in thickness, and conical, respectively. Assuming an eiot time
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dependence, substituting Eq. (20) into Eq. (19) gives

d2u

dx2
þ

m
x

du

dx
þ k2

l u ¼ 0. (21)

The bar is undamped so that kl is real.
Eq. (21) is a form of Bessel’s equation, so the general solution can be expressed by a linear combination of

Hankel functions of the first and second kinds of order n ¼ ðm� 1Þ=2 with argument klx, i.e. H ð1;2Þn ðklxÞ [5].
Since the terms H ð1;2Þn ðklxÞ represent negative- and positive-going waves, respectively, the displacement is given
by

uðxÞ ¼ aþ þ a�, (22)

where aþ ¼ x�nH ð2Þn ðklxÞC1 and a� ¼ x�nH ð1Þn ðklxÞC2, and where C1 and C2 are arbitrary constants. Note that
the amplitudes of waves are defined such that the displacement is determined directly from the amplitudes, i.e.
a7 represent the amplitude of a displacement wave. The axial force P is then given by

PðxÞ ¼ �EAkl

H
ð2Þ
nþ1ðklxÞ

H ð2Þn ðklxÞ
aþ � EAkl

H
ð1Þ
nþ1ðklxÞ

H ð1Þn ðklxÞ
a�. (23)

Noting that w ¼ fug, f ¼ fPg, aþ ¼ faþg and a� ¼ fa�g, the displacement and internal force matrices for the
non-uniform bar are given by

Wþ ¼ ½1�; W� ¼ ½1�;

Uþ ¼ �EAkl

H
ð2Þ
nþ1ðklxÞ

H ð2Þn ðklxÞ

" #
; U� ¼ �EAkl

H
ð1Þ
nþ1ðklxÞ

H ð1Þn ðklxÞ

" #
. (24a2d)

Using the asymptotic behaviour of Bessel functions given in Appendix A, it can be shown that the internal
force matrices asymptote to those for the uniform bar given by equations (2c,d) when klxb1 (i.e. the
frequency is such that xbll/2p, where ll is the wavelength).

The propagation matrices F7 between two points x and x+L are given by

Fþ ¼
x

xþ L

� �n
H ð2Þn ðklxþ klLÞ

H ð2Þn ðklxÞ

" #
; F� ¼

xþ L

x

� �n
H ð1Þn ðklxÞ

H ð1Þn ðklxþ klLÞ

" #
. (25a,b)

When klxb1, the matrices asymptote to

Fþ �
x

xþ L

� �m=2

½e�ikl L� F� �
xþ L

x

� �m=2

½e�ikl L�. (26a,b)

This indicates that, at high frequencies, waves in the non-uniform bar propagate as they do in the uniform bar
but with their amplitudes scaled by the square root of the ratio of the characteristic impedances (defined by
A

ffiffiffiffiffiffiffi
Er
p

) at each end of the section.

3.2. Wave generation by local excitation

Consider a non-uniform bar with the cross-sectional area varying as Eq. (20), one end (at x ¼ x0) of which is
excited by the longitudinal force f exte

iot as shown in Fig. 4(b,c). When the left-hand end is excited (i.e. for the
gradually increasing bar), the amplitude of the positive-going wave induced by the force is obtained by
substituting equation (24c) into Eq. (8a) to give

qþ ¼
1

EA0kl

H ð2Þn ðklx0Þ

H
ð2Þ
nþ1ðklx0Þ

( )
f ext, (27)

where x0 is the distance from the fictitious vertex to the end at which the force is applied and A0 ¼ A(x0).
Similarly, when the right-hand end is excited (i.e. for the gradually decreasing bar), the negative-going wave
induced by the force is obtained by substituting Eq. (24d) into Eq. (8b).
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Fig. 6. Longitudinal wave generation in the non-uniform bar with m ¼ 1 when an end is excited: (a) ratio of magnitude of induced wave to

that in the uniform bar, (b) phase of induced wave; ——, left-hand end excited; - - - - - -, right-hand end excited.
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When m ¼ 2 (i.e., a ‘‘conical’’ bar), Eq. (27) for the gradually increasing bar simply reduces to

qþ ¼
x0

EA0

1

iklx0 þ 1

� �
f ext. (28)

Compared to the case of the uniform bar where qþ ¼ f ext=ðiEA0klÞ, the non-uniformity of the bar introduces a
stiffness-like term EA0=x0 as well as the damping-like term iEA0kl . This stiffness-like term becomes dominant
when klx051. When klx0b1, the stiffness-like term becomes negligible and the amplitude asymptotes to that
of the uniform bar. Meanwhile, for the gradually decreasing bar, the wave amplitude is

q� ¼
x0

EA0

1

iklx0 � 1

� �
f ext. (29)

Now the sign of the additional term due to the non-uniformity changes so that the response shows mass-like
behaviour at low frequencies.

