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Abstract

From the viewpoint of differential eigenvalue problem of Hamiltonian system, a linear finite-time HN filtering problem

can be addressed by computing eigenvalue and solving Riccati differential equation of an associated linear Hamiltonian

system. This paper shows how a problem of determining the minimum induced norm of the HN filter is formulated as a

Hamiltonian differential eigenvalue problem. The HN filters concerned here include central filter, perturbed filter and

decentralised filter. The methods presented in the paper are based on characteristics of eigensolution of the corresponding

Hamiltonian system and Riccati differential equation. With eigensolution of the Hamiltonian system arising from the

central HN filtering problem, variational methods are proposed to compute eigenvalues of perturbed Hamiltonian systems

and large-scale Hamiltonian systems derived from perturbed HN filters and decentralised HN filters, respectively. Then,

eigenvalues can be obtained by calculating stationary values of corresponding extended Rayleigh’s quotient with dual

argument functions, which is essentially different from the well-known Rayleigh’s quotient of Lagrange systems with only

one independent argument function. Numerical examples are also presented to illustrate the variational approaches

presented in this paper.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Design of finite-time HN filters depends on computing the minimum HN induced norm and solving Riccati
differential equations[1], which can be approached by solving eigenvalue problems of associated linear
Hamiltonian systems [2,3]. The aim of HN filtering is to ensure that energy gain from disturbances to state
estimation error is less than a pre-specified level g2, and the infimum of g is defined as the minimum (optimal)
HN induced norm of the filter, denoted by gcr in this paper, it gives the bound for achievable performance of
disturbance rejection [1]. Therefore, computation of gcr is a key step in designing HN filters. Many approaches
have been proposed to compute this minimum HN norm as shown in Refs. [4,5] and the references therein.
As pointed out in Ref. [2], gcr

�2 is the fundamental eigenvalue of an extended Rayleigh’s quotient with two
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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independent argument functions, i.e. the first order eigenvalue of a linear Hamiltonian system, where a
numerical method was also presented to compute gcr

�2 and solve the Riccati equations. This paper will
demonstrate that analysis and synthesis of parameter perturbed HN filters and decentralised HN filters lead to
eigenvalue problems of Hamiltonian systems too.

Full exposition of eigenvalue problems of linear Hamiltonian systems can be found in Refs. [6,7]. However,
thanks to their applications in applied mechanics and robust control [8–10], it is still necessary to develop
numerical algorithms to compute eigenvalues and eigenfunctions of the Hamiltonian systems with dual
argument functions, which are different to the well-established computational methods for Lagrange systems
with only one independent argument function [11]. In terms of structural vibration, an eigenvalue extraction
method for dual systems with mixed variables was presented in Ref. [8], which was also the basis of the
algorithm proposed in Ref. [2] for HN filtering problems. In Ref. [3], a method for the critical value
computation of Riccati difference equations was presented, which relates linear discrete Hamiltonian systems
with discrete HN control problems also. Recently, to evaluate the disturbance attenuation performance of
decentralised HN control systems, a subsystem modal synthesis method for Hamiltonian systems was
developed in Ref. [12].

Eigenvalue problems of the Hamiltonian systems arising from finite-time HN filtering are investigated in the
remaining sections, including the Hamiltonian systems associated with central HN filter, perturbed HN filter
and decentralised HN filter. Section 2 briefly describes the structure of a central HN filter, whose existence
depends on property of the associated Riccati differential equation and Hamiltonian system. In Section 3,
orthonormal properties of eigenfunctions of the Hamiltonian system are presented. This section also proposes
a new argumentation relating the minimum HN norm and the first order eigenvalue of the Hamiltonian
system. It is based on the property of conjugate points of the Hamiltonian system. In addition, an equivalent
Sturm–Liouville eigenvalue problem is also presented for the purpose of comparison. In Section 4, a
variational method is formulated for computing eigenvalues of a perturbed Hamiltonian system belongs to the
perturbed HN filtering system, which is a Rayleigh–Ritz-type method adapted to accommodate to the
eigenvalue problems of the Hamiltonian systems with dual independent argument functions. In Section 5, this
variational method is extended to form a subsystem modal synthesis method to compute eigenvalues of large-
scale Hamiltonian systems consisting of subsystems, which are essential in designing decentralised HN filters.

2. HN filtering and associated linear Hamiltonian system

The HN filter plays a similar role in the HN control as the Kalman filter in the linear quadratic Gaussian
(LQG) control, i.e. that the HN control is generated by an HN state feedback control law operating on
estimates of the system states provided by an HN filter. Suppose the signal to be estimated is generated by the
linear time-invariant system:

_x ¼ Axþ Bw; xð0Þ ¼ x0, (2.1)

y ¼ Cyxþ v, (2.2)

z ¼ Czx, (2.3)

where xARn is the system state, yARq the measured output, and zARp the signal to be estimated. The process
disturbance wARm and the measurement disturbance vARq are signals belong to the square integrabel set
L2½0; tf �. It is assumed that (A, B) is completely controllable and (A, C) is completely observable. The aim is to
find an estimate of the linear combination of the system state z ¼ Czx of the form

ẑ ¼Fy, (2.4)

such that the ratio of the estimation error energy to the disturbance energy is less than a pre-specified
performance level g2. This objective can be expressed as the requirement thatZ tf

0

ðẑ� CzxÞ
T
ðẑ� CzxÞdtog2

Z tf

0

ðwTwþ vTvÞdtþ
1

2
xT0Q

�1
0 x0 (2.5)

for all w 2L2½0; tf � and v 2L2½0; tf �. The filter F is also required to be causal and linear.
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According to Ref. [13], there exits a causal linear finite-time HN filter (2.4) on [0, tf] such that the system
satisfies the requirement of (2.5) if and only if the Riccati differential equation

