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Abstract

A mechanical model describing the planar elasto-dynamics of arch bridges with general arch profiles is presented. The
model is amenable to analytical or semi-analytical treatments and is effective for parametric studies, design of control
systems or structural optimizations. The Ritz’s energy approach is employed to calculate the solutions of the vibration
eigenvalue problem—natural frequencies and mode shapes—and the forced responses to external excitations, namely those
induced by the passage of trains. A closed-form solution of the bridge dynamic response to the transit of trains with
arbitrary load distributions and running speeds is found and the train-induced resonances are accordingly discussed. In
particular, three European high-speed trains—the French TGV, the Italian ETR 500, and the German ICE—traversing a
lower-deck steel arch bridge are considered and the ensuing responses are investigated.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic response of bridges traversed by trains is a subject of interest in structural engineering due to
the increasing train speeds which will become significantly higher with the next-generation magnetically
levitated trains. From a structural point of view and the passenger comfort, the noise disturbance and bridge
vibrations cause undesirable effects that need to be dealt with and become more serious during the train
acceleration phases.

Early studies considered the bridge as a simply supported beam and the train as a moving load with
constant speed. Later, Bolotin [1] studied a beam subject to an infinite sequence of equal loads uniformly
spaced by a distance d and moving at constant speed V. In his study, the period of the moving loads, d/V, was
identified as the key parameter. Along the same lines, Fryba [2] concluded that the forced steady-state
vibratory response will attain its maximum when the time interval between two successive loads is equal to or
is an integer multiple of some natural periods of the beam in free oscillations. Besides straight beams, also the
dynamic response of circular arches subject to a concentrated load moving along the circumferential direction
has been recently studied in Ref. [3].

A few investigations [4] have considered the nonlinear resonances that can be excited by a single load
traversing a bridge, modelled as an Euler—Bernoulli beam resting on nonlinear visco-elastic supports, and have
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shown that, in addition to the primary resonances of the bending modes, when the forcing levels are high there
are many secondary resonances exciting responses that can be significantly more complex compared with
those exhibited by the linear model.

Recent studies have investigated the dynamic behaviour of railway bridges employing detailed models of the
bridges and passing trains. For example, Au et al. [5] used five models of moving vehicles to study the impact
effects on a cable-stayed bridge under railway train loading. The rail irregularities and the geometric nonlinear
behaviour of the cable-stayed bridge were taken into account.

Yang et al. [6] presented a closed-form solution of the dynamic response of simply supported
Euler—Bernoulli beams subjected to the passage of high-speed trains where the phenomena of resonance
and cancellation were identified, along with optimal design criteria. Klasztorny [7] presented an iterative
algorithm for solving vertical vibrations of a multi-span steel bridge, induced by a fast passenger train, moving
at a speed of 120-360 km/h. Xia and Zhang [8] studied the dynamic interaction between a high-speed train and
the bridge by theoretical analysis and field experiments. Each vehicle was described by 27 degrees of freedom
whereas the bridge was modelled by the modal superposition technique. They showed a good agreement
between the calculated results and the in situ measured data.

In recent years, the dynamic behaviour of high-speed railway bridges has been extensively investigated
mainly via field tests aimed at improving the design of high-speed railways. Xia et al. [9] reported the
experimental results—deflections, accelerations, strains—relating to a prestressed concrete bridge, the Gouhe
River Bridge, traversed by the China-Star high-speed train (design speed of 270 km/h) that reached the peak
speed of about 320 km/h. Kwark et al. [10] conducted experimental and theoretical studies to determine the
dynamic behaviour of bridges crossed by the Korean high-speed train (KHST). For running speeds close to
the critical speed (i.e., the train speed at which one of the bridge modes is excited), greatly amplified dynamic
responses compared with the static responses were observed. They adopted three-dimensional (3D) models to
represent the dynamic interaction between the articulated bogies train and the bridge and showed reasonable
agreements.

Most of the referenced theoretical and experimental investigations relate to simply supported single- or
multi-span straight bridges. Nonetheless, steel or prestressed concrete arch bridges are typical structural
schemes in the medium-/long-span bridge category, normally constructed in mountain areas. A good number
of works dealt with 2D elastic and inelastic modelling of upper-deck steel arch bridges to investigate the in-
plane bridge responses to earthquakes (see, e.g., Ref. [11]). Only a few studies have considered the dynamic
behaviour of lower-deck arch bridges under train loads. In Ref. [12], the vibration characteristics of steel arch
bridges traversed by high-speed trains were investigated. Two simple criteria were determined to predict the
train—bridge resonance effects and validated the predictions employing finite element (FE) analyses.

In the present work, the dynamic response of arch bridges is investigated employing a mechanical
parametric model, based on pertinent kinematic assumptions, and suitable to describe the structural elasto-
dynamic responses to general planar excitations and, in particular, to the passage of trains. The distributed-
parameter (DP) model allows efficient parametric studies as well as the effective design of vibration control
schemes aimed at improving the structural integrity and passenger comfort which is the main focus of an
accompanying paper. Employing the proposed mechanical model, the elasto-dynamic responses to the passage
of arbitrary trains are obtained in closed form along with the train-induced primary resonances of arbitrary
bridge modes.

In Section 2, the arch bridge analytical model is presented. In Section 3, the semi-analytical computational
strategy is discussed. In Section 4, the closed-form bridge response to the passage of an arbitrary train is
shown; the resonance speeds are discussed in Section 5. In Section 6, the main results relating to a steel arch
bridge traversed by three European high-speed trains are reported. In Section 7, the main conclusions are
drawn.

