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Abstract

In this note, the dynamics of a vibration machine with piecewise linear elastic ties under parametric harmonic excitation

is further investigated. Attention was concentrated on the dynamical behaviour of the system in the regions of several

system parameters, both with and without physically realistic parameters. Based on numerical simulations, several typical

motions were found, showing some new and interesting results. Chaos, as well as periodic motion was found readily for

physically unrealistic parameters. The route to chaos is shown to be via period-doubling bifurcations. For the physically

realistic parameters, however, chaotic motion with small amplitude oscillations was found.

Crown Copyright r 2007 Published by Elsevier Ltd. All rights reserved.

1. Introduction

As it may be of significant importance in the design of structural machine members and control of
engineering vibromachines, the dynamics of various mechanical elements with periodically time-varying
elasticity has been investigated in the past decades [1–5]. Recently, Belovodsdy et al. [6] revealed the
parametric oscillations of a technological vibromachine which may be widely used in the form of a rotating
disk (Fig. 1). In the study of Ref. [6], some peculiarities of nonlinear parametric oscillations are shown and the
bounds of the region of parametric instability obtained by analysing solutions of the equations of motion for
the vibromachine system.

It is noted that, in Ref. [6], no bifurcation diagrams were presented, and no chaos was found. Hence, the
possible complex behaviours, including various periodic and non-periodic motions, have not been shown in
detail yet. To address the lack of research in this respect, the present study analyses numerically the possible
chaotic behaviours in such a vibromachine system developed in Ref. [6] with the emphasis on the detailed
dynamics via several bifurcation diagrams as the system parameters are varied.

2. Background theory

As shown in Fig. 1, the disk consists of two rings, 1 and 2, connected one with another by elastic elements
(springs 3). Internal ring 1 is slipped over on a rigid solid shaft 4, but external ring 2, through balls 5, is
ee front matter Crown Copyright r 2007 Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of the parametric elastic element in the form of a rotating disk: 1 and 2, internal and external rigid rings; 3, elastic

elements (springs); 4, rigid solid shaft; 5, bearings; 6, working head of vibromachine.
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connected with the working head 6 of the vibromachine. Moreover, upon rotation of shaft 4 the elasticity of
the disk in the radial direction is periodically changed. Thus, parametric vibrations of working head 6 are
excited. In practice, parametric excitation may be realized by pneumatic elastic elements with variable air
pressure.

To analyse the above vibromachine model, the authors of Ref. [6] have developed it to be a single-degree-of-
freedom vibratory system (Fig. 2). In forming a mathematical model of the vibromachine some assumptions
were made: working head is considered as a perfectly rigid body; driving motor as ideal; damping in elastic
supports as viscous and its is also assumed that the elastic supports 3 are not deformed when the machine is in
static equilibrium.

Under these assumptions, the differential equation of vibrations of the working head of the vibromachine
can be represented as [6]

m
d2x

dt2
þ bðxÞ

dx

dt
þ bð1þ m1 sin OtÞ

dx

dt
þ F rðxÞ þ k0ð1þ m1 sin OtÞx ¼ 0, (1)

in which x is the coordinate of the working head, t the time, m the mass of the working head, b(x) the
nonlinear function describing damping in the main and additional elastic supports, b the damping coefficient
of the parametric elastic element, Fr(x) the nonlinear function describing the elastic characteristic of the
supports, k0 the average stiffness coefficient of the parametric elastic element, m1 the dimensionless amplitude
of the parametric excitation, O the frequency of the parametric excitation.

Moreover, functions b(x) and Fr(x) in Eq. (1) can be expressed as

bðxÞ ¼

b1ðk1 þ k2Þ=k1; xXDþ

b1; k � D�oxoDþ

b1ðk1 þ k2Þ=k1; xp� D�

8><
>:

9>=
>;, (2)

FrðxÞ ¼

ðk1 þ k2Þx� k2D
þ; xXDþ

k1x; �D�oxoDþ

ðk1 þ k2Þxþ k2D
�; xp� D�

8><
>:

9>=
>;, (3)

in which k1 is the stiffness coefficient of the main elastic supports, k2 is the stiffness coefficient of the elastic
limiters, D+ and D� are the initial clearances between the working head and the elastic limiters.