_Q ¼ BBT þ AQþQAT
�QðCT

yCy � g�2CT
z CzÞQ; Qð0Þ ¼ Q0 (2.6)

has a solution on [0, tf]. One filter that satisfies this objective is given by

_̂x ¼ Ax̂þQCT
y ðy� Cyx̂Þ; x̂ð0Þ ¼ x̂0, (2.7)

ẑ ¼ Czx̂. (2.8)

This filter is a central HN filter and has an observer structure like the Kalman filter. Since Riccati equation
(2.6) has no bounded solution if g�2 is larger than the critical value gcr

�2, it is necessary to find gcr
�2 first, then to

select a suitable value of g�2 according to gcr
�2 and pre-specified performance index for the HN filter. With this

value, Riccati differential Eq. (2.6) can be solved numerically to construct the time-varying filter gain.
The following linear Hamiltonian system:

_x
_k

� �
¼

A BBT

CT
yCy � g�2CT

z Cz �A
T

" #
x

k

� �
(2.9)

with boundary conditions

xð0Þ

kðtf Þ

( )
¼

Q0kð0Þ

0

� �
(2.10)

is the Hamiltonian system associated with aforementioned finite-time HN filtering problem. Boundary
condition (2.10) can also be written in a general form as

R1

�xð0Þ

xðtf Þ

( )
þ R2

kð0Þ

kðtf Þ

( )
¼ 0, (2.11)

where

R1 ¼
I 0

0 0

� �
; R2 ¼

Q0 0

0 I

� �
. (2.12)

Let U(0, t) be the transition matrix of Hamiltonian system (2.9):

d

dt
Uð0; tÞ ¼ HUð0; tÞ; Uð0; 0Þ ¼ I (2.13)

in which

H ¼
A BBT

CT
yCy � g�2CT

z Cz �A
T

" #
. (2.14)

Then, solution of Eq. (2.9) is given by

xðtÞ

kðtÞ

( )
¼

U11ð0; tÞ U12ð0; tÞ

U21ð0; tÞ U22ð0; tÞ

" #
xð0Þ

kð0Þ

( )
. (2.15)

It can be verified that

QðtÞ ¼ ½U11ð0; tÞQ0 þU12ð0; tÞ�½U21ð0; tÞQ0 þU22ð0; tÞ�
�1 (2.16)

is solution to the Riccati differential equation (2.6).
The minimum HN induced norm of the concerned filtering problem can be obtained by eigenvalue

algorithms, e.g. the extended Williams–Wittrick algorithm for dual systems [2,8], since gcr
�2 is the first-order

eigenvalue of the Hamiltonian system (2.9). In this avenue, other HN filters, such as perturbed filters and
decentralised filters, which have their roots in the aforementioned central HN filtering problem can also be
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approached by investigating eigenvalue problems of corresponding Hamiltonian systems. And the derived
eigenvalue problems can be solved by variational methods with less computational efforts provided that
eigensolutions of Eqs. (2.9) and (2.10) have been known.

3. Eigensolutions of linear Hamiltonian system

The eigenvalue problem of linear Hamiltonian system (2.9) and (2.10) provides a new measure to approach
finite-time HN filtering problems. This section will give a brief introduction on properties of the Hamiltonian
systems eigensolutions and Riccati differential equations, which are basis of the variational methods proposed
in Sections 4 and 5. To relate the eigenvalue problem here with differential eigenvalue problem in structural
vibration, an equivalent Sturm–Liouville eigenvalue problem is also presented in this section.

3.1. Eigenvalues of linear Hamiltonian system

In terms of Ref. [7], g�2 is an eigenvalue of the linear Hamiltonian system (2.9) and (2.10) if and only if the
matrix

X ¼ R1

�U11ð0; 0Þ �U12ð0; 0Þ

U11ð0; tf Þ U12ð0; tf Þ

" #
þ R2

U21ð0; 0Þ U22ð0; 0Þ

U21ð0; tf Þ U22ð0; tf Þ

" #
(3.1)

is invertable, where R1 and R2 are given by (2.12). Substituting Eq. (2.12) into (3.1) leads to

X ¼
�I Q0

U21ð0; tf Þ U22ð0; tf Þ

" #
. (3.2)

Because the determinant of X is given by

det X ¼ det
�I Q0

U21ð0; tf Þ U22ð0; tf Þ

" #
¼ detð�IÞ � det½U21ð0; tf ÞQ0 þU22ð0; tf Þ�, (3.3)

the singularity of X depends on matrix U21(0, tf)Q0+U22(0, tf), so that g�2 is a eigenvalue of (2.9) and (2.10) if
and only if U21(0, tf)Q0+U22(0, tf) is a singular matrix.

The HN filtering problem has a solution whenever Riccati differential equation (2.6) has a solution.
However, in the light of the existence of conjugate points, the matrix U21(0, tf)Q0+U22(0, tf) is also a criterion
for the existence of solutions to the Riccati differential equation (2.6). Conjugate points are two time points ta

and tb(taptb) of the Hamiltonian system (2.9) and (2.10), for which (2.9) has a nontrivial solution such that
x(ta) ¼ Q0k(ta) and k(tb) ¼ 0 for a given fixed Q0 [1,13]. The matrix U21(0, t)Q0+U22(0, t) is singular if and
only if 0 and t are conjugate points. The argumentation of this conclusion is given as follows.