2. Equations of motion for arch bridges
In this section, the DP model describing planar elasto-dynamic responses of arch bridges with general arch

profiles of the lower- or upper-deck type is illustrated. To the best of the author’s knowledge, this approach
has not been employed in former studies on arch bridge dynamics. The model (see Fig. 1a) comprises three
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(b)

Fig. 1. (a) Schematic description of the arch bridge model with the train loading and (b) free-body diagram of the internal and external
forces.

elements, namely, the arch, the horizontal beam (i.e., the bridge deck), and the vertical hanger rods connecting
the arch to the deck. The following assumptions are adopted: (i) the hanger rods are hinged at both ends and,
due to their high axial stiffness, they are assumed inextensible; (ii) the spacing between the hanger rods is small
enough compared with the bridge span L so that an equivalent continuous distribution of hanger elements is
considered; (iii) the bridge possesses a plane of symmetry coinciding with the plane where the external load
resultants lie and the bridge motions occur. The latter assumption justifies a planar model. Out-of-plane
vibrations (i.e., out-of-plane flexural and torsional motions) are neglected because the passage of trains on
single-track bridges as the one here considered and the earthquakes generate prevalently in-plane forces. The
hypothesis of inextensibility of the hanger rods is based on previous studies which have shown that the
relatively small axial flexibility of the hanger rods does not introduce appreciable effects in the global
responses. For example, in the context of suspension footbridges, Brownjohn [13,14] employed a continuum
model based on inextensible connections between the deck and the suspension cables and showed a good
agreement between the theoretically obtained and experimentally measured natural frequencies.

In Fig. 1a, (O, e}, e;,e3) represents a fixed inertial reference frame whereas (a;, ay, a3) is an orthonormal
local frame for the arch with a; tangent to the undeformed arch centroidal line. The coordinate x along the
fixed e;-direction (centreline of the undeformed deck) is chosen as the independent space coordinate.
Consequently, the elasto-dynamic problem is parameterized with x € [0, L] and time ¢ € [0, 00). The arclength
parameter s along the arch undeformed centroidal line is used only as an intermediate variable as it allows to
express naturally the arch strains as well as the arch balance laws. The choice of the horizontal coordinate x as
the independent coordinate is justified by the fact that the distribution of the loads (the trains run on the rail
tracks fixed onto the deck) is more simply expressed in this coordinate.

The arch kinematic descriptors are the displacement vector, u(x, t) = u(x, t)e; + v(x, t)e,, representing the
displaced position of the centroidal line of the arch, and the rotation angle of the arch cross-section,
0,(x,t) = 0,(x, t) e5. The displacement components u and v represent the horizontal and vertical displacements
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of the arch centreline, respectively. Due to the kinematic constraint represented by the inextensible hanger
rods, the vertical displacement of the horizontal beam is the same as the arch vertical displacement, v(x, 7).
This motivates the use of the arch displacement components in the (e;,e;)-basis rather than the local
displacement components in the intrinsic (a;, ay)-basis, namely the tangential and radial displacements.

Longitudinal forces on the deck are neglected; therefore, the longitudinal motion of the deck is not
considered. Further, since the bridge deck, due to its slenderness, is modelled as an Euler—Bernoulli beam, the
rotation of its cross-section is related to the vertical displacement as 6; = (Ov/0x)es.

The linearized arch strain vector is g = Ou/0s — 0, x a;, where x denotes the vector product. The
components of the arch strain vector in the local basis, ¢, = ¢,a; + 1,a,, are the elongation ¢, and shear strain
1., respectively, and are expressed in terms of the horizontal coordinate as

&y = 2—?60082 0, + %g—i sin20,, n,=— %g—z sin 20, + g—icos2 0,—0, (1
where 0, is the angle between the tangent to the arch undeformed centreline and the horizontal line. Use of the
following identities has been made: 0/0s = (dx/ds)(0/0x) = cos 0,(0/0x), cosB, = a; -e;, a; -e; = sin b,
a, -e; = —sinf,, a, - e; = cos 0, where the dot indicates the standard inner product in Euclidean space. When
the arch profile is described by the function y(x), then 0, = arctan(y’), cos0, = (\/1+y?)", and

sinf, = y' (/1 +1'?)~", where the prime denotes differentiation with respect to x.

The arch bending curvature is x, = 06,/0s = 06,/0x cosf,, whereas the bending curvature of the
unshearable deck is x; = 00,/0x = %v / 0x?. The subscripts a and d, here and henceforth, will denote the arch
and the deck, respectively.

Since also the arch is slender, the arch shear strain is neglected as well imposing the internal kinematic
constraint 1, = 0. This constraint yields the arch section rotation field and, hence, the arch bending curvature as

0, = —% S—Zsin 20, + %cos2 0,, Kk,=cosb, % (— %S—Zsin 20, + S—icos2 9,,) . 2
Therefore, the non-zero strains describing the arch bridge planar deformation processes are the arch elongation
g, and its bending curvature x,, and the deck bending curvature x,;. The unknown functions are the
displacement components u(x, ) and v(x, ). Accounting for the elasticity of the hanger rods would increase the
number of unknowns from two to three or four since, in the latter case, the arch motions and the deck motions
would be independent. However, previous studies have shown that the relatively small axial flexibility of the
hanger rods does not introduce appreciable effects onto the arch bridge global responses.

A free-body diagram, with the internal and external forces, is shown in Fig. 1b. Let the internal contact
forces and couples, mutually exerted by two adjoining sections, in the arch and the deck be expressed,
respectively, as

na(x, [) = Naal + Haa2a ma(xa t) = Ma(xa t)a3»
ng(x, 1) = Hge;, my(x,1) = My(x,t)es, (3)

where N; and H; (j = a,d) indicate the axial load and shear force, respectively, and M; is the bending moment.
Moreover, let the hanger-rod reactive force per unit reference length s acting on the arch be r, and the reactive
force per unit reference length x acting on the deck be r;. They are expressed as r, = —r cos 0,e; and ry = re;
where r(x) denotes the magnitude of the force per unit reference length x.