When m ¼ 1 (i.e. a bar whose cross-sectional area increases linearly) and klx051, Eq. (27) reduces to

qþ � �
x0

EA0
i
p
2
þ lnðklx0Þ þ g� lnð2Þ

	 
� �
f ext, (30)

where g � 0:577 . . . is Euler’s constant. The real part of the amplitude is positive; therefore, the response shows
stiffness-dominant behaviour. Fig. 6 shows the amplitudes of the waves induced in the non-uniform bar with
m ¼ 1 when the left- and right-hand ends of the bar are excited, respectively. The magnitude is normalised by
the magnitude of the wave that would be induced in the uniform bar, i.e. f ext=EAkl . The magnitudes in the two
cases are equal but the phases are symmetric about �p/2. When klx051, for the gradually increasing bar the
phase asymptotes to zero (i.e. is stiffness-dominant) while for the gradually decreasing bar the phase
asymptotes to �p (i.e. mass-dominant).

Now consider a non-uniform bar excited at a internal point at x ¼ x0 by a longitudinal force as shown in
Fig. 4(a). The amplitudes of the positive- and negative-going waves induced by the force are now identical and

qþ ¼
px0

i2EA0
jH ð2Þn ðklx0Þj

2

� �
f ext

2
. (31)
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Fig. 7. (a) Response of the non-uniform bar with m ¼ 1 due to external force: ——, displacement at time t ¼ 2np=o; - - - - - -, magnitude.

(b) Response of the non-uniform beam with m ¼ 1 due to external force: ——, displacement at time t ¼ 2np=o; - - - - - -, magnitude.
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The response is purely imaginary in this case, which indicates that the reactive elements cancel each other and
the response is dominated only by the damping-like term as with a uniform bar. Fig. 7(a) shows the response,
normalised with respect to f ext=2EA0kl , of the gradually increasing bar with m ¼ 1 to the harmonic force. The
solid line shows the displacement at time t ¼ 2np=o for n ¼ 0; 1; 2 . . .. The dashed lines show the magnitude,
which decreases as the cross-sectional area increases.

3.3. Spectral element

Following the procedure in Section 2.3 the dynamic stiffness matrix for a semi-infinite gradually increasing
bar element can be determined by substituting Eqs. (24a,c) into Eq. (18a) to give

Dþ1 ¼ EA0kl

H
ð2Þ
nþ1ðklx0Þ

H ð2Þn ðklx0Þ

" #
. (32)

Similarly, the dynamic stiffness matrix for a finite non-uniform bar can be obtained by using Eqs. (24a–d) and
(25a,b) to give the dynamic stiffness matrix in Eq. (17), which is reported in Ref. [17].

3.4. Propagation of energy

For longitudinal motion of a bar the kinetic and potential energies per unit length are, respectively, given by
T ¼ 0:5rAfReðqu=qtÞg2 andV ¼ 0:5EAfReðqu=qxÞg2 [22], where Re( � ) denotes the real part. If there is only a
positive-going wave with amplitude a+, the displacement will be u(x) ¼ a+ thus the time-averaged energy
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densities associated with the wave are given by

hTi ¼
1

4
rAo2jaþj2; hVi ¼

1

4
rAo2jaþj2

H
ð2Þ
nþ1ðklxÞ

H ð2Þn ðklxÞ

�����
�����
2

, (33a,b)

where / �S indicates a time-averaged quantity. Note that, when m ¼ 0 (i.e., a uniform bar), the kinetic and
potential energy densities are the same but, for the other cases, hVi4hTi in the region of klxop. As klx

increases, the energy densities become the same. The total energy density is given by

hEi ¼ hTi þ hVi ¼
1

4
rAo2jaþj2

jH ð2Þn ðklxÞj
2 þ jH

ð2Þ
nþ1ðklxÞj

2

jH ð2Þn ðklxÞj
2

. (34)