Suppose t0 and t1 are conjugate points, then there exists a nontrivial solution to (2.9) such that
x(t0) ¼ Q0k(t0) and k(t1) ¼ 0. Hence,

xðtÞ

kðtÞ

( )
¼

U11ðt0; tÞ U12ðt0; tÞ

U21ðt0; tÞ U22ðt0; tÞ

" #
Q0

I

� �
kðt0Þ

and one notes that k(t0) 6¼0, because x(t), k(t) are not identically zero and U(0, t) is non-singular for all t, t0.
Since k(t1) ¼ 0, one has k(t1) ¼ [U21(t0, t1)Q0+U22(t0, t1)]k(t0) ¼ 0, which means that U21(t0, t1)Q0+U22

(t0, t1) is singular.
Now suppose that U21(t0, t1)Q0+U22(t0, t1) is singular. Then there exists a vector g 6¼0 such that 0 ¼ [U21

(t0, t1)Q0+U22(t0, t1)]g. Let k(t0) ¼ g, then x(t0) ¼ Q0k(t0), k(t1) ¼ 0, and k(t) is not identically zero. Hence t0
and t1 are conjugates points. Hence, the required proof is complete.

Note that

QðtÞ ¼ ½U11ð0; tÞQ0 þU12ð0; tÞ�½U21ð0; tÞQ0 þU22ð0; tÞ�
�1
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the Riccati differential equation (2.6) has a solution on [0, tf] provided that U21(0, t)Q0+U22(0, t) is non-
singular for all tA[0, tf]. Therefore, it can be concluded that the Riccati equation (2.6) does not have a solution
on [0, tf] if there is a tA[0, tf] for which 0 and t are conjugate points.

It should be noted that eigenvalues of the Hamiltonian system (2.9) and (2.10) are also stationary values of
an extended Rayleigh’s quotient with dual independent argument functions [2]

r ¼
P1ðx;kÞ
P2ðxÞ

(3.4)

in which

P1ðx;kÞ ¼
Z tf

0

kT _x� kTAxþ
1

2
xTCT

yCyx�
1

2
kTBBTk

� �
dtþ

1

2
xT0Q

�1
0 x0, (3.5)

P2ðxÞ ¼
1

2

Z tf

0

xTCT
z Czxdt. (3.6)

Such expression facilitates direct variational methods for eigenvalues computation as shown in the
following sections.

By setting g�2 ¼ 0, the Hamiltonian system (2.9) and (2.10) is changed into

_x
_k

� �
¼

A BBT

CT
yCy �A

T

" #
x

k

� �
;

xð0Þ

kðtf Þ

( )
¼

Q0kð0Þ

0

� �
, (3.7)

which is the Hamiltonian system associated with the Kalman filtering problem and does not have conjugate
points on [0, tf] at all time, so that the associated Riccati equation

_Q ¼ BBT þ AQþQAT
�QCT

yCyQ; Qð0Þ ¼ Q0 (3.8)

always has a solution, that is that the Kalman filtering problem always has a solution. This also means that the
Kalman filter should emerge from the HN filter theory in the limit as r-N [13].

3.2. Orthogonality of eigenfunctions

To simplify following expressions, define differential operators

H ¼ Js

d

dt
�
�CT

yCy AT

A BBT

" #
, (3.9)

M ¼
CT

z Cz 0

0 0

" #
(3.10)

and let

v ¼
x

k

� �
, (3.11)

r ¼ g�2, (3.12)

where the symplectic matrix

Js ¼
0 �I

I 0

� �
(3.13)

and I represents an identity matrix with proper dimensions. Then Eq. (2.9) is given by

Hv ¼ rMv. (3.14)
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According to Ref. [6], the definiteness assumptions that MX0 and
R tf

0 vTMv dt40 are made for (3.14) to
guarantee the concerned eigenvalue problem have a real and discrete spectrum.

Assume that l ¼ ½xTm ;k
T
m �

T and h ¼ ½xTy ;k
T
y �

T are differentiable functions, and satisfy boundary condition
(2.10) of the eigenvalue problem, thenZ tf

0

lTHhdt ¼

Z tf

0

ðkT
m _xy þ kT

y _xm � kT
mAxy � kT

yAxm � kT
mBB

Tky

þ xTmC
T
yCyxyÞdtþ xTm ð0ÞQ

�1
0 xyð0Þ. ð3:15Þ

Hence, Z tf

0

ðhTHl� lTHhÞdt ¼ 0, (3.16)

which means that operator (3.9) is a self-adjoint differential operator and the system (2.9) and (2.10) is a self-
adjoint system.

Let ri, vi ¼ ½x
T
i ;k

T
i �

T and rj, vj ¼ ½x
T
j ; k

T
j �

T denote the ith and jth order distinct eigenvalue and eigenfunction,
respectively (i 6¼j, ri 6¼rj), orthogonality relations of the eigenfunctions are given byZ tf

0

vTj Mvi dt ¼

Z tf

0

xTj C
T
z Czxi dt ¼ 0 ðiaj; i; j ¼ 1; 2; . . .Þ; (3.17)

Z tf

0

vTj Hvi dt ¼ 0 ðiaj; i; j ¼ 1; 2; . . .Þ: (3.18)

The orthogonality of the eigenfunctions is a direct consequence of the system being self-adjoint. The
normalization condition is given by

1

2

Z tf

0

vTi Mvi dt ¼
1

2

Z tf

0

xTi C
T
z Czxi dt ¼ 1, (3.19)

which implies that Z tf

0

vTi Hvi dt ¼ ri

Z tf

0

vTi Mvi dt ¼ 2ri. (3.20)