The balance of linear momentum and angular momentum, in the undeformed configurations of the arch
and the deck, are expressed, respectively, in the form

on,, o’u M,

Myt £ = (pA), e, 24y H, =0, 4
s TFat (p )aat2 s b 0 4)
ony 0% oM,

a"‘rd'f'b—(pA)dWez, W‘FHd—O, W)

where f = f,e; + f,e, is the force per unit reference length s acting on the arch and b = be; is the force per unit
reference length x acting on the deck, respectively; (pA), and (pA), are the masses per unit reference length
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along the arch and the deck, respectively. Once the reactive shear forces H, and H, are eliminated from the

equations using H, = —0M,/0s and H; = —0M;/0x, the resulting balance laws are put in componential
form, in the (e, e;)-basis, as

(aé\; “+ ky agf ) cos 0, — (ana - azajs‘f ) sin0, + 1, = (pA), % (6)

(aa]\;a + ky 66]\?) sin0,, + <k,,Nu — a;i‘f“) cosB, —rcosO, +f, = (pA)azz, (7)

—%+r+b=(m)d% (8)

where k, = d0,/ds is the geometric curvature of the undeformed arch. Dividing Egs. (6) and (7) by cos 6,
(different from zero V x € [0, L]) solving Eq. (8) for the hanger internal force density r, substituting the result
into the previous two equations, and considering the change of coordinate from s to x yield the following two
governing equations of motion:

u 0 10 (oM, . :
(pA),sec 0, 2 a(Na cos0,) — T5x ( 3 n 29n) =f sec 0,, )
v 0 . o (OM, *M
[(pA); + (pA), sec 0n]a—t2 — &(Na sin6,) + o ( ox cos’ 0,,) + Wzd =f,sec 0, +b. (10)

Equation (10), representing the balance equation in the vertical direction, besides the bending load-carrying
term due to the horizontal deck, M’;, comprises two load-carrying terms delivered by the arch, namely that
arising from the arch axial load (N, sin0,)’, and the arch flexural term, (M/, cos® 0,)'. The relative magnitude
of the funicular term with respect to the arch flexural term depends on the distributions of the loads acting on
the bridge and the arch. Clearly, neglecting these two load-carrying terms along with the arch inertia yields the
equation of motion of a single-span simply supported bridge.

Because a linearized model is being considered (the strains and displacements are assumed infinitesimally
small), linear elastic constitutive laws relating the internal forces to the strains are adopted in the standard
form

|
Ny = (EA), e = (EA), |2 cos? 0, ++ 2% sin 20, |, (11)
Ox 20x
|
Moy = (D)0 = (E), | 2 (= 12 6in 20, + L cos? 0, ) cos 0, |, (12)
Ox 20x Ox
%
My = (ET)ca = (EDy 5. (13

where (EA), and (EJ), are the axial and bending stiffnesses of the arch, respectively; (EJ), is the bending
stiffness of the bridge deck.

Assuming uniform arch and deck properties, the following non-dimensional variables and parameters are
introduced:

v = = w,t,

v
L,

o, = (EJ)a = (pA)d o — (EA)u LZ y = (EJ)d
‘ (pA), LY (pA),’ (ED), (EJ),”




W. Lacarbonara, V. Colone | Journal of Sound and Vibration 304 (2007) 72-90 77
b
= /1 L3, Pr= /2 L3: q= L.
(EJ), (EJ), (EJ),

Omitting the star, for notational simplicity, the non-dimensional arch bridge equations of motion can be
expressed as

Pi

2
sec 0, Z—: - 63 [(Z—Z cos? 0, + %g—isin 29,,> cos Gn}
1 1
— 5% {sin 20,1% {% <_§g_z sin 20,, + g—icos2 0,,> cos 0,,] } = p;(x, t)sec Oy, (14)

2 1
(1 + sec 0,,)2—; - ocg [(a_u cos® 0, + —@sin 20,,) sin Hn]

Ox | \Ox 20x
0 ,, 0[]0 10u . o,
+ o {cos 0,1& [& <—§a sin 20, + &cos 0,,) cos 0,1} }
o*v
+ 9 =— = po(x, 1) sec O, + g(x, 7). (15)
ox4

Equations (14) and (15) are supplemented with the pertinent boundary conditions.
3. Semi-analytical solution strategy and model validation

The equations of motion (14) and (15) are linear partial-differential equations with variable coefficients due
to the non-uniform geometric curvature of the arch profile. Closed-form solutions cannot be found for general
arch profiles and loading conditions. However, semi-analytical methods can be effectively employed to make
the subsequent studies more efficient allowing also a closed-form representation of the solution, especially in
view of the investigations into general signatures of the elasto-dynamic responses and the design of tuned-mass
damper systems for vibration mitigation which will be discussed in a companion paper. Viable semi-analytical
strategies are the method of weighted residuals in the form due to Galerkin (where the balance laws (14) and
(15) are directly used to minimize the residual forces over the domain once the unknown displacement is
expressed in terms of admissible functions) or the energy approach due to Ritz.

For the considered self-adjoint problem, the two approaches, although differing in the computational
implementations, yield the same set of algebraic equations. However, the Ritz’s method can be more easily
implemented resorting to the bridge energy functionals. The discretizing functions are to be chosen from a
complete set of admissible functions satisfying the geometric boundary conditions. Here, they are chosen
within the set of comparison functions satisfying both the geometric and mechanical boundary conditions.
Considering the case of simply supported boundary conditions, the unknown displacement components u and
v are then expressed as

N N,
u(x, 1) = Y (D sinGnx) + GOy} vlx, ) =Y (D) sin(nx), (16)
J=1 j=1

where ¢;(¢) and (;(f) are the generalized coordinates, (N,, N,;) € N are the number of discretizing functions in u
and v, respectively, and the functions y;(x) are polynomials chosen such that u and v and their derivatives
satisfy all the boundary conditions. Although the derivation is not reported for sake of conciseness, the
polynomials include quadratic, cubic and quartic terms.