The time-averaged power for longitudinal motion of a bar is given by hPi ¼ � ReðPÞ �Reðqu=qtÞ
� 


[22];
therefore, the power associated with the positive-going wave is

Ph i ¼ rAo2jaþj2
cl

pklx
jH ð2Þn ðklxÞj

�2, (35)

where cl ¼ o/kl is the phase velocity of the longitudinal wave. Noting that aþ ¼ x�nH ð2Þn ðklxÞC1, it follows
that the power is constant along the bar. This is of course obvious from conservation of energy considerations.
In terms of the total energy density and the power, the energy transport velocity is given as cE ¼ hPi=hEi [1],
thus

cE
l ¼

4cl

pklx
ðjH ð2Þn ðklxÞj

2 þ jH
ð2Þ
nþ1ðklxÞj

2Þ
�1. (36)

Specifically, when m ¼ 2, Eq. (36) reduces to

cE
l ¼

cl

1þ ð
ffiffiffi
2
p

klxÞ
�2

. (37)

The energy transport velocity is generally different to the group velocity, which is formally defined by
cg ¼ do/dk (for real wavenumbers). Note that, for a non-uniform bar, cg ¼ cl. The energy transport velocity
associated with the negative-going wave is the same as that associated with the positive-going wave as would
be expected from physical considerations. Fig. 8 shows the energy transport velocity, normalised with respect
to the longitudinal velocity cl, for a non-uniform bar with three different values of m. It can be seen that the
velocity decreases as m increases, i.e. as the degree of non-uniformity increases. When klx51, the velocity is
approximately proportional to (klx)

m. The velocity increases as klx increases and finally asymptotes to that of a
uniform bar.
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4. Bending waves in a non-uniform beam

In this section, the wave approach is applied to bending motion of a non-uniform Euler–Bernoulli beam for
which the cross-sectional area and the second moment of area vary as AðxÞ / xm and IðxÞ / xmþ2, respectively.
The development is similar to that described for a non-uniform bar in the previous section. However, the
displacement, internal force and propagation matrices for the non-uniform beam are of order 2� 2.

4.1. Representation of wave motion

Consider the waveguide shown in Fig. 1 as a non-uniform Euler–Bernoulli beam undergoing bending
motion. The lateral displacement w(x,t) for free vibration is governed by [8]

q2

qx2
EI

q2w

qx2

� �
þ rA

q2w

qt2
¼ 0. (38)

The material properties of the beam are assumed to be constant while the cross-sectional area A and the
second moment of area I vary as

AðxÞ ¼ aAxm; IðxÞ ¼ aI xmþ2, (39a,b)

where aI is positive. When m ¼ 1 and the cross-section is rectangular, the beam has linearly varying thickness
and constant width. Substituting Eqs. (39a,b) into Eq. (38) and assuming an eiot time dependence gives

x2 d
4w

dx4
þ 2ðmþ 2Þx

d3w

dx3
þ ðmþ 1Þðmþ 2Þ

d2w

dx2
� k4

bx2w ¼ 0, (40)

where kbðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAðxÞo2=EIðxÞ4

p
. It can be noted that kb is proportional to

ffiffiffiffiffiffiffiffiffi
o=x

p
in this case. Hereafter, if

there is no specific indication, kb means the wavenumber kb(x) at position x.
Eq. (40) can be factorised into the product of the Bessel equation and the modified Bessel equation [8] so

that the general solution can be expressed by a linear combination of Hankel functions of order m with
argument 2kbx, H ð1;2Þm ð2kbxÞ, and modified Bessel functions, Ymð2kbxÞ and Imð2kbxÞ. The terms H ð1;2Þm represent
negative- and positive-going propagating waves, respectively, and the terms Km and Im the positive- and
negative-going nearfield waves, respectively. Thus the solution of Eq. (40) is given by

wðxÞ ¼ aþ þ aþN þ a� þ a�N , (41)

where a+, aN
+, a� and aN

� are the amplitudes of the four waves at position x. They are given by

aþ ¼ x�m=2H ð2Þm ð2kbxÞC1; aþN ¼ x�m=2Kmð2kbxÞC2,

a� ¼ x�m=2H ð1Þm ð2kbxÞC3; a�N ¼ x�m=2Imð2kbxÞC4, ð42a2dÞ

where C1,2,3,4 are arbitrary constants. The shear force and bending moment can also be expressed in terms of
the amplitudes of the waves in a straightforward manner.