With the assumptions that MX0 and
R tf

0
vTMvdt40, the eigenfunctions vi (i ¼ 1, 2,y) constitute a

complete orthonormal set of infinite dimension, and can be used as a basis for a function space [6]. Therefore,
every differential function v satisfying the boundary condition (2.10) can be expanded in an absolutely and
uniformly convergent series in the eigenfunctions in the form

vðtÞ ¼
X1
i¼1

biviðtÞ ¼
X1
i¼1

bi

kiðtÞ

xiðtÞ

( )
, (3.21)

where the coefficients bi are such that

bi ¼
1

2

Z tf

0

vTi Mvdt ðj ¼ 1; 2; . . .Þ. (3.22)

3.3. An equivalent Sturm– Liouville eigenvalue problem

Because the Hamiltonian system is a self-adjoint differential system, it can be transformed into an
equivalent Sturm–Liouville form. This transformation connects the eigenvalue problem discussed in this paper
with the well-known differential eigenvalue problems in structural vibration [11].
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The Hamiltonian eigenvalue problem (2.9) and (2.10) is a canonical form with two independent argument
functions, which corresponds to a variational problem of the form

d
Z tf

0

kT _x�Hðx;kÞ
� 	

dtþ
1

2
xTð0ÞQ�10 xð0Þ

� �
¼ 0, (3.23)

where

Hðx;kÞ ¼ kTAx� 1
2
xTðCT

yCy � g�2CT
z CzÞxþ

1
2
kTBBTk. (3.24)

As shown in Ref. [14], a variational problem with only one independent argument function can be trans-
formed into canonical form with two independent argument functions, whereas the inverse transformation
can also be carried out, as shown in the following.

Consider the variational problem

d
Z tf

0

Lðx; _xÞdtþ
1

2
xTð0ÞQ�10 xð0Þ

� �
¼ 0, (3.25)

where

Lðx; _xÞ ¼ 1
2
_xTK22 _xþ _xTK21xþ

1
2
xTðK11 � rMÞx, (3.26)

which corresponds to a Sturm–Liouville eigenvalue problem

K22 €xþ ðK21 � KT
21Þ _x� K11xþ rMx ¼ 0 (3.27)

defined on [0, tf] with boundary conditions

x0 �Q0ðK22 _x0 þ K21x0Þ ¼ 0; K22 _xf þ K21xf ¼ 0, (3.28)

where K22, K11, and (K21�K21
T ) are symmetric matrices, the matrix M40. Introduce new argument functions

k ¼ qLðx; _xÞ=q _x and _k ¼ �q½kT _x� Lðx; _xÞ�=qx, gives

_x
_k

� �
¼
�K�122 K21 K�122

K11 � KT
21K
�1
22 K21 � rM KT

21K
�1
22

" #
x

k

� �
. (3.29)

Assume that BBT is invertible, let

K22 ¼ ðBB
TÞ
�1, (3.30)

K21 ¼ �ðBB
TÞ
�1A, (3.31)

K11 ¼ CT
yCy þ AT

ðBTBÞ�1A, (3.32)

M ¼ CT
z Cz, (3.33)

then Eqs. (3.28) and (3.29) can be expressed in a form identical to equations (2.9) and (2.10), respectively.
Hence, the Sturm–Liouville eigenvalue problem (3.29) and (3.28) is an equivalent form of the Hamiltonian
eigenvalue problem (2.9) and (2.10).

4. Perturbed HN filter and corresponding eigenvalue problem

Parameters of an HN filtering system may be changed by design modifications or improved knowledge of
the system, etc. [15]. Correspondingly, disturbance attenuation performance of the filter changes also. From
the viewpoint of eigenvalue perturbation, the minimum HN norm gcr of the perturbed filtering system can be
calculated by eigenvalue perturbation technique, since gcr

�2 is the first-order eigenvalue of the Hamiltonian
system (2.9) and (2.10). However, in terms of the extended Rayleigh’s quotient (3.4), eigenvalues of the
perturbed Hamiltonian system may also be approximated by a Rayleigh–Ritz method adapted for two
independent argument functions[12], which replaces the considered differential eigenvalue problem by
algebraic eigenvalue problems. Such variational method reduces computational effort if eigenfunctions of the
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unperturbed system are known. Because all the eigensolutions can be obtained in the procedure of computing
the minimum HN norm of the original system [2,12], the trial functions for this problem may consist of
eigenfunctions of the unperturbed Hamiltonian system.

4.1. Variational method for eigenvalue problem of perturbed Hamiltonian systems

Consider only perturbations of the plant matrix A, let A0 and eA0 denote the unperturbed plant matrix and
the perturbation, respectively, then Eq. (2.1) is given as

_x ¼ ðA0 þ �A1Þxþ Bw; xð0Þ ¼ x0. (4.1)

Let r0j, v0j ¼ ½x
T
0j ;k

T
0j�

T (j ¼ 1, 2,y) denote eigensolutions of the unperturbed Hamiltonian system

_x
_k

� �
¼

A0 BBT

CT
yCy � rCT

z Cz �A
T
0

" #
x

k

� �
;

xð0Þ

kðtf Þ

( )
¼

Q0kð0Þ

0

� �
. (4.2)

Eigenvalues of the perturbed Hamiltonian system are still stationary values of an extended Rayleigh’s
quotient, so that the beginning eigenvalues may be computed by variational methods directly. Argument
functions of the extended Rayleigh’s quotient (3.4) are two independent functions x and k. The state vector
function x should be expanded by using the eigenfunctions x0j and its dual vector function k should be
expanded by using k0j. In terms of variational principles, coefficients of two expansions are independent of
each other, so the state vector and its dual vector should be expanded independently.