The problem can be cast in matrix form introducing the vector of generalized coordinates q(z) =

&)

where &(t)=1[& & - fN,,]T and ¢ =[ & -+ C,Np]T and T indicates the transpose. Then,
&(t) = B,q, ¢(r) = B,q, where B, and B, are Boolean matrices used to extract the appropriate coordinates
out of the global generalized vector q. Letting @,1(x) = {sinjnx}, @,p(x)= {jy;(x)}, (=1,...,Ny) and
®,(x) = {sinjnx}, (j=1,...,N,), the horizontal and vertical displacement components can be expressed, in

f(t)]
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compact form, as
ux, 1) = [@,,(X)B, + Pp(x)B,Ja(0),  v(x,7) = @, (X)Bg(2). (17)

First, we introduce the non-dimensional kinetic energy as the summation of the arch and deck kinetic
energies; that is,

1 /! 1 /!
T=T,+T,;= E/ sec 0, + %) dx +§/ pi* dx, (18)
0 0

where T, and T; represent the kinetic energies of the arch and the deck, respectively, and use of ds = cos 8, dx
has been made. The ensuing bridge mass matrix is reported in Appendix. The kinetic energy due to the hanger
rods is neglected in Eq. (18) because it is known that the main mass of the bridge is associated with the bridge
deck and the arches whereas the hanger rods inertial contribution is, by and large, negligible.

Further, the total potential energy of the bridge is the summation of three contributions, the elastic strain
energy of the arch U, and the deck U, respectively, and the potential energy associated with the potential
static forces W,.. In dimensionless form, it can be written as

U=U,+Us—W. (19)

The arch strain energy is the summation of the bending and the elongation strain energies; that is,
1! 1!
U, = f/ Kf, sec 0,dx + 7/ ocsﬁ sec 0,dx. (20)
2 Jo 2 Jo

Substituting Eq. (17) into Egs. (1) and (2), and the resulting expressions into Eq. (20), the arch elastic stiffness
matrix is obtained in the form given in Appendix.

Depending on whether the bridge is hinged—hinged or simply supported, the strain energy of the deck is
given by the bending energy only or by the summation of the bending and elongation energies, respectively;
that is,

1! 1! :
U, = —/ yidx or Uy = —/ ykf,dx—i-/ ey dx, 1)
2 0 2 0 0

where I' = L*(EA),/(EI), is the deck axial stiffness relative to the arch bending stiffness. In the latter case, it
would be necessary to introduce the horizontal displacement of the deck. Henceforth, the first static scheme
will only be considered and the resulting deck stiffness matrix is reported in Appendix.

To complete the formulation of the elasto-dynamic problem, the generalized forces are defined according to
the virtual work performed by the external forces. Letting ou and dv represent the virtual displacements in the
horizontal and vertical directions, the virtual work is expressed as

W = / pi sec 0,0u+ (p, sec 0, + ¢)ov] dx + Z/ Fi(0)d(x — x;)dvdx, (22)

where §(.) is the Dirac delta function, N, is the number of point loads, and x; is the position at time ¢ of the jth
vertical load F; (see Fig. 1a). Hence, the vector of time-dependent generalized forces is accordingly expressed as

P(r) = / [p1(x, D) sec 0,(B] @1 + B] @) + (p5(x, t) sec 0, + q(x, ))(B] @,)] dx
+ Z / Fi()B] ®,0(x — x;)dx. (23)
— Jo

Introducing the system Lagrangian ¥ = T — U, including linear proportional generalized damping forces
via the Rayleigh dissipation functional, the Euler-Lagrange’s equations yield the equations of motion in
compact matrix form as

Mq(t) + Cq(r) + Kq(z) = P(2). (24)
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3.1. Model validation via finite element analyses: the natural frequencies and mode shapes

The eigenvalue problem is solved to determine the bridge undamped natural frequencies and mode shapes.
To this end, the damping and external forces are set to zero yielding the equations of undamped unforced
motions, namely, Mq + Kq = 0.

A preliminary convergence study has been conducted—both on the displacement and internal forces—on
the elasto-static response to the gravity forces aimed at assessing the minimum number of discretizing
functions leading to an acceptable accuracy. It was found that 20 functions in « and 20 functions in v were
sufficient for convergence. Thereafter, letting q(f) = U exp(iwt), the eigenvalue problem KU = »’MU has
been solved.

The proposed DP model and the semi-analytical approach have been validated comparing the obtained
natural periods and the associated mode shapes with those obtained via a FE discretization. For this
comparison, we considered the geometric and mechanical properties of an existing lower-deck steel truss
railway bridge on the Pescara—Bari line along the Adriatic coast in the south-ecast of Italy. The arch has a
parabolic profile with a rise of 17.2m, a span of 68.60 m; the distance between the hanger rods is 1.225m. The
overall properties are reported in Tables 1 and 2. The considered bridge is representative of typical steel arch
bridges with moderate spans. The main horizontal beams are two T-shaped steel beams; further, 4 I-shaped
secondary steel beams support the concrete slab with the ballast where the railway tracks are fixed. The
arch is made of two II-shaped steel beams and are joined transversely with I-shaped secondary beams at a
distance of 9 m.

