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Abstract

Rolling-element bearing vibrations are random cyclostationary. This property is so symptomatic when an incipient fault

develops that it can be exploited for diagnostics. This paper discusses which cyclic spectral tools should be considered for

that purpose. Specifically, it demonstrates the optimality of the cyclic coherence, which can not only evidence the presence

of a fault in high levels of background noise, but can also return a relative measure of its severity. The estimation issue of

the cyclic coherence is addressed in detail, as well as its use in a statistical test, and sub-optimal simplifications. Eventually,

it is shown that the familiar squared-envelope spectrum happens to be a special case of the cyclic coherence with very

similar diagnostic capabilities.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Context

Because they are fragile mechanical parts, rolling-element bearings are the focus of a special attention in
condition monitoring programs. The experience gained over the years in monitoring rolling-element
bearings has led to the elaboration of specific technologies, among which vibration-based practices
enjoy a particular acknowledgement due to their non-invasive nature and their high reactivity to
incipient faults. Vibration monitoring essentially consists in analysing some relevant indicators that may be
either scalar (RMS value, kurtosis, or some complex combination of both), vectorial (signal spectrum,
cepstrum or envelope spectrum), or even matricial (time–frequency or waterfall representations)
[1–4]. In general the diagnosis capability of such techniques is proportional to their complexity. We are
presently arriving at a point where modern computing capacities allow the use of very sophis-
ticated monitoring techniques that reach the upper-right corner of the complexity/optimality curve. In this
context, the exploitation of cyclostationarity has recently been proved extremely fruitful to conceive high
accuracy diagnostics tools.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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1.2. Exploiting cyclostationarity in bearing diagnostics

Cyclostationarity encompasses a subclass of non-stationary signals which exhibit some cyclical
behaviour. A typical example of a cyclostationary signal is a random noise that is amplitude modu-
lated by a periodic function. A more versatile example is where different periodic modulations
envelope each frequency component of the random noise. Cyclostationarity has been shown to ideally fit
the property of many rotating and reciprocating machine vibrations, due to the inherent periodic
modulations that these sustain during operation [5]. The recognition that a vibration signal is cyclo-
stationary affords much more information than the usual and simplistic assumption of stationarity,
since it provides the tools to simultaneously analyse the content of a signal (e.g. spectral content)
along with the characterisation of how this content evolves periodically in time (e.g. within the machine
cycle).

The cyclostationarity of rolling-element bearing vibrations was implicitly admitted in Refs. [6,7], and
it was first formally demonstrated in Ref. [8]. More will be said on the subject in Section 2,
but the fundamental observation to keep in mind from now onward is that cyclostationarity is symp-
tomatic to the presence of faults, owing to the occurrence of repetitive shocks when a defect impacts a
rolling surface (a series of repetitive shocks may be seen as a signal periodically amplitude modulated in
time). The rate of repetition of these shocks—formally coined the cyclic frequency—then points out the
origin of the fault (i.e. the rotating part of the bearing on which the fault is located), and the cyclosta-
tionarity ‘‘intensity’’ (as measured by some spectral quantities to be introduced later) may serve to indicate its
severity.
1.3. Objectives of the paper

The diagnostics potentialities allowed by the cyclostationary approach have actually been foreseen
in a number of precursory works concerned either explicitly with rolling-element bearings or with
related mechanisms [5–10]. These works all proposed to exploit cyclostationarity by means of some ‘‘cyclic’’
tools such as the so-called cyclic spectrum or spectral correlation which are matrix indicators, or some
simplified scalar version of them such as the ‘‘degree-of-cyclostationarity index’’. Although such
indicators are very good at characterising the cyclostationary nature of a signal, their optimality for
diagnostics purposes has not been proved so far, and the statistical questions associated with their estimation
has been most often eluded. It is the ambition of this paper to fill in these gaps. In particular, we address such
simple questions as
(1)
1I

temp

the
which cyclic spectral quantity1 turns out to be optimal for diagnostics purposes?

(2)
 how can such a quantity be efficiently computed from finite length vibration measurements?

(3)
 which statistical test should be used in accordance with it in an effort towards automated diagnostics?
The answers to these questions are progressively developed through Sections 2–5, and will eventually lead to
the proposal of new methodologies for cyclostationarity-based diagnostics of rolling-element bearings. These
methodologies will be extensively illustrated on actual bearing signals in Section 6.