The eigenfunctions of the unperturbed Hamiltonian system (4.2) constitute a complete orthonormal set, so
that x and k are expanded as

x ¼
X1
j¼1

bjx0j, (4.3)

k ¼
X1
k¼1

akk0k. (4.4)

According to the linear combination principle, the trial functions for the coefficients bk can be selected as the
complete eigenfunctions of the subsystem, so that

x ¼
X1
j¼1

bjx0j, (4.5)

k ¼
X1
k¼1

ðak þ bkÞk0k. (4.6)

Theoretically, an infinite number of eigenfunctions should be used in computation, but in practice,
only a finite number of eigenfunctions can be provided. Suppose that the numbers of eigenfunctions available
are ne, then

xffi
Xne

j¼1

bjx0j, (4.7)

kffi
Xne

k¼1

ðak þ bkÞk0k, (4.8)

where coefficients ak and bj are independent parameters to be determined by finding stationary values of the
extended Rayleigh’s quotient (3.4). Substituting Eqs. (4.7), (4.8) into Eqs. (3.5), (3.6), respectively, and using
the orthonormal properties of eigenfunctions and

_x0i ¼ A0x0i þ BBTk0i, (4.9)
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_k0i ¼ ðC
T
yCy � r0iC

T
z CzÞx0i þ AT

0 k0i, (4.10)

one obtains

P1ðx;kÞ ffi ~P1ða; bÞ

¼
Xne

j¼1

r0jb
2
j �

Xne

j¼1

Xne

k¼1

Z tf

0

1

2
ðajakÞ � ðk

T
0jBB

Tk0kÞdt

�
Xne

j¼1

Xne

k¼1

Z tf

0

1

2
½�bjðak þ bkÞ � ðk

T
0jA1x0kÞ þ �bjðak þ bkÞ � ðx

T
0kA

T
1 k0jÞ�dt

¼ bTCb�
1

2
aTWa�

�

2
½ðaþ bÞTW1bþ bTWT

1 ðaþ bÞ�, ð4:11Þ

P2ðxÞ ffi ~P2ðbÞ

¼
Xne

j¼1

Xne

k¼1

Z tf

0

1

2
½ðbjbkÞ � ðx

T
0jC

T
z Czx0kÞ�dt

¼
Xne

j¼1

b2
j ¼ bTb, ð4:12Þ

in which

W ¼
Z tf

0

KTBBTKdt, (4.13)

W1 ¼

Z tf

0

KTA1Xdt, (4.14)

C ¼ diag½r01;r02; . . . ;r0ne
�, (4.15)

K ¼ ½k01; k02; . . . ;k0ne
�, (4.16)

X ¼ ½x01; x02; . . . ;x0ne
�. (4.17)

In addition, coefficients ai and bi constitute vectors a ¼ fa1; a2; . . . ; ane
gT and b ¼ fb1; b2; . . . ; bne

gT of

Eqs. (4.11), (4.12). Maximisation with respect to the vector a can be carried out first for ~P1ða; bÞ, which gives

a ¼ ��W�1W1b (4.18)

and the following quadratic form for vector b

~P1ðbÞ ¼ bTKb, (4.19)

~P2ðbÞ ¼ bTb, (4.20)

where

K ¼ C�
�

2
ðW1 þWT

1 Þ þ
1

2
�2WT

1W�1W1. (4.21)

Then finding eigenvalues of the perturbed Hamiltonian system becomes computing the stationary values of
the following Rayleigh’s quotient

~r ¼
~P1ðbÞ

~P2ðbÞ
¼

bTKb

bTb
, (4.22)

which provides approximation of the beginning eigenvalues of the perturbed Hamiltonian system.



ARTICLE IN PRESS
Z.G. Wu, Q. Gao / Journal of Sound and Vibration 304 (2007) 450–465 459
4.2. Examples

Example 4.1: A system of order 4 with �A1 ¼ �A and

A ¼

3:0 1:0 �0:3 �0:3

�0:934 2:0 �0:1 �0:2

�0:1 �0:3 2:0 1:0

�0:2 �0:4 �0:934 0:9

2
6664

3
7775,

B ¼ diagð1:0; 0:09; 1:0; 0:09Þ,

Cz ¼ I4; Cy ¼ I4; Q0 ¼ 0:1� I4; tf ¼ 0:8,

where In denotes an identity matrix of order n. Table 1 shows the numerical results of the eigenvalue problem.
Using the method of [2] directly, the first seven eigenvalues of the perturbed and unperturbed Hamiltonian
systems were computed precisely. Then, after calculating twenty eigensolutions of the original system, the first
seven eigenvalues of the perturbed system were also found by the aforementioned variational method.

Example 4.2: A system of order 5 with �A1 ¼ �diag½�1;�2;�5;�2;�4� and

A ¼

�1:0 0:1

0:5 �2:0

0:2 0:1 0:4

0:0 �0:2 0:1

0:1 �0:5

0:5 0:2

0:0 �0:1

�5:0 0:0 �0:5

0:5 �2:0 0:0

�1:0 0:0 �4:0

2
6666664

3
7777775
,

Cy ¼
1:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 1:0 1:0

� �
,

B ¼ I5; Cz ¼ I5; Q0 ¼ 0:1� I5; tf ¼ 0:8.

The first seven eigenvalues of the perturbed and unperturbed Hamiltonian systems were also computed
directly by using the method of Ref. [2]. Then, after calculating twenty eigensolutions of the unperturbed
system, the first seven eigenvalues of the perturbed system were also found by the variational method. All the
results of this eigenvalue problem are displayed in Table 2. It can be found from Tables 1 and 2 that the
variational method gives satisfying numerical results with less computational efforts.