Noting that w ¼ ½w dw=dx �T, f ¼ ½Q M �T, aþ ¼ ½ a
þ aþN �

T and a� ¼ ½ a
� a�N �

T, the displacement and
internal force matrices for the non-uniform beam are given by

Wþ ¼

1 1

�kb

H
ð2Þ
mþ1ð2kbxÞ

H ð2Þm ð2kbxÞ
�kb

Kmþ1ð2kbxÞ

Kmð2kbxÞ

2
664

3
775; W� ¼

1 1

�kb

H
ð1Þ
mþ1ð2kbxÞ

H ð1Þm ð2kbxÞ
kb

Imþ1ð2kbxÞ

Imð2kbxÞ

2
664

3
775,

Uþ ¼ EI

�k3
b

H
ð2Þ
mþ1ð2kbxÞ

H ð2Þm ð2kbxÞ
k3

b

Kmþ1ð2kbxÞ

Kmð2kbxÞ

k2
b

H
ð2Þ
mþ2ð2kbxÞ

H ð2Þm ð2kbxÞ
k2

b

Kmþ2ð2kbxÞ

Kmð2kbxÞ

2
6666664

3
7777775
; U� ¼ EI

�k3
b

H
ð1Þ
mþ1ð2kbxÞ

H ð1Þm ð2kbxÞ
�k3

b

Imþ1ð2kbxÞ

Imð2kbxÞ

k2
b

H
ð1Þ
mþ2ð2kbxÞ

H ð1Þm ð2kbxÞ
k2

b

Imþ2ð2kbxÞ

Imð2kbxÞ

2
6666664

3
7777775
.

ð43a2dÞ
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When 2kbxb1, the matrices for the non-uniform beam asymptote to those for the uniform beam given by Eqs.
(3a–d).

Using the expressions for the wave amplitudes together with Eq. (4) the propagation matrices F7 between
two points x and x+L are found to be

Fþ ¼
x

xþ L

� �m=2

H ð2Þm 2kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ LÞ

p� �
H ð2Þm ð2kbxÞ

0

0
Km 2kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ LÞ

p� �
Kmð2kbxÞ

2
666664

3
777775,

F� ¼
xþ L

x

� �m=2

H ð1Þm ð2kbxÞ

H ð1Þm 2kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ LÞ

p� � 0

0
Imð2kbxÞ

Im 2kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ LÞ

p� �

2
666664

3
777775. ð44a;bÞ

When 2kbxb1, the positive- and negative-going propagation matrices asymptote to

Fþ �
x

xþ L

� �ððm=2Þ=ð1=4ÞÞ e�ikb;mL 0

0 e�kb;mL

" #
,

F� �
xþ L

x

� �ððm=2Þ=ð1=4ÞÞ e�ikb;mL 0

0 e�kb;mL

" #
, ð45a;bÞ

where kb,m is given by

1

kb;m
¼

1

2

1

kbðxÞ
þ

1

kbðxþ LÞ

� �
. (46)

The wavenumber kb,m is the effective flexural wavenumber in the section between the two points. Thus, the
effective wavelength is simply the average of the wavelengths at each end of the section. Eqs. (45a,b) indicate
that, for high wavenumbers or when the position is far away from the fictitious vertex, waves propagate as if in
a uniform beam. However, they have an effective wavenumber given by Eq. (46) and their amplitudes are
scaled by the square root of the ratio of the characteristic impedances (defined by 2EIk3

b=o) at each end of the
section.
4.2. Wave generation by local excitation

Consider a non-uniform beam with geometric variation satisfying Eq. (39), one end (at x ¼ x0) of which is
excited by the lateral force f exte

iot as shown in Fig. 4(b,c). When the left-hand end is excited (i.e. for the
gradually increasing beam), the amplitudes of the induced positive-going waves are found by substituting Eq.
(43c) into Eq. (8a). The external force vector in this case is fext ¼ ½ f ext 0 �T; therefore,

qþ ¼
k2

b

DetðUþÞ

�
Kmþ2ð2kbxÞ

Kmð2kbxÞ

H
ð2Þ
mþ2ð2kbxÞ

H ð2Þm ð2kbxÞ

8>>>><
>>>>:

9>>>>=
>>>>;

f ext, (47)

where x0 is the distance from the fictitious vertex to the end, kb;0 ¼ kbðx0Þ, I0 ¼ Iðx0Þ, and

DetðUþÞ ¼ �EI0k
5
b;0

H
ð2Þ
mþ1ð2kb;0x0ÞKmþ2ð2kb;0x0Þ þH

ð2Þ
mþ2ð2kb;0x0ÞKmþ1ð2kb;0x0Þ

H ð2Þm ð2kb;0x0ÞKmð2kb;0x0Þ
.
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When m ¼ 1 and 2kb;0x051, using the asymptotic behaviour of Bessel functions given in Appendix A, it can be
shown that Eq. (47) asymptotes to

qþ �
x0

EI0k2
b;0

1

�1

� �
f ext

2
. (48)

Eq. (48) indicates that the propagating and nearfield components represent frequency dependent stiffness- and
mass-like responses, respectively, with equal magnitude. The displacement asymptotes to

w � �
x3
0

EI0
i
p
2
þ 2 lnðkb;0x0Þ þ g�

1

4

� �� �
f ext, (49)

which is consistent with the point mobility given in Ref. [18].
If the right-hand end of the beam is excited (i.e. for the gradually decreasing beam), the amplitudes of the

negative-going waves induced by the force are obtained by substituting Eq. (43d) into Eq. (8b). When m ¼ 1
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and 2kb;0x051,

q� �
1

EI0k3
b;0

ðkb;0x0Þ
3=6

�2=ðkb;0x0Þ

( )
f ext. (50)

It can be seen that the propagating component is negligible compared to the nearfield component and the
response exhibits rigid body motion with a mass equal to rA0x0=2.

Fig. 9A and B, respectively, show the waves induced in the non-uniform beam with m ¼ 1 when the left- and
right-hand end of the beam are excited by a lateral force. In the figure, the magnitude is normalised by
f ext=

ffiffiffi
2
p

EI0k3
b;0, and kb;0x0 for the horizontal axis is proportional to

ffiffiffiffiffiffiffiffiffi
ox0
p

. When the right-hand end is excited,
it is seen that the magnitude of the nearfield wave becomes large when 2kb;0x051. Such limiting behaviour is
consistent with the discussion above.

Now consider a non-uniform beam excited at an internal point x ¼ x0 by a lateral force as shown in
Fig. 4(a). The amplitudes of the positive- and negative-going waves induced by the force are now identical and

qþ ¼ �
x0

EI0k2
b;0

ipjH ð2Þm ð2kb;0x0Þj
2

4Kmð2kb;0x0ÞImð2kb;0x0Þ

( )
f ext

4
. (51)

The propagating component is now purely imaginary representing damping-like behaviour while the nearfield
component is negative-real representing mass-like behaviour. Fig. 7(b) shows the response, normalised with
respect to

ffiffiffi
2
p

f ext=4EI0k3
b;0, of the gradually increasing beam with m ¼ 1 to the harmonic force. The solid line

shows the displacement at time t ¼ 2np=o for n ¼ 0; 1; 2 . . . and the dashed lines show the magnitude.
Compared to Fig. 7(a), the dependence of the phase change on the position can easily be noticed. The nearfield
effect around the excitation point can also be seen.

4.3. Spectral element

Substituting Eqs. (43a,c) into Eq. (18a) gives the dynamic stiffness matrix at the boundary for the semi-
infinite gradually increasing beam such that

Dþ1 ¼
EI0

D
D̂11 D̂12

D̂21 D̂22

" #
, (52)

where

D ¼ H
ð2Þ
mþ1ð2kb;0x0ÞKmð2kb;0x0Þ � Kmþ1ð2kb;0x0ÞH

ð2Þ
m ð2kb;0x0Þ,

D̂11 ¼ � 2k3
b;0H

ð2Þ
mþ1ð2kb;0x0ÞKmþ1ð2kb;0x0Þ,

D̂12 ¼ D̂21 ¼ �k2
b;0fH

ð2Þ
mþ1ð2kb;0x0ÞKmð2kb;0x0Þ þ Kmþ1ð2kb;0x0ÞH

ð2Þ
m ð2kb;0x0Þg,

D̂22 ¼ kb;0fH
ð2Þ
mþ2ð2kb;0x0ÞKmð2kb;0x0Þ � Kmþ2ð2kb;0x0ÞH

ð2Þ
m ð2kb;0x0Þg. ð53a2dÞ

When 2kb;0x0b1, the matrix asymptotes to that of the semi-infinite uniform beam, i.e.