Let us finally emphasise that, in order to provide an unified presentation of the subject, this paper
necessarily involves a number of results that have been published in earlier works; however, we have deemed
useful to detail them here once again, in particular to correct some misconceptions that seem to have hold out
in the specialised literature.
t is admitted in this paper, as is often the case in vibration analysis, that spectral quantities are those of interest as opposed to dual

oral quantities such as moments or cumulants. Indeed the formers enjoy an obvious physical interpretation that is usually missing in

latters.
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2. Rolling-element bearing vibrations are cyclostationary

Before we proceed to answer these questions, we first need to give a detailed review of the cyclostationary
modelling of rolling-element bearing vibrations.2 Much of the material presented in this section is borrowed
from Refs. [8,10,13].
2.1. Vibration models

Incipient faults in rolling-element bearings are usually the consequence of a local loss of material (pitting,
spalling, corrosion, rubbing, contamination) on a matting surface (inner/outer race, rolling elements). When a
rolling surface contacts the fault, this produces a short duration impulse which excites some structural
resonance of the bearing or of the vibration transducer itself.3 The repetition of these impacts when the
bearing is operating results in a series of impulse responses whose temporal spacing depends on the type of
fault and on the geometry of the bearing. Table A.1 in the Appendix gives some typical fault frequencies, from
which a diagnosis can be carried out.

On top of that, the series of impulse responses produced by an incipient fault are possibly amplitude
modulated due to the passing of the fault into and out of the load zone. Typically, for a stationary outer race
and in the presence of a radial load, an outer race fault would experience an uniform amplitude modulation,
an inner race a periodic amplitude modulation at the period of the inner race rotation, and a rolling-element
fault a periodic amplitude modulation at the period of the cage rotation. Those modulation frequencies are
also passing reported in Table A.1 of the Appendix—see e.g. Ref. [4] for a complete discussion on that topic.

The above observations are well-known and have led in the past to the proposal of a simple harmonic4

model for the vibrations produced by single localised faults. Namely, let hðtÞ be the impulse response to a
single impact as measured by the sensor, qðtÞ ¼ qðtþ PÞ the periodic modulation of period P due to the load
distribution,5 T the inter-arrival time between two consecutive impacts on the fault; then the vibration signal
xðtÞ was modelled as [14]:

xðtÞ ¼
Xþ1

i¼�1

hðt� iTÞqðiTÞ þ nðtÞ, (1)

where index i denotes the occurrence of the ith impact and nðtÞ accounts for an additive background noise that
embodies all other vibration sources. Clearly, the power spectral density (signal-units2/Hz) of signal (1) gives
rise to a discrete spectrum

Sxðf Þ ¼
1

T
jHðf Þj2

Xþ1
k;l¼�1

qld f �
k

T
�

l

P

� �
þ Snðf Þ, (2)

wherein ql denotes the lth Fourier coefficient of the modulating function qðtÞ, dðf Þ is the Dirac delta pulse and
Snðf Þ is the power spectral density of the noise. This model predicts that classical spectral analysis could serve
the purpose of diagnostics simply by searching for the presence of those symptomatic harmonics located at the
fault frequency f ¼ 1=T and multiples f ¼ k=T , k ¼ �1;�2; . . . ; and their possible sidebands at
f ¼ k=T þ l=P, l ¼ �1;�2; . . . due to load modulations. Indeed, the spectral pattern

Pþ1
k;l¼�1qldðf � k=T �

l=PÞ uniquely defines the fault signature.
2The objective of this section is not to give a review on the theory of cyclostationary processes. Readers interested by the theoretical

aspects of cyclostationarity are invited to consult, e.g., Refs. [11,12].
3Bearings vibrations are typically measured with an accelerometer in a frequency range that includes the resonance frequency of the

sensor itself in order to turn it into a shock-sensing device.
4A harmonic signal is understood here as resulting from a summation of sinusoidal components. Note that a harmonic signal may not be

periodic in the general case, although it accepts a Fourier series expansion. This is actually the case with the signal generated by model (1)

wherein periods T and P are possibly incommensurable—i.e. their ratio is not a rational. Harmonic signals are also coined pseudo (or