5. Decentralised HN filter and corresponding eigenvalue problem

The conventional decentralised filtering strategies are mostly based on the Kalman filter algorithms, which
offer powerful methods for solving state estimation problems of large-scale systems [16]. Nevertheless,
decentralised HN filtering is a more appropriate choice if the plant models and the statistics of the exogenous
Table 1

Eigenvalues of Example 4.1

Eigenvalue order 1 2 3 4 5 6 7

Unperturbed system 1.1970 1.5847 2.2458 5.5332 30.331 33.592 78.287

e ¼ 0.2 Method of Ref. [2] 1.1014 1.3917 1.7552 4.7177 31.699 37.059 78.214

Variational method 1.1104 1.4006 1.7802 4.7286 31.703 37.070 78.348

e ¼ �0.2 Method of Ref. [2] 1.3713 1.8494 3.0145 6.4481 29.292 30.988 78.535

Variational method 1.3774 1.8570 3.0555 6.4636 29.294 30.994 78.684
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Table 2

Eigenvalues of Example 4.2

Eigenvalue order 1 2 3 4 5 6 7

Unperturbed system 6.2230 10.041 11.390 21.078 30.675 34.880 35.339

e ¼ 0.1 Method of Ref. [2] 6.5998 11.070 12.415 24.368 31.253 36.035 36.956

Variational method 6.5999 11.070 12.415 24.370 31.252 36.033 36.955

e ¼ 0.2 Method of Ref. [2] 6.9873 12.159 13.499 27.916 31.786 37.190 38.276

Variational method 6.9876 12.160 13.500 27.924 31.782 37.181 38.269
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signals are not known exactly [17], where information obtained from the local filters is combined to generate
the global estimation of the system state. To obtain the minimum achievable performance of a decentralised
HN filter, the eigenvalue problem of large-scale Hamiltonian systems is investigated in this section.
Eigenvalues of this Hamiltonian system are computed by a subsystem synthesis method based on
eigensolutions of all the local Hamiltonian subsystems constituting the global Hamiltonian system. It should
be noted that, in some sense, this method is similar to the substructure synthesis method for complex
structures [11].

5.1. Subsystem modal synthesis method for eigenvalue problem of large-scale Hamiltonian systems

Without loss of generality, subdivide system (2.1)–(2.3) into two subsystems and let

x ¼
xð1Þ

xð2Þ

( )
; y ¼

yð1Þ

yð2Þ

( )
; z ¼

zð1Þ

zð2Þ

( )
; w ¼

wð1Þ

wð2Þ

( )
; v ¼

vð1Þ

vð2Þ

( )
,

A ¼
A11 �A12

�A21 A22

" #
; B ¼

B11 0

0 B22

" #
,

Cy ¼
Cy11 0

0 Cy22

" #
; Cz ¼

Cz11 0

0 Cz22

" #
; Q ¼

Q011 0

0 Q022

" #
,

so that the original system can be described by the following two subsystems combined by the e terms:

_xð1Þ ¼ A11x
ð1Þ þ �A12x

ð2Þ þ B11w
ð1Þ, (5.1)

yð1Þ ¼ Cy11x
ð1Þ þ vð1Þ, (5.2)

zð1Þ ¼ Cz11x
ð1Þ, (5.3)

_xð2Þ ¼ A22x
ð2Þ þ �A21x

ð1Þ þ B22w
ð2Þ, (5.4)

yð2Þ ¼ Cy22x
ð2Þ þ vð2Þ, (5.5)

zð2Þ ¼ Cz22x
ð2Þ. (5.6)

Then the associated global Hamiltonian system for the decentralised HN filter is given as

_xð1Þ

_xð2Þ

_k
ð1Þ

_k
ð2Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

A11 �A12 B11B
T
11 0

�A21 A22 0 B22B
T
22

CT
y11Cy11 � rCT

z11Cz11 0 �AT
11 ��AT

12

0 CT
y22Cy22 � rCT

z22Cz22 ��A
T
21 �AT

22

2
666664

3
777775

xð1Þ

xð2Þ

kð1Þ

kð2Þ

8>>>><
>>>>:

9>>>>=
>>>>;
. (5.7)
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If e ¼ 0, these two subsystems are completely independent, i.e. the e terms alone combine the two
subsystems together. Hence, in the spirit of the subsystem modal synthesis technique [12], it can be
advantageous to compute eigensolutions of the local Hamiltonian systems obtained by setting e ¼ 0
independently and then to combine them afterwards by re-introducing the � terms, even though it is not
necessarily a small number.

The local Hamiltonian system for a subsystem HN filter is given as

_xðiÞ

_k
ðiÞ

( )
¼

Aii BiiB
T
ii

CT
yiiCyii � rðiÞCT

ziiCzii �A
T
ii

" #
xðiÞ

kðiÞ

( )
;

xðiÞð0Þ

kðiÞðtf Þ

( )
¼

Q0iik
ðiÞ
ð0Þ

0

( )
, (5.8)

where i (i ¼ 1, 2) stands for the subsystem number. In terms of Eq. (3.4), the extended Rayleigh’s quotient for
this local Hamiltonian system is

rðiÞ ¼
PðiÞ1 ðx; kÞ

PðiÞ2 ðxÞ
, (5.9)

where

PðiÞ1 ðx; kÞ ¼
Z tf

0

kðiÞT _xðiÞ � kðiÞTAiix
ðiÞ þ

1

2
xðiÞTCT

yiiCyiix
ðiÞ �

1

2
kðiÞTBiiB

T
ii k
ðiÞ

� �
dtþ

1

2
x
ðiÞT
0 Q�10ii x

ðiÞ
0 , (5.10)

PðiÞ2 ðxÞ ¼
1

2

Z tf

0

xðiÞTCT
ziiCziix

ðiÞ dt. (5.11)

The trial functions x and k of the extended Rayleigh’s quotient (3.4) of the global Hamiltonian system can
be expanded as

xðtÞ ¼
xð1Þ

xð2Þ

( )
¼

P1
j¼1b

ð1Þ
j x
ð1Þ
jP1

k¼1b
ð2Þ
k x
ð2Þ
k

8<
:

9=
;, (5.12)

kðtÞ ¼
kð1Þ

kð2Þ

( )
¼

P1
j¼1ða

ð1Þ
j þ b

ð1Þ
j Þk

ð1Þ
jP1

k¼1ða
ð2Þ
k þ b

ð2Þ
k Þk

ð2Þ
k

8<
:

9=
;, (5.13)

where aj
(1), ak

(2), bj
(1), and bk

(1) are independent parameters to be determined by (3.4), and the superscript
stands for the subsystem number, whereas the subscript denotes the order of the eigensolutions.