In the FE calculations performed employing the code SAP2000, the bridge deck is represented by 56 2D
FRAME elements, each element is 1.225m long. Also the arch is made of 56 2D FRAME elements whereas
the hanger rods have been modelled as TRUSS elements. Using this FE model, the lowest six natural periods
and mode shapes were calculated.

In Table 3, we show the percent differences in the oscillation periods of the lowest six bending modes
obtained with the FE model and with the proposed DP model. In Figs. 2 and 3, we show the associated lowest
six mode shapes obtained with the DP model and with the FE model, respectively, and again a close
agreement can be observed.

The lowest mode is skew-symmetric because such a skew-symmetric mode does not imply an average
stretching of the arch centreline which would activate high extensional strain energy. The second
mode is a symmetric bending mode with two nodes and the third one is a skew-symmetric mode
with three nodes. On the other hand, the fourth mode is a symmetric mode without nodes and is a

Table 1
Properties of the deck

Length (m) 68.6
Area (cm?) 894
Moment of inertia (cm®) 8.6 x 10°
Weight (kN/m) 7.0
Young modulus (GPa) 205
Table 2

Properties of the arch

Rise (m) 17.2

Area (cm?) 1204
Moment of inertia (cm®) 2.75 x 10°
Weight (kN/m) 9.4

Young modulus (GPa) 205
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Table 3
Comparison of the natural oscillation periods (in s) obtained with the FE model and the parametric model
Model Ti(s) T>(s) T5(s) T4(s) Ts(s) To(s)
FE 0.422 0.183 0.098 0.088 0.061 0.043
DP 0.430 0.185 0.099 0.088 0.062 0.043
4% 1.86 1.08 1.01 0 1.61 0
0.3 @ 0.4 ©)
1(a E
0.2 0.3 7
b 0.2 -
> 0.1 E
i 0.1
0 04
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Fig. 2. The lowest six mode shapes of the arch bridge obtained with the distributed-parameter model. The thick (thin) lines denote
the modal deformed (undeformed) configurations. (a) = mode 1; (b) = mode 2; (¢) = mode 3; (d) = mode 4; (¢) = mode 5 and
(f) = mode 6.

— |
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Fig. 3. The lowest six mode shapes of the arch bridge obtained with the FE model. (a) = mode 1; (b) = mode 2; (¢) = mode 3;
(d) = mode 4; (¢) = mode 5 and (f) = mode 6.
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bending—stretching mode. The fifth and sixth modes are symmetric and skew-symmetric modes with
four and five nodes, respectively. The agreement between the two models is good as expected for both skew-
symmetric and symmetric modes since the discrepancy is within a few per cent units, below 2%. The
discrepancy is mostly due to the stiffening effect of the FE discretization of the parabolic arch into 56
straight FRAME elements which results into smaller natural periods compared with those obtained with the
DP model.

There is an interesting parallel between the sequence of mode shapes in arch bridges and in suspension
bridges. In fact, for both bridge schemes, the fundamental mode is a skew-symmetric mode with
one node. However, the fundamental symmetric mode with zero nodes, which is the lowest bending
mode for the deck by itself and the fundamental stretching mode of the suspension cables appears
as the second mode in suspension bridges and as the fourth mode in arch bridges. This mode is higher
in arch bridges due to the higher axial modal stiffness of the arch compared with that of the suspension
cables.

4. Response to the train passage

In this section, the closed-form solution of the bridge response to the passage of trains with arbitrary load
distributions is discussed whereas, in the next section, we elaborate on the resonance conditions.

The solution is determined using the modal superposition approach. With the calculated eigenvectors y;,
the modal matrix W is constructed collecting them as column vectors. Then, introducing the modal
transformation, q(z) = Wn(¢), where 5(¢) is the vector of normal coordinates, and employing the normalization
with respect to the mass matrix, ¥' MW = I (I is the identity matrix), the uncoupled equations of motion in
modal space are obtained as

n+C6n+Ap=Q, (25)

where A =WY'KY = diag{w]?} is the diagonal matrix of the squared circular frequencies;
C=Y'CY= diag{2v;w;}, based on the assumption of proportional damping, is the modal damping matrix
with v; being the jth modal damping ratio; and Q = WP is the vector of modal forces. The jth equation of
motion in the jth normal coordinate is

1i;(1) + 2vj011;(0) + 0n;(0) = O(1). (26)

The main challenge here is to determine closed-form expressions of the train-induced modal forces. To this
end, neglecting the elastic and inertial interactions between the train and the bridge, the simplest and most
reasonable model of the train (see Fig. 1a) consists in its representation as a number of moving loads with
constant speed. When these interactions are accounted for, typically the train compartments are modelled as
moving masses connected to the bridge via visco-clastic elements. However, the wide separation between the
train frequencies and the bridge frequencies allows to neglect the bridge—train interactions when the interest is
mainly on the bridge global responses rather than on the passenger comfort. It is clear that a mechanism that
may couple these separated dynamics is due to the track irregularities which, in the worst scenario, could be
lateral, vertical, or rotational.

Under the assumption that the tracks are smooth enough to neglect the irregularities, the train loading can
be represented by an overall vertical time-dependent force resulting from a series of moving loads with
constant speed V' — V is the non-dimensional speed obtained from the dimensional speed V as V/(w,L)—
which can be expressed as

N, .
Fx,0) = Fjolx = Vit = DH@ ) = H(t 1)) 27)
J=1

where H(.) is the Heaviside function; t? = {;/V is the arriving time of the jth force; t,f = t,Q + 1/V is the exit
time of the jth force; ¢, = L;/L; L; indicates the distance between the jth axle and the first axle, and N,
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represents the total number of train axles. The s#th component of the generalized force delivered by the train,
using Eq. 23) with p, =p, =¢ =0, is

Py(t) = Z{F / ofx—V(t— to)][H(t -1 9 — H(t — f)](smh nx) dx}
= Z{F sin(hn V(¢ — [H(r — %) — H(t — ] )]}. (28)
Hence, the kth modal force generated by the train, using Eq. (28), is expressed as
N,
k() =P =" Yy Pi(0)
h=1
N, N, .
= Z ViFs sin(@u(t — ODIH( — 1)) = H(t = )], (29)
h=1 j=1

where 1, is the ith component of that part of the kth eigenvector relating to the transverse displacement v
(this sub-vector comprises the (N, + 1)th through the (N, + N,)th components of ¥,); ©;, = hn )} acts as the
forcing circular frequency.