Introducing the following notation:

y ¼
x

D�
; t ¼ o0t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

m

r
t; Z ¼

O
o0
; m ¼ m1

k0

k1 þ k2
; k ¼

k1 þ k2 þ k0

k1 þ k0
,

b ¼
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k0ð Þm
p ; b1 ¼

b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k0ð Þm

p ; Dn
¼

Dþ

D�
, ð4Þ
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Fig. 2. Vibromachine model considered in the analysis.

Fig. 3. Bifurcation diagram of the vibration for b ¼ 0.05, Z ¼ 0.25, m ¼ 1.5, b1 ¼ 0.05, k ¼ 3 and b* ¼ 0.051, as D* is varied.
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Eq. (1) and functions (2) and (3) can be transformed into the dimensionless forms

d2y

dt2
þ bðyÞ

dy

dt
þ bð1þ m sin ZtÞ

dy

dt
þ f rðyÞ þ ðm sin ZtÞy ¼ 0, (5)

bðyÞ ¼

b1ðk1 þ k2Þ=k1; yXD�

b1; �1oyoD�

b1ðk1 þ k2Þ=k1; yp� 1

8><
>:

9>=
>;, (6)

f rðyÞ ¼

ky� ðk � 1ÞD�; yXD�

y; �1oyoD�

kyþ ðk � 1Þ; yp� 1

8><
>:

9>=
>;. (7)

Thus, by analysing solutions of Eqs. (5)–(7), the nonlinear dynamics of the vibromachine system can be
revealed. However, other than Ref. [6], most attention of this work is concentrated on the possible chaotic
motions in several parameter regions of the dynamical system, as represented below.
3. Bifurcation diagrams and typical behaviours of the system

As mentioned in the foregoing, for such a vibration system considered in this short communication, its
parametric oscillations have been investigated in Ref. [6]. Moreover, this system is fast becoming an important
model in dynamics. However, as there are many system parameters in this model, it is capable of displaying
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much richer dynamical behaviour, for instance, nonlinear and chaotic dynamics. The more important of them
are considered in what follows.

Solutions of Eq. (5) were obtained by using a fourth-order Runge–Kutta integration algorithm, where a
novel approach for solving dynamical systems with motion dependent discontinuities [7] was also utilized. The
initial conditions employed were yð0Þ ¼ 0:02; _yð0Þ ¼ 0.
Fig. 4. Phase-plane plots for the system of Fig. 3, and various values of D*: (a) D* ¼ 0.05; (b) D* ¼ 0.5; (c) D* ¼ 0.7; (d) D* ¼ 1.0; (e)

D* ¼ 1.5; (f) D* ¼ 1.9; (g) D* ¼ 2.05; (h) D* ¼ 2.25.
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The bifurcation diagram can provide a summary of essential dynamics and is therefore a useful tool for
acquiring this overview. Fig. 3 shows the bifurcation diagram of the displacement as D* is varied. In this figure
the displacement plotted in the ordinate is the amplitude of the vibration. In the calculations, the transient
solutions were discarded. Then, whenever the velocity of the vibration was zero ði:e:; _yðtÞ ¼ 0Þ, the
displacement (y(t)) was recorded. Fig. 3 indicates that, with the increase of D*, complex bifurcation routes can
be detected. When D* is very small (e.g, D* ¼ 0.05), the dynamical system may undergo a chaotic motion.
Moreover, in the range 0oD*o1.175, there are relatively large regions of periodic motions embedded within
the chaotic region; e.g., for 0.6oD*o0.85 there is what appears to be a period-8 region. At about D* ¼ 1.2, a
period-8 motion occurs again. Then this period-8 motion evolves to a period-16 one at D*E1.775. Clearly, a
sequence of period-doubling bifurcations is visible as D* is increased gradually. Hence, this period-doubling
bifurcations lead the system to chaos, as can be seen in Fig. 3. Finally, it should be remarked that the positive
displacement amplitude of the system becomes larger with increasing D*.

It is instructive to look at phase-plane portraits associated with various values of D*, corresponding to
different dynamical behaviour as discussed in the forgoing. For this purpose, the physical displacements of the
system are plotted against the corresponding velocities. Sample results are shown in Fig. 4.