Now consider the extended Rayleigh’s quotient of the global system, its composition is still P1 and P2.
Because all the matrices of the global system are block diagonal except for the plant matrix A, the composition
of P1 and P2 are the sums of all the P1

(i) and P2
(i) of subsystems, and also the inter-subsystem terms from the

off-diagonal sub-matrices of A with multiplier e. Therefore, the numerator and denominator of the extended
Rayleigh’s quotient of the global system consists of

P1 ¼ Pð1Þ1 þPð2Þ1 þPm, (5.14)

P2 ¼ Pð1Þ2 þPð2Þ2 , (5.15)

where Pm represents the inter-subsystem term. Suppose that the numbers of eigensolutions used for sub-
systems 1 and 2 are, respectively, ne1 and ne2. Note, when x(i) and k(i) are substituted with the expansion
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form (i ¼ 1, 2), because of the ortho-normalization condition, P1
(i) and P2

(i) can be computed by

PðiÞ1 ðx; kÞ ffi ~P
ðiÞ

1 ða
ðiÞ; bðiÞÞ

¼
Xnei

j¼1

rðiÞj b
ðiÞ2
j �

Z tf

0

Xnei

j¼1

Xnei

k¼1

ðkðiÞTj BiiB
T
ii k
ðiÞ
k =2Þ � ða

ðiÞ
j a
ðiÞ
k Þdt

" #

¼
Xnei

j¼1

rðiÞj b
ðiÞ2
j �

1

2
aðiÞTWðiÞaðiÞ, ð5:16Þ

where

WðiÞ ¼
Z tf

0

KðiÞTBiiB
T
ii K
ðiÞ dt, (5.17)

KðiÞ ¼ ½kðiÞ1 ;k
ðiÞ
2 ; . . . ;k

ðiÞ
nei
� (5.18)

and aðiÞ ¼ ½a
ðiÞ
1 ; a

ðiÞ
2 ; . . . ; a

ðiÞ
nei
�T is the vector of the expansion parameters to be determined, rj

(i) represents the jth
eigenvalue of the ith subsystem. Since Z tf

0

½x
ðiÞT
j CT

ziiCziix
ðiÞ
j =2�dt ¼ 1,

one has

PðiÞ2 ðxÞ ffi ~P
ðiÞ

2 ðb
ðiÞÞ ¼

Xnei

j¼1

b
ðiÞ2
j �

Z tf

0

½x
ðiÞT
j CT

ziiCziix
ðiÞ
j =2�dt ¼

Xnei

j¼1

b
ðiÞ2
j ¼ bðiÞTbðiÞ, (5.19)

The inter-subsystem term Pm can be derived as

Pmðx; kÞ ffi ~Pmða
ð1Þ; bð1Þ; að2Þ; bð2ÞÞ

¼ � �

Z tf

0

½kð1ÞTA12x
ð2Þ þ kð2ÞTA21x

ð1Þ�dt

¼ � �
Xne1

j¼1

Xne2

k¼1

½cð12Þjk ða
ð1Þ
j þ b

ð1Þ
j Þb

ð2Þ
k þ cð21Þkj ða

ð2Þ
k þ b

ð2Þ
k Þb

ð1Þ
j �

¼ � �½ðað1Þ þ bð1ÞÞTWð12Þbð2Þ þ ðað2Þ þ bð2ÞÞTWð21Þbð1Þ�, ð5:20Þ

where the matrices W(12) and W(21) can be composed as

cð12Þjk ¼

Z tf

0

½kð1ÞTj A12x
ð2Þ
k �dt, (5.21)

cð21Þjk ¼

Z tf

0

½kð2ÞTj A21x
ð1Þ
k �dt. (5.22)

Combing the independent expansion parameters of the two subsystems forms the unknown vectors as

a ¼
að1Þ

að2Þ

( )
¼ fa

ð1Þ
1 ; a

ð1Þ
2 ; . . . ; a

ð1Þ
ne1
; að2Þ1 ; a

ð2Þ
2 ; . . . ; a

ð2Þ
ne2
gT, (5.23)

b ¼
bð1Þ

bð2Þ

( )
¼ fb

ð1Þ
1 ; b

ð1Þ
2 ; . . . ; b

ð1Þ
ne1
; bð2Þ1 ; b

ð2Þ
2 ; . . . ; b

ð2Þ
ne2
gT. (5.24)
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Substituting Eqs. (5.16), (5.19) and (5.20) into (5.14) and (5.15), respectively, gives

P1ðx;kÞ ffi ~P1ða; bÞ

¼ bTCb�
1

2
aT

Wð1Þ 0

0 Wð2Þ

" #
a� �ðaþ bÞT

0 Wð12Þ

Wð21Þ 0

" #
b, ð5:25Þ

P2ðxÞ ffi ~P2ðbÞ ¼ bTb, (5.26)

where

C ¼ diag½rð1Þ1 ;r
ð1Þ
2 ; . . . ;r

ð1Þ
ne1
;rð2Þ1 ; r

ð2Þ
2 ; . . . ;r

ð2Þ
ne2
� (5.27)

maximisation with respect to the parameter vector a can be carried out first for P1, which gives

a ¼ ��
Wð1Þ 0

0 Wð2Þ

" #�1
0 Wð12Þ

Wð21Þ 0

" #
b (5.28)

and the quadratic form for vector b

~P1ðbÞ ¼ bTKb, (5.29)