The differential equation in the kth normal coordinate was solved considering the term corresponding to the
jth force and Ath component [15]. Further, employing the principle of superposition, we obtained the solution
corresponding to the first Heaviside function, H(f — t]Q), representing the forced part of the response. The
solution corresponding to natural initial conditions is

LY hk lphk

. v (t—1° . ~
() = — Gkl § sin[Qu(t — 1) = Byl + =D | sin By cosln(z — 1))]

+ in[ar(t — )] | o H(t = 1), (30)

1 .
——— (Vi sin f; — ok cos f) sin
\/1=v2

where o = Qp /i and Ox = wpy/1 — v,%, is the damped circular frequency of the kth mode. The dynamic

amplification factor and the phase are given by

1 2
|Gl = . Buo=tan”! (1 - ) (D)
\/ (1 — a3 + Qo) ~ %k

Similarly, the solution corresponding to the second Heaviside function, —H(z — t/ ,), is

. — VW, —./ n o ~
Mn(0) = f‘”’”‘|th| sin[Qu(t — 19) — By ] + e ) (= 1) sin B, cos[an(t — )]
k
(_1)/1

+ Jtz(vk sin B — ap cos By sinfdy(r — /)| p H(t — 1), (32)
1 — Vi
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Therefore, the overall solution in the kth normal coordinate is the summation over j and 4 of the
superposition of the two solutions, (30) and (32); that is,

N, N

v a F‘/J . . 0 . -

() = Z Z szhk Gl § = | sin[@u(t — 1) — B + =D | sin B, cos[n(r — 1))]
= =1 %k

+ H(t — 1))

1 . .
\/:2 (Vi sin S — ok €OS Piy) sin[@(t — t]Q)]

1 —v;

+ [ sin[@u(t — 1) = Byl + e | (1) sin By cosfan(r — 1)

h . .
+7(_1) (Vi sin By — oy €08 Bry) sinfcog (1 — Z/)] H(t— Z_/f) : (33)

1/1—\/%,

We note that, for times larger than the exit time of the jth force, lj:f, the forced parts of the responses in 11,2].,1 and
r]ijh cancel out and the free oscillatory parts are only left to decay, with a decay rate dictated by the modal
damping ratio vg.

Because q(7) = ¥y(¢), the displacement field of the arch bridge is expressed as

u(x, 1) = (@,1(x) By, + @o(x) 'B)WPn(r), v(x, 1) = ®,(x) B,¥n(2). (34)

5. Resonance speeds

In this section, the resonances excited by arbitrary trains traversing the bridge are discussed considering the
closed-form solution obtained from Egs. (33) and (34). The main design parameters affecting the dynamic
response are also outlined. Thereafter, in the following section, employing the closed-form solution, we
document the main results on the investigations into the bridge responses to the passage of three representative
European high-speed trains, namely the French TGV, the Italian ETR 500, and the German ICE.

Preliminarily, it is worth discussing in a general fashion the resonance conditions induced by the train
transit so that the responses reported in the next section can be interpreted within a sound theoretical
framework. This can be directly achieved considering the response in the kth mode during the forced phase,
Eq. (30), when ¢ € [tj(-), tjf ], and determine the conditions when this response exhibits a maximum. In particular,
the maximum dynamic amplification factor is attained when |G| is maximum. This occurs when oy, & 1, that
is, Q= wy.

Moreover, let us consider the pth and ¢th terms, due to the pth and gth loads, contributing to #,, namely,
sin(Qy(t — tg) — Bue) and sin(Q(t — t2) — ). The sum of these terms is maximum when the relative
phase is 2nm, n € N. The relative phase depends on the time lag between the forces multiplied by €, that is,
Qh(lg - tg). Since l](-) ={;/V, it follows Qh(lg - tg) = (£, — £,)Q,/ V. Hence, the maximum is achieved when
(ty — ty)wr/V =~ 2nm; consequently, the non-dimensional and dimensional speeds causing the resonance of the
kth mode are obtained as

- Tk
Vie=(, — fp)%, Vie=(Ly — Lp); (35)
with (L, — L,)<L,n € N, and f} = wu(wr/(2n)) is the dimensional frequency (in Hz) of the kth mode.
This condition implies that, if p and ¢ relate to the loads carried by the front and rear axles of the same train
compartment, then denoting with L, = L, — L, the characteristic length of the compartment, the resonance

speed is Vi = (L.f;)/n. Hence, it turns out that L. is the leading parameter in the resonance condition.
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Table 4
Resonance speeds (in km/h) of the lowest four modes for the TGV, ETR, ICE trains traversing the considered steel arch bridge

Train Mode 1 Mode 2 Mode 3 Mode 4
TGV (L, = 18.7m) 150 348 645 682
ETR (L, = 19m) 153 353 656 693
ICE (L, =19.5m) 157 363 673 711

4x17t 3x17t 2x17t 8x(2x171t) 3x17t 4x17t

I S A 1 B M W

IR VPRV

3.51315 11 1313.33"! 15,7 131 15.7 1 31 31 15,7 13 13.3 31 11 1313.5

Fig. 4. Scheme of the TGV forces according to the design codes (design speed ¥ = 350km/h); t denotes tons and the distances are in
meters.