quasi) periodic in the mathematical literature.
5The modulating function qðtÞ may also account for the periodic changes in the impulse response as the distance and orientation of the

impacts moves towards and backwards the sensor, as well as for possible bearing unbalance or misalignment.
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Fig. 1. Illustration as how a slight random fluctuation on the (inter-)arrival times of the impacts destroys the discrete structure in the

frequency domain: an ideal train of Dirac pulses (impact forces) in the time-domain (a) produces another train of Dirac pulses in the

frequency domain (b). The same train of Dirac pulses with random fluctuations (c) has a spectrum (d) where Dirac pulses rapidly vanish

with frequency and turn into a continuous baseline. The same phenomenon happens as well with respect to random fluctuations in the

magnitude of the impacts. The cut-off frequency f c is as defined in Eq. (7).
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Unfortunately, it appears that this naive spectral analysis is often prone to failure when applied to actual
rolling-element bearing vibration signals. This is because the harmonic model (1), despite being
pedagogically appealing, is generally wrong. First, the impacts on the fault do not occur exactly
periodically because of necessary random slips,6 possible speed fluctuations, and variations of the axial to
radial load ratio. Second, the magnitude of the impulses are likely to experience random fluctuations
as well due to the not exactly reproducible microscopic conditions when the fault impacts a rolling surface.
Overall, very slight random fluctuations can completely destroy the harmonic structure of model (1),
and result in a vibration signal that is essentially random in the frequency range of interest—see Fig. 1. To see
this, let us switch to the following more realistic model for the vibration signal produced by a faulty bearing
[8,10,15,16]:

xðtÞ ¼
Xþ1

i¼�1

hðt� iT � tiÞqðiTÞAi þ nðtÞ, (3)

where ti and Ai accounts for the uncertainties on the arrival time (jitters) and on the magnitude of the ith
impact, respectively. From the preceding discussion, ftig

1
�1 and fAig

1
�1 are modelled as two random

sequences with expected values Eftig ¼ 0 and EfAig ¼ 1 (without loss of generality since the average
magnitude is assigned to qðiTÞ). For simplicity, we will further assume that ftig

1
�1 and fAig

1
�1 are mutually

independent, white,7 stationary sequences, such that

Eftitjg ¼ dijs2t ,

EfA2
i g ¼ 1þ dijs2A ð4Þ

with st and sA the standard deviations, and dij the Kronecker symbol. Although these assumptions are
somewhat idealised, they will allow us to gain sufficient insight into the analysed phenomenon from simple
calculations. Indeed, model (3) and its implications have been thoroughly studied in Refs. [8,10,13]. Our main
finding in those references was that even in the presence of very slight random fluctuations—i.e. typically on
the order of a few percents—model (3) produces a harmonic structure that rapidly turns into a random signal.
Precisely, the so-generated vibration signal xðtÞ happens to expand as a mixture

xðtÞ ¼ xH ðtÞ þ xRðtÞ (5)
6The contact angle is not the same inside and outside the load zone so that rolling elements that are diametrically opposed w.r.t the

radial load tend to roll at different speeds in spite of the cage trying to force them to maintain a similar speed.
7It was shown in Ref. [13] that having uncorrelated (white) inter-arrival time differences tiþ1 � ti is physically more realistic than

imposing uncorrelated (white) jitters ti on the arrival times, so that Efðtiþ1 � tiÞðtjþ1 � tjÞg ¼ dijs2t should really be the correct assumption

to use in numerical simulations. However when it comes to theory this leads to extra complications while not fundamentally changing the

resulting properties of the vibration signal. This is why we will stick to assumption (4) in our theoretical analysis.
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of:
(1)
8T

that
9F
a weak harmonic component xH ðtÞ located in the lower-frequency range, and
(2)
 a dominating random cyclostationary component xRðtÞ located in the higher-frequency range.
We now address the spectral characteristics of these two components one by one, in more details.