~P2ðbÞ ¼ bTb, (5.30)

where

K ¼ C� �
0 Wð12Þ

Wð21Þ 0

" #
þ

1

2
�2

0 Wð12Þ

Wð21Þ 0

" #
Wð1Þ 0

0 Wð2Þ

" #�1
0 Wð12Þ

Wð21Þ 0

" #T
. (5.31)

Therefore, it only remains to minimise with respect to the parameter vector b. Then finding the eigenvalues
of the global Hamiltonian system becomes the algebraic eigenvalue problem

~r ¼
~P1ðbÞ

~P2ðbÞ
¼

bTKb

bTb
, (5.32)

which has the same formulation as Eq. (4.22) except the structure and elements of the matrix K.

5.2. Examples

Example 5.1: A system of order 4, with tf ¼ 0.8 and

A ¼
A11 �A12

�A21 A22

" #
¼

0:8 1:0 ..
.

1:0 1:0

2:0 0:9 ..
.

0:0 1:0

� � � � � � ..
.
� � � � � �

1:0 0:0 ..
.

0:8 1:0

0:0 1:0 ..
.

2:0 0:4

2
66666666664

3
77777777775
,

B ¼ I4; Cy ¼ I4; Cz ¼ I4; Q0 ¼ I4.

Table 3 shows the results of the eigenvalue problem. The lowest seven eigenvalues of the global system were
computed by the subsystem synthesis modal method described above, after calculating twenty eigensolutions
for either of the two subsystems precisely. Solving the global system directly using the method presented in
Ref. [2], the first seven eigenvalues were also found.
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Table 4

Eigenvalues of Example 5.2

Eigenvalue order 1 2 3 4 5 6 7

e ¼ 0.5 Method of Ref. [2] 0.5317 1.5086 3.6965 7.7253 8.8802 12.421 13.381

Modal synthesis method 0.5329 1.5128 3.8528 7.7416 8.9004 12.437 13.401

e ¼ 1.0 Method of Ref. [2] 0.4994 1.5909 4.4850 7.1791 9.4027 11.849 13.899

Modal synthesis method 0.5043 1.5985 4.9717 7.2332 9.4985 11.930 13.981

Table 3

Eigenvalues of Example 5.1

Eigenvalue order 1 2 3 4 5 6 7

Method of Ref. [2] 1.0235 1.3740 2.0959 3.6283 18.544 19.114 21.958

Modal synthesis method 1.0236 1.3784 2.1101 3.6565 18.593 19.135 22.015
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Example 5.2: A system of order 9, with tf ¼ 0.5 and

A ¼
A11 �A12

�A21 A22

" #
;

A11 ¼

0:1 0:545 0:0 0:0 0:0

�6:0 �0:05 6:0 0:0 0:0

0:0 0:0 �3:33 3:33 0:0

0:0 �5:21 0:0 �12:5 0:0

1:0 0:425 0:0 0:0 0:2

2
6666664

3
7777775
; A12 ¼

�0:545 0:0 0:0 0:0

1:0 0:0 0:0 0:0

0:0 1:0 0:0 0:0

0:0 0:0 1:0 0:0

0:0 0:0 0:0 1:0

2
6666664

3
7777775
,

A21 ¼

6:0 0:0 0:0 0:0 0:0

0:0 1:0 0:0 0:0 0:0

0:0 0:0 1:0 0:0 0:0

�1:0 0:0 0:0 1:0 0:0

2
6664

3
7775; A22 ¼

�0:05 6:0 0:0 0:0

0:0 �3:33 3:33 0:0

�5:21 0:0 �12:5 0:0

0:425 0:0 0:0 2:0

2
6664

3
7775,

Cy ¼

0 0 0 12:5 0 ..
.

0 0 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 0 0 0 ..
.

0 12:5 0 0 0

2
6664

3
7775,

Cz ¼ I10; Q0 ¼ I10; B ¼ I10.

After calculating twenty eigensolutions for either of the two subsystems, the lowest seven eigenvalues of
the global system were computed by the subsystem synthesis method for e ¼ 0.5 and 1.0, respectively.
The lowest seven eigenvalues were also found by solving the global system directly. All the results are
displayed in Table 4. It can be found from Tables 3 and 4 that the subsystem synthesis method also gives
satisfying numerical results.

6. Concluding remarks

Eigenvalue problems of the linear Hamiltonian systems arising from H1 filtering systems are investigated in
this paper. Firstly, the Hamiltonian system eigenvalue problem arising from the design of a finite-time central
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HN filter is investigated, correspondence between minimum induced norm of the HN filter and fundamental
eigenvalue of the Hamiltonian system is demonstrated based on characteristics of the eigensolutions and
Riccati equations of the Hamiltonian systems. Secondly, a variational method is proposed to approximate
eigenvalues of a perturbed Hamiltonian system derived from a perturbed HN filtering problem. The
variational method is a Rayleigh–Ritz-type method adapted to calculate stationary values of an extended
Rayleigh’s quotient with dual argument functions. Lastly, based on the variational method, a subsystem
modal synthesis method is presented to compute eigenvalues of a large-scale Hamiltonian system consisting of
subsystems, which comes from a decentralised HN filtering problem. Furthermore, the variational methods
and numerical results of this paper also imply that eigenvalue problems of discrete Hamiltonian systems
arising from discrete-time HN filtering may be approached by similar variational measures.
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