Of course, similar bifurcation diagrams may be constructed with each of the system parameters as a
variable. Fig. 5 shows one such diagram, with the frequency parameter, Z, as the variable parameter. In this
case, fixed point, chaotic and periodic motions occur as Z is varied gradually. The phase-plane portraits of
several typical dynamical behaviours are further represented in Fig. 6. Fig. 7 shows the bifurcation diagram as
b*(b* ¼ b1(k1+k2)/k1) is varied. When b* is small, chaotic motion can be clearly seen. However, the system
always undergoes a periodic motion with a large value of b*. If we choose b to be the variable parameter, Fig.
8 has shown that the system always undergoes chaotic motion in the range 0obo0.09. Figs. 9 and 10
represent the bifurcation diagrams as b1 and k are varied, respectively.

In all the results presented in Figs. 3–10, it ought to be noted that the value of amplitude of parametric
excitation was selected to be m ¼ 1.5. Notice, however, such great value of m is difficult to be realized in
practice with the aid of parametric elastic element shown in Fig. 1. Coefficient m is always under 1 (mo1) for
this parametric element. Thus, more extensive calculations have been carried out for physically realistic
parameters: b* ¼ 3, D* ¼ 1, k ¼ 3, b1 ¼ 0.005, b ¼ 0.005 and m ¼ 0.8. In this case, the frequency of the
parametric excitation Z is varied. The principally findings of numerical calculations were two. First, for these
physically realistic parameters, the system can also display periodic motions. Sample results are shown in Fig.
11. Second, it is interesting to note that for many parameter ranges of Z, the amplitude of the oscillation is very
small. Typical diagrams of phase portrait and power spectrum of the vibrations are shown in Fig. 12. Indeed,
in this figure, the small-amplitude vibrations are demonstrated to be chaotic, as can be clearly seen. However,
no chaotic motions with large amplitude oscillations have been detected. Hence, with increasing Z, the
Fig. 5. Bifurcation diagram of the vibration for b ¼ 0.05, D* ¼ 1, m ¼ 1.5, b1 ¼ 0.05, k ¼ 3 and b* ¼ 0.051, as Z is varied.
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Fig. 6. Phase-plane plots for the system of Fig. 5, and various values of Z: (a) Z ¼ 0.22; (b) Z ¼ 0.225; (c) Z ¼ 0.275; (d) Z ¼ 0.278; (e)

Z ¼ 0.29; (f) Z ¼ 0.30; (g) Z ¼ 0.345; (h) Z ¼ 0.36.
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amplitude of the vibration may jump from a large one (corresponding to a periodic motion) to a small one
(corresponding to a chaotic motion), or from a small one to a large one, the nature of which is not understood.

4. Conclusion

Bifurcation and chaos of a working head of the vibromachine are numerically investigated via the
calculations of bifurcation diagrams, phase portraits and power spectrum diagrams. The behaviour was
analysed without physical realism to see the character of the system response, and chaos was found as well as
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Fig. 7. Bifurcation diagram of the vibration for b ¼ 0.05, D* ¼ 1, m ¼ 1.5, b1 ¼ 0.05, k ¼ 3 and Z ¼ 0.25, as b* is varied.

Fig. 8. Bifurcation diagram of the vibration for b* ¼ 0.051, D* ¼ 1, m ¼ 1.5, b1 ¼ 0.05, k ¼ 3 and Z ¼ 0.25, as b is varied.

Fig. 9. Bifurcation diagram of the vibration for b* ¼ 0.051, D* ¼ 1, m ¼ 1.5, b ¼ 0.05, k ¼ 3 and Z ¼ 0.25, as b1 is varied.
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Fig. 10. Bifurcation diagram of the vibration for b* ¼ 0.051, D* ¼ 1, m ¼ 1.5, b1 ¼ 0.05, b ¼ 0.05 and Z ¼ 0.25, as k is varied.

Fig. 11. Phase portraits of periodic motions for physically realistic parameters: (a) Z ¼ 0.378; (b) Z ¼ 0.875; (c) Z ¼ 0.475.
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Fig. 12. Phase portrait and power spectrum of the vibration for physically realistic parameters, and Z ¼ 1.378.
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periodic motions. Then the behaviour with physical meaning was analysed to see what nonlinear behaviour
would be predicted for physically realistic responses, and chaotic motions with very small amplitude of
oscillations were found. Hence, the dynamical behaviour of the vibromachine is extremely rich and sometimes
unexpected.

The present research may be extended to deal with some nonlinear problems of vibromachines, which may
be of significant importance in designing technological vibromachines with external excitation. Obviously,
various periodic motions, and in particular, the chaotic responses should be determined.
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