2.2. Assessment of the harmonic contribution

The harmonic contribution xH ðtÞ in signal xðtÞ has a power spectral density (signal-units2/Hz) given by [8]

SxH
ðf Þ ¼

1

T
jHðf Þj2jFðf Þj2

Xþ1
k;l¼�1

qld f �
k

T
�

l

P

� �
, (6)

where Fðf Þ stands for the Fourier transform of the probability density function fðtÞ of the random variable ti.
Note that as expected, this is a discrete spectrum very similar to Eq. (2). Please keep in mind that it is the
pattern of spectral lines

Pþ1
k;l¼�1qldðf � k=T � l=PÞ that carries the diagnostic information and that it assigns

uniquely a distinctive spectral signature to each bearing fault. At least this is the idea behind the ideal model
(1) without random fluctuations. Now the difference between the power spectral densities (2) and (6) is the
presence of the weighting function jFðf Þj2. Unfortunately this weighting is not innocuous since Fðf Þ is the
transfer function of a low-pass filter—as necessary for the Fourier transform of a probability density function.
Therefore, the larger the random fluctuations—i.e. the standard deviation probability density function fðtÞ—
the shorter the bandwidth of Fðf Þ. More precisely, assuming a Gaussian8 probability density function fðtÞ
with standard deviation st, the corresponding filter has a 3 dB cut-off frequency given by

f c ’
0:19

st
(7)

and a frequency gain that decreases sharply as Fðkf cÞ=Fð0Þ ¼ 2�k2 so that for any frequency f42f c (12 dB
drop) the harmonic structure of xH ðtÞ has almost completely vanished—see Fig. 1(d). For instance, with 1%
fluctuation which is quite typical (st ¼ 0:01T), model (3) yields no more than about 40 significant harmonics.
In short, even slight random fluctuations are prone to severely low-pass filter the harmonic content of signal xHðtÞ.
Now, considering the fact that the structural transfer function Hðf Þ will be typically of a high-pass or high-
frequency band-pass nature (as expected from acceleration measurements possibly including the sensor
resonance), it makes no doubt that the frequency gain jHðf ÞFðf Þj2 will strongly attenuate the harmonic
structure of signal xH ðtÞ. The presence of a strong additive background noise nðtÞ will then finish the job by
completely masking the signal, together with the diagnostic information, as illustrated in Fig. 2.

2.3. Assessment of the random contribution

The random contribution xRðtÞ in signal xðtÞ has a power spectral density (signal-units2/Hz) given by [8]

SxR
ðf Þ ¼

1

T
jHðf Þj2 1þ s2A � jFðf Þj

2
� �

Q0, (8)

where Q0 stands for the power—i.e. the mean-square value—of the modulating function qðtÞ. Note that
contrary to the harmonic contribution spectrum (6), this is now a continuous spectrum and it is weighted by a
high-pass9 function ð1þ s2A � jFðf Þj

2Þ. Hence, the random contribution is likely to dominate the vibration
signal in the frequency range spanned by the transfer function Hðf Þ. However, due to the continuous nature of
its power spectral density, this contribution is unable to display the diagnostic information by means of
classical spectral analysis.
he Gaussian assumption is used for simplicity, and provides anyhow very similar results than the more realistic gamma assumption

is constrained to deliver positive inter-arrival times [13].

rom probability theory, jFðf ÞjpFð0Þ ¼ 1, because fðtÞX0.
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Fig. 2. Synthesis of the vibration signal produced by a localised fault as seen in the time domain (left) and in the frequency domain (right):

(a,b) a series of impact forces with slight random fluctuations in their inter-arrival times ðmean value ¼ TÞ and in their magnitudes; (c,d)

possible modulation by shaft or cage rotation ðperiod ¼ PÞ; (e,f) filtering by a structural or transducer resonance; (g–h) additive noise from

other vibration sources.
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2.4. Insufficiency of classical spectral analysis

Putting all results together, the power spectral density of the vibration signal (3) reads

Sxðf Þ ¼
1

T
jHðf Þj2|fflfflffl{zfflfflffl}
ðiÞ

jFðf Þj2|fflfflffl{zfflfflffl}
ðiiÞ

Xþ1
k;l¼�1

qld f �
k

T
�

l

P

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

þ ð1þ s2A � jFðf Þj
2ÞQ0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðivÞ

2
66664

3
77775þ Snðf Þ|fflffl{zfflffl}

ðvÞ

, (9)

wherein:
�
 the transfer function (i) accounts for the high-pass or high-frequency band-pass filtering of the metallic
structure (possibly including the sensor resonance),