D � EI0
�ð1� iÞk3

b;0 ik2
b;0

ik2
b;0 ð1þ iÞkb;0

2
4

3
5. (54)

The dynamic stiffness matrix for the finite non-uniform beam can be also obtained in a similar way to that
described for the uniform bar to give the result in Ref. [17].

4.4. Propagation of energy

The kinetic and potential energy densities for bending motion of a beam are, respectively, given by T ¼
0:5rAfReðqw=qtÞg2 and V ¼ 0:5EIfReð@2w=@x2Þg2 [22]. If there is only the propagating component of the
positive-going waves in the non-uniform beam, i.e. aþ ¼ ½ aþ 0 �T, the displacement of the beam will be
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wðxÞ ¼ aþ. For time harmonic motion, the time-averaged energy densities associated with this component are

hTi ¼
1

4
rAo2jaþj2; hVi ¼

1

4
rAo2jaþj2

jH
ð2Þ
mþ2ð2kbxÞj2

jH ð2Þm ð2kbxÞj2
. (55a,b)

Note that hVi4hTi, especially, in the region of klxop. As klx increases, the energy densities become the
same. The total energy density is then

hEi ¼
1

4
rAo2jaþj2

jH ð2Þm ð2kbxÞj2 þ jH
ð2Þ
mþ2ð2kbxÞj2

jH ð2Þm ð2kbxÞj2
. (56)

The time-averaged power for bending motion of a beam is given by hPi ¼ �hReðQÞ �Reðqw=qtÞ þReðMÞ �
Reðq=qtðqw=qxÞÞi [22]. Thus, the energy flow associated with the propagating wave component is

hPi ¼ rAo2jaþj2
cb

pkbx
jH ð2Þm ð2kbxÞj�2, (57)

where cb is the phase velocity of the bending wave at x. Noting that a+ is given by Eq. (42a), it follows again
that the power is constant along the beam. Finally, the energy transport velocity for the bending wave is found
by combining Eqs. (56) and (57) with cE ¼ hPi=hEi to give

cE
b ¼

4cb

pkbx
ðjH ð2Þm ð2kbxÞj2 þ jH

ð2Þ
mþ2ð2kbxÞj2Þ�1. (58)

The energy transport velocity associated with the propagating positive-going wave component is the same as
that associated with the negative-going wave component.

Fig. 10 shows the energy transport velocity, normalised with respect to cb, for the non-uniform beam with
three different values of m. The behaviour is similar to that of the longitudinal wave described in Section 3.4.
When 2kbx51, the velocity is approximately proportional to ðkbxÞ2mþ4. When 2kbxb1, the velocity
asymptotes to the group velocity of the uniform beam, i.e. cE

b ¼ 2cb.

5. Numerical example

In this section, the propagation of waves through a rectangular non-uniform waveguide of length L

sandwiched between two semi-infinite uniform rectangular waveguides as shown in Fig. 11 is considered. The
non-uniform element has constant width but tapered thickness and the semi-infinite waveguides have the same
width but thicknesses, h1 and h2. Numerical results are presented for the transmission of longitudinal and
bending waves through the tapered waveguide using the results of Sections 3 and 4. For simplicity, the
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Fig. 11. A rectangular connector tapered in thickness.
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material properties of the connector and the waveguides are assumed to all be the same. The thickness of the
connector varies with x as

hðxÞ ¼ h1x=x1, (59)

where xXx1 and x1 ¼ h1L=ðh2 � h1Þ is the position from the vertex to junction 1.
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Consider waves a+ incident on the connector from the left-hand uniform waveguide. As shown in Fig. 11
the waves at the junctions are denoted by b

7, c7 and d
+; the relationships between the waves are

bþ ¼ T1a
þ þ R

_

1b
�; cþ ¼ Fþbþ; c� ¼ R2c

þ; b� ¼ F�c�; a� ¼ R1a
þ þ T

_

1b
�; dþ ¼ T2c

þ, (60a2f)

where R1, T, etc., are the reflection and transmission matrices at the junctions, and F+ and F� are the
propagation matrices between the junctions. These matrices can be obtained from the results of the previous
sections. Rearranging Eq. (60) in terms of the incident waves a+ yields [23]

a� ¼ ½R1 þ T
_

1F
�R2F

þ½I� R
_

1F
�R2F

þ��1T1�a
þ,

dþ ¼ ½T2F
þ½I� R

_

1F
�R2F

þ��1T1�a
þ, ð61a;bÞ

where I is the identity matrix. The reflected waves a� have components from the direct reflection of the
incident waves (R1a