In Table 4, the resonance speeds of the lowest four modes of the considered lower-deck steel arch bridge are
calculated and reported for the TGV, ETR 500, and ICE trains. The characteristic lengths are obtained from
the train load distributions shown in Figs. 4, 8 and 11.

A weaker resonance, as previously discussed, is excited when only |G| is maximum although the phasing
between the contributions generated by the loads in the kth mode is not an integer multiple of 2x. In such a
circumstance, the resonance occurs when oy ~ 1. Consequently, the non-dimensional and dimensional
resonance speeds become, respectively,

5 Sk

Vk_hn’ Vk_2Lh, (36)
where /1 indicates the component number of the kth sub-eigenvector relating to the vertical displacement. It is
worth observing that this resonance corresponds to the resonance condition under one single travelling load
and depends on the length of the bridge and the frequency of the excited mode [2, 4], hence, it does not account
for the actual distribution of the loads carried by a specific train. To determine / in Eq. (36), we consider the
vector ¥, to identify which / is such to determine the highest contribution of the corresponding trial function
sin Anx in the vertical displacement associated with the kth mode shape. In the considered bridge problem,
observing the mode shapes, it is # = 2 for kK = 1, then the speed of the train that would excite at resonance the
lowest mode is ¥ =~ 551 km/h.

Shen-Haw and Hung-Ta [12], while studying the dynamic response of different steel arch bridges, determined
two criteria to predict the train-induced bridge resonances and validated them employing FE analyses. According
to the first criterion, when ¥ /L. is close to the lowest bridge natural frequencies, a resonance is excited, where 7 is
a positive integer. The second criterion is that the resonance of the lowest mode is excited when the train velocity is
higher than Lf,/2, where L is the bridge length and f’, is the bridge natural frequency of the skew-symmetric
mode. These conditions are in agreement with the conditions here discussed based on the closed-form solution.

It is worth observing that the obtained resonance conditions are valid also for general simply supported
straight bridges. The difference between the two structural schemes is that for simply supported bridges, the
modes belong to a complete sequence of purely bending modes whereas, in arch bridges, the modes are bending
and bending—stretching modes. In particular, the lowest mode is a bending skew-symmetric mode with one node
while the lowest hybrid bending—stretching mode without nodes manifests itself in the fourth mode. Therefore,
the responses of the two types of bridges to the passage of trains are expected to be quite different.

6. Response analysis of a steel arch bridge traversed by European high-speed trains

In this section, the prominent features of the responses of the considered lower-deck steel arch bridge to the
passage of three European high-speed trains are illustrated.
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In Fig. 4, the shown loading scheme of the TGV train used for bridge design purposes is employed for
calculating the dynamic response. In Fig. 5, variation of the maximum bridge deflection at x = 3/4 in the time
interval [0, #,] is shown when the train speed is varied between 100 and 200 km/h. The ensuing curve is a speed-
response curve (as a frequency-response curve) with the train speed being the control parameter. Here and
henceforth, ¢, indicates the time instant when the train leaves the bridge. Considering the length of the
intermediate compartments, the characteristic length of the TGV train is L. = 18.7m, hence, the calculated
lowest resonance speed is about 150 km/h, in agreement with the observed first resonance peak in Fig. 5.
However, another peak in the lowest skew-symmetric mode is observed when the speed is about 158 km/h.
This implies that there is another characteristic length of about 19.7m which is likely related to the other
compartments along the train as it can be inferred from Fig. 4.

In Fig. 6, we show the lowest six modal forces, in the time interval [0, #,], due to the transit of the TGV on
the bridge at the design speed of 350 km/h. The modal forces are significant for the skew-symmetric modes,
namely the first, third, and sixth modes (see Fig. 2) and are of the same order of magnitude whereas they are
negligible for the symmetric modes, namely, the second, fourth and fifth modes. This implies that the resonant
responses would be observed in the skew-symmetric modes only.

In Fig. 7, the time histories of the deflection and acceleration of the bridge deck at x =3/4 and 1/2,
respectively, are shown. The transit speed, corresponding to the design speed, is close to the resonance speed of
the lowest symmetric mode (mode 2 in Table 4); however, this resonance is not developed due to the fact that
the projection of the train forces onto this symmetric mode is negligible (see Fig. 6). As a result, the response
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Fig. 5. Variation of the deflection at x = 3/4 with the TGV train speed: Resonance of the lowest mode.
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Fig. 6. Transit of the TGV train at the design speed (¥ = 350 km/h): lowest six modal forces in MN (10° N). (a) = mode 1; (b) = mode
2; (¢) = mode 3; (d) = mode 4; (¢) = mode 5 and (f) = mode 6.
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Fig. 7. Transit of the TGV train at the design speed: time histories of the deck deflection at (a) x =3/4 and (b) x =1/2 and the
acceleration at (c) x =3/4 and (d) x = 1/2.

Fig. 8. Scheme of the ETR forces according to the codes (design speed ¥ = 300km/h).

peak is higher at x = 3/4 because the skew-symmetric modal forces are order-of-magnitude higher than the
symmetric forces. The peak deflection is attained a few fractions of second before the train has completely
passed the bridge. Past #,, the response is that of a damped unforced system as expected. Further, the
differences in the frequencies of the observed motions at x = 1/2 and 3/4 are due to the fact that the mid-span
is a node of vibration of the skew-symmetric modes. Therefore, at the mid-span section, the leading frequency
is that associated with the second mode (the lowest symmetric mode), whereas the frequencies associated with
the skew-symmetric modes are not observed. On the other hand, at x = 3/4 we note the contribution from
the low-frequency first mode which exhibits higher amplitudes than that arising from the second mode due to
the mentioned differences in magnitude of the modal forces (see Fig. 6). As to the time histories of the
accelerations at x = 3/4 and 1/2 (Fig. 7c,d), the order-of-magnitude at the mid-span and at three-quarter span
is the same and the higher frequency of the lowest symmetric mode in Fig. 7d is evident.