�
 the weighting function (ii) accounts the low-pass filtering as a result of the random jitter on the impacts

(inter-)arrival times,

�
 the discrete spectrum (iii) accounts for the fault signature,

�
 the continuous spectrum (iv) accounts for a high-pass distribution of energy due to the inclusion of

randomness in the model,

�
 and the spectral power (v) accounts for the presence of background noise.
Note that Sxðf Þ decomposes as the spectrum of a forcing term—(ii)+(iii)+(iv)—multiplied by the system
transfer function (i). This is illustrated in Fig. 2. As clearly evidenced by this figure, the spectral signature of
the fault (iii) has a weak energy that is likely to be completely masked by that of the background noise; indeed
the noise is often found to have very large power in the lower frequency range, especially when it contains the
harmonics parts of other rotating components such as gears. This explains why classical spectral analysis often
fails to detect rolling-element bearing faults in practice.
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Table 1

Bearing characteristics of Example 1

Speed of shaft ðOÞ (rev/min) 650

Bearing roller diameter ðdÞ (mm) 21.4

Pitch circle diameter ðDÞ (mm) 203

Number of rolling elements ðnÞ 23

Contact angle ðyÞ (deg.) 9.0

J. Antoni / Journal of Sound and Vibration 304 (2007) 497–529 503
2.5. Illustrative Example 1

Our argumentation is illustrated by means of numerical simulations. A synthetic signal that simulates the
vibrations ðm=s2Þ produced by an outer-race fault was generated according to model (3) with a sampling
frequency Fs ¼ 20 kHz and bearing characteristics as indicated in Table 1. From Table A.1, the expected fault
frequency is 1=T ¼ 111:6Hz. The standard deviation st of the jitter10 was set to 0:04T and that of the
magnitudes of the impulses (i.e. sA) to 0. In order to simulate the excitation of a structural resonance, the
signal was further filtered with the impulse-response a second-order system with natural frequency f n ¼ 6 kHz
and damping ratio z ¼ 5%. Finally, a stationary white Gaussian noise was added so as to produce a signal-to-
noise ratio of 0 dB. Fig. 3(a,b) displays the signal in the time domain before and after adjunction of the
background noise. At first glance it may seem surprising that such a signal is essentially random but not
harmonic, even before the adjunction of noise. Nevertheless, according to formula (7), the cut-off frequency

f c ’
0:19

0:04T
¼ 530Hz (10)

states that the harmonic structure has almost completely vanished after f42f c ’ 1:1 kHz. This is checked in
Fig. 3(c) which displays the power spectral density. It is seen that, just as predicted by the theory, harmonics
die off after 1:1 kHz whilst, at the time, the remaining lower-order ones below 2f c are strongly masked by the
background noise.

2.6. The cyclic spectral analysis of bearing vibration signals

We now proceed to show that the diagnostic information contained in the random signal xRðtÞ—that
classical spectral analysis was found hardly capable to reveal in the presence of masking noise—can be
distinctly recovered by means of cyclic spectral analysis. This actually amounts to exploiting the
cyclostationarity of xRðtÞ. Indeed, one way to investigate whether a signal is cyclostationary or not is to
check for the presence of statistical correlation between its spectral components spaced apart by some
frequency shift aa0. Whereas such correlations do not exist for stationary signals (because their spectral
components are independently and randomly phased), they exist for cyclostationary signals in which wave
packets occur in a structured repetitive pattern (i.e. spectral components are necessarily synchronously
phased). More precisely, by denoting X Lðf Þ the Fourier transform of a cyclostationary signal xðtÞ evaluated
over an interval of length L, it can be shown that

Sxðf ; aÞ ¼ lim
L!1

1

L
E X L f þ

a
2

� �
X L f �

a
2

� ��n o
(11)

will produce a non-zero correlation for any cyclic frequency a that characterises the cyclostationarity of signal
xðtÞ. By analogy with the power spectral density which is defined by Eq. (11) with a ¼ 0, the quantity Sxðf ; aÞ is
coined the cyclic power spectrum (signal-units2/Hz).11 Intuitively, the cyclic power spectrum may be
interpreted as providing the distribution of the frequency content of signal xðtÞ that statistically repeats itself
10As indicated in the footnote of page 7 the correct assumption for realistic numerical simulations is Efðtiþ1 � tiÞðtjþ1 � tjÞg ¼ dijs2t
which is slightly different than the simplistic assumption (4). Again this does not fundamentally change the theory.