+), while the remaining components arise from waves which are initially transmitted
through the junction 1 and are then subsequently reflected back-and-forth at the two junctions. The net
reflected waves are thus the superposition of the direct and subsequent reflected components. Similarly, the
transmitted waves d+ consist of the direct components transmitted through the two junctions (T2F

þT1a
þ),

and the components from the subsequent reflections between the two junctions.
Suppose that a propagating wave component of amplitude a+ is incident on the connector, i.e. a+ ¼ {a+} for

longitudinal motion and aþ ¼ ½ aþ 0 �T for bending motion. Fig. 12 shows numerical results for the
transmission through the connector. When kLb1 (kl for the longitudinal and kb;m given by Eq. (46) for the
bending, respectively), the power transmission coefficient t-1, i.e. the power incident on the connector is totally
transmitted when frequency increases or the non-uniformity decreases. The phase difference y between the
incident and transmitted propagating components then asymptotes to �kL. When kL51, the results asymptote
to those of the case where the two uniform waveguides are directly connected without the connector [22].

6. Concluding remarks

A wave approach based on reflection, transmission and propagation of waves has been used for the analysis
of non-uniform waveguides, where the properties vary rapidly but where no wave mode conversion occurs. It
was demonstrated for longitudinal motion of bars and bending motion of Euler–Bernoulli beams, where the
cross-section varies as a power of the length. The state vector in the physical domain was transformed to the
wave domain using the displacement and internal force matrices. The wave amplitudes at one point were
related to those at another point by the diagonal propagation matrix. Since the positive- and negative-going
wave motions are separately considered in the approach, the problem is always well-posed even when nearfield
waves exist.

The response to external excitation and the spectral element for the waveguides were obtained in a
systematic way. The energy transport velocity, which is the velocity at which energy is carried by the waves in
these waveguides, was also derived using the relationship between power and energy. It was shown that this
energy transport velocity depends on position as well as frequency and differs from the group velocity. Finally,
numerical results for wave transmission through the tapered connector were obtained in a straightforward
manner without approximation errors and at a low computational cost, irrespective of frequency.

Appendix A. Asymptotic behaviour of Bessel functions

For large argument jzjb1 and �poargðzÞo2p, the Hankel functions of order n asymptote to [24]

H ð1Þv ðzÞ �

ffiffiffiffiffi
2

pz

r
eiðz

1
4
p�1

2
npÞ; H ð2Þv ðzÞ �

ffiffiffiffiffi
2

pz

r
e�iðz

1
4
p�1

2
npÞ. (A.1a,b)

Thus, it follows that

H
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� i;
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ð1Þ
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� �1;

H
ð2Þ
vþ2ðzÞ

H ð2Þv ðzÞ
� �1. (A.2a2d)
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When z is real, the modified Bessel functions KvðzÞ and IvðzÞ asymptote to

KvðzÞ �

ffiffiffiffiffi
p
2z

r
e�z; IvðzÞ �

ezffiffiffiffiffiffiffiffi
2pz
p . (A.3a,b)

Thus, it follows that

Kvþ1ðzÞ

KvðzÞ
�
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KvðzÞ
�

Ivþ1ðzÞ

IvðzÞ
�
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IvðzÞ
� 1. (A.4a2d)

For jzj51, the Hankel functions asymptote to, when n ¼ 0, [24]

H
ð2Þ
0 ðzÞ � �H

ð1Þ
0 ðzÞ � �i

2

p
flnðzÞ þ g� lnð2Þg, (A.5a,b)

where g � 0:577 . . . is Euler’s constant. When Refng40,

H ð2Þn ðzÞ � �H ð1Þn ðzÞ � i
GðnÞ
p

2

z

� �n

, (A.6a,b)

where GðnÞ is the gamma function with argument n, and

KnðzÞ �
GðnÞ
2

2

z

� �n

; I nðzÞ �
1

Gðnþ 1Þ

z

2

	 
n
. (A.7a,b)
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