In Fig. 8, the loading scheme of the Italian ETR 500 train, according to the design codes, is shown. This
train is supposed to reach a maximum speed of 300 km/h. In Fig. 9, we show the time histories of the lowest six
modal forces, in the time interval [0, 7], excited by the transit of the ETR 500 on the bridge at its design speed.
The pattern of these forces is similar to that of the TGV forces, namely, they are significant for the skew-
symmetric modes whereas they are practically negligible for the symmetric modes. In Fig. 10, the time histories
of the deflections and accelerations are shown at x = 3/4 and 1/2, respectively. The peak deflection at x = 3/4
is slightly smaller than that caused by the TGV train whereas the peak acceleration is nearly halved.

Finally, in Fig. 11, the loading scheme of the German ICE train (maximum design speed of 250 km/h) is
shown. Fig. 12 portrays the time histories of the lowest six modal forces due to the transit of the ICE train at
the design speed of 250km/h. As expected, the pattern of these forces is again similar to the previously
discussed train-induced modal forces. However, here we note that the modal forces associated with the second
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Fig. 9. Transit of the ETR train at the design speed (¥ = 300 km/h): lowest six modal forces. (a) = mode 1; (b) = mode 2; (c) = mode 3;
(d) = mode 4; () = mode 5 and (f) = mode 6.
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Fig. 10. Transit of the ETR train at the design speed: time histories of the deck deflection at (a) x = 3/4 and (b) x = 1/2 and the
acceleration at (c) x = 3/4 and (d) x = 1/2.
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Fig. 11. Scheme of the ICE forces according to the codes (design speed ¥ = 250 km/h).

and third skew-symmetric modes are higher than the modal force associated with the lowest skew-symmetric
mode. In Fig. 13, the ensuing time histories of the deflections and accelerations at x =3/4 and 1/2,
respectively, are shown. In this case, the peak values are comparable with those of the response excited by
the ETR 500.
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Fig. 13. Transit of the ICE train at the design speed: time histories of the deck deflection at (a) x =3/4 and (b) x =1/2 and the
acceleration at (¢c) x = 3/4 and (d) x = 1/2.

7. Conclusions

A distributed-parameter (DP) model of arch bridges subject to general excitations is proposed; in particular,
a closed-form representation of the actual load distribution of running trains is considered using unit step
functions. The governing equations of motion, ensuing from the balance of linear and angular momentum, are
two coupled partial-differential equations in the horizontal and vertical displacement components. Due to the
non-uniform geometric curvature of the arch profile, the equations of motion exhibit variable coefficients.
A semi-analytical solution scheme based on Ritz’s method is conveniently employed to calculate the bridge
natural frequencies and mode shapes. The DP model and the semi-analytical solution approach are validated
comparing the calculated linear vibration properties with those obtained via a finite element (FE) code and a
close agreement has been shown.

A closed-form solution of the arch bridge dynamic responses excited by the transit of high-speed
trains is found neglecting the elastic and inertial interactions between the train and the bridge and using
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the modal superposition approach. The transit of trains mostly generates skew-symmetric forces, thus
exciting prevalently skew-symmetric vibrations, greatly amplified around the resonances of the bending
modes.

The solution obtained in the time domain allows to determine the resonance speeds of the bridge modes in
closed form. These resonance speeds are numerically verified employing the Ritz’s computational scheme
applied to an existing lower-deck steel arch bridge with a parabolic arch profile and are in agreement with
previous studies mostly conducted using FE schemes. The closed-form solution is effective for investigating
the leading properties of the dynamic responses to different trains and transit speeds and different arch bridge
geometries and design parameters. In this paper, three representative European high-speed trains are
considered, namely, the French TGV, the Italian ETR 500, and the German ICE. These trains are assumed to
traverse the considered lower-deck steel arch bridge at their design speeds. In all cases, it is found that,
although the speeds are close to the resonance speeds of the lowest symmetric mode of the bridge, because the
associated modal forces are order-of-magnitude smaller than those associated with skew-symmetric modes,
the ensuing vibrations are prevalently skew-symmetric. Further, it is observed that the peak deflections are
attained a few fractions of second after the train has entered the bridge and slightly before the train has
completely passed the bridge.

The proposed closed-form solution and resonance conditions turn out to be particularly useful for the
design of tuned-mass dampers or other vibration mitigation strategies which are the primary focus of a
companion manuscript.
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Appendix. The mass and stiffness matrices

The mass matrix is given by

1
M= / [sec 0,(B| @, ® B, + B/ ®,®,B,)
0

+ (sec 0, + w)(B] ®,® B,)]dx. (37)

The arch and deck stiffness matrices are, respectively, in the forms

’

|
1 , , ,
K, = / { {— E(BJ ®, +B @ ,)sin20, + B/ @, cos en}
0
1 , , ) /
x [— E(QMTIB,, + ®,B,)sin 20, + @, B,cos Qn] cos 0, dx

1
, , 1 ,
+ / {(BMT(I)M1 +B]® ,)cos 0, + EBUT(DU sin 2(9,,} o
0

: : 1,
X [((DMTIBM + @, B,)cos’ 0, + 3 ® B, sin 20,1} } sec 0, dx, (38)
|
K;=B] ( / e dx> B,. (39)
0

The global stiffness matrix of the bridge is K = K, + K.
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