11This quantity is also sometimes referred to as the spectral correlation, although the latter is more logically defined by Eq. (11) without

the 1=L normalisation so as to produce a surface-wise (signal-units2=Hz2) spectrum [17].
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Fig. 3. Synthesised vibration signal of Example 1 (a) before and (b) after adjunction of background noise. (c) The corresponding power

spectral densities (resp. lower and upper curves) measured from 1000 independent averages with frequency resolution Df ¼ 0:3Hz.
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with rate a. For instance a white random noise amplitude modulated by a periodic function of period T would
produce a non-zero, constant-valued, cyclic power spectrum at each cyclic frequency a ¼ k=T , k ¼

0;�1;�2; . . . :
Coming back to our rolling-element bearing signal (3), it can be shown that its cyclic power spectrum reads

[8]:

Sxðf ; aÞ ’
1

T
H f þ

a
2

� �
H f �

a
2

� ��
FðaÞð1þ s2AÞ � F f þ

a
2

� �
F f �

a
2

� ��� �

�
Xþ1

k;l¼�1

Qld a�
k

T
�

l

P

	 

þ d½a�Snðf Þ, ð12Þ

where the ’ sign comes from the fact that we have now neglected the contribution from the weak harmonic
contribution (which is truly justified, at least after twice the cut-off frequency f c (7), as explained above),
where d½a� (with brackets) denotes the Kronecker delta pulse such that d½a� ¼ 1 if a ¼ 0 and 0 elsewhere, and
where Ql is the lth Fourier coefficient of qðtÞ2. Inspection of the cyclic power spectrum (12) calls for some
important remarks:
(1)
 setting a ¼ 0 in Eq. (12) produces as a particular case the continuous power spectral density (9),

(2)
 setting a ¼ k=T þ L=Pa0 in Eq. (12) produces yet another continuous spectrum in the f frequency

variable,
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(3)
12

freq
more importantly, looking at Sxðf ; aÞ as a function of the a frequency variable now fully discloses the
hidden diagnostic information through the discrete spectrum

Pþ1
k;l¼�1Qld½a� k=T � l=P�. Indeed, this

pattern of spectral lines is found very similar to that appearing in spectra (2) or (9), with the Fourier
coefficients Ql of qðtÞ2 simply substituted for the Fourier coefficients ql of qðtÞ. As a consequence it
uniquely defines each bearing-fault type and it can just as well serve as a distinctive fault signature to be
used for diagnostic purposes.
The squared-magnitude cyclic power spectrum of the bearing vibration signal bears a very interesting
interpretation when it is normalised by the signal power, that is when the following spectral quantity is
considered:

jgxðf ; aÞj
2 ¼

jSxðf ; aÞj2

Sxðf þ ða=2ÞÞSxðf � ða=2ÞÞ
, (13)

which is known as the (squared-magnitude) cyclic coherence. By combining definitions (11) and (13), it is seen
that the (squared-magnitude) cyclic coherence is actually like a correlation coefficient between the spectral
components at frequencies f þ a=2 and f � a=2. As a consequence it is normalised between 0 (no spectral
correlation) and 1 (perfect linear relationship between two spectral components).

Now, let us assume that (i) the cyclic coherence is considered within a ðf ; aÞ frequency domain12 such that

0oao2f cof ; a5f (14)

with f c as defined in Eq. (7), and that (ii) the transfer function and the noise power density are smooth enough
so that, for a small a as just specified in Eq. (14), Hðf � a=2Þ ’ Hðf Þ and Snðf � a=2Þ ’ Snðf Þ. Then, noting in
passing that Fðf � a=2Þ ’ 0 under (14), it is easy to show that:

jgxðf ; aÞj
2 ’

SNRðf Þ

1þ SNRðf Þ

����
����
2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ðiÞ

jFðaÞj2|fflfflffl{zfflfflffl}
ðiiÞ

Xþ1
k;l¼�1

Ql

Q0

����
����
2

d a�
k

T
�

l

P

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

, (15)

where

SNRðf Þ ¼
SxR
ðf Þ

Snðf Þ
¼
ð1þ s2AÞQ0

T

jHðf Þj2

Snðf Þ
(16)

stands for the signal-to-noise ratio of the fault. Hence, the interpretation of the cyclic coherence of the bearing
vibration signal is the following:
(1)
 when read as a function of the f frequency, the cyclic coherence is essentially a measure of the signal-to-

noise ratio of the fault normalised between 0 and 1 (quantity (i) in Eq. (15)); the latter increases with the
modulation intensity Q0, with the modulation randomness s2A, and with the impacts frequency 1=T ,
(2)
 when read as a function of the cyclic frequency a, the cyclic coherence displays the fault signature (iii); the
latter is all the more low-pass weighted by function (ii) as the arrival times of the impacts undergo
randomness.
As a consequence of point (1), the magnitude of the cyclic coherence in the f frequency domain may serve as a
relative measure of the fault severity. As a consequence of point (2), the diagnostics information that was
previously masked by other vibration components in the f frequency domain is now fully revealed in the a
frequency domain (Fig. 4).
Condition (14) will always be fulfilled in practice; it will be seen in the examples of Section 6 that the range of interest of the cyclic

uency a is typically one order of magnitude below that of the f frequency.
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3. Experimental cyclic spectral analysis

The preceding section has demonstrated that the diagnostic information is fully revealed in the cyclic
frequency domain whatever the degree of randomness of the fault signal and the level of background noise.
The next section will show how this information can be efficiently extracted from finite-length vibration
measurements. In the meantime, it remains to discuss how the cyclic power spectral density (11)—and
therefore the cyclic coherence (13)—can be computed in practice. We believe that this fundamental question
has been disregarded in several earlier works, and yet it is the key for any successful exploitation of
cyclostationarity in bearing diagnostics.

The issue we are addressing here is how to get an accurate estimate of Sðf ; aÞ, say Ŝ
ðLÞ
ðf ; aÞ, from a

finite-length record fx½n�gL�1n¼0 of L samples acquired at the sampling rate F s (by convention x½n� ¼ xðn=FsÞ

with n an integer value). This issue has been thoroughly studied in Ref. [17], whose we resume here the main
results.

3.1. The averaged cyclic periodogram

Probably the most practical estimator Ŝ
ðLÞ
ðf ; aÞ is obtained from the averaged cyclic peridogram. Let

fw½n�gNw�1
n¼0 be a positive and smooth Nw-long data-window and let wk½n� ¼ w½n� kR� be its shifted version by

R samples so that wk½n�x½n� selects a segment of x½n� at times kR; . . . ; kRþNw � 1. The increment R is set
between 1 and Nw so as to allow possible overlap between adjacent segments. Then the averaged cyclic
periodogram is defined as

Ŝ
ðLÞ

x ðf ; aÞ ¼
1

KF skwk
2

XK�1
k¼0

X
ðkÞ
Nw

f þ
a
2

� �
X
ðkÞ
Nw

f �
a
2

� ��
, (17)

where

X
ðkÞ
Nw

f �
a
2

� �
¼

XkRþNw�1

n¼kR

wk½n�x½n�e
�jpan=Fse�j2pfn=Fs (18)

is the discrete Fourier transform (DFT) of the kth weighted sequence wk½n�x½n�e
�jpan=Fs , K ¼ bðL�NwÞ=Rc þ

1 (where bxc stands for the greatest integer smaller than or equal to x) is the total number of averaged
segments, and kwk stands for the window RMS value. The principle is illustrated in Fig. 5. Furthermore, the
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Fig. 5. Principle of the averaged cyclic periodogram: segmenting, windowing, Fourier transforming, averaging. The window shape and

overlap must be chosen according to the condition illustrated in the bottom of the figure.
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estimation variance associated with this estimator is given by, for large L:

VarfŜ
ðLÞ

x ðf ; aÞg ’ E � Sx f þ
a
2

� �
Sx f �

a
2

� �
(19)

almost everywhere (i.e. except on a finite number of frequency points), where the variance reduction factor E
reads

E ¼
XK�1

k¼�Kþ1

Rw½kR�2 �
K � jkj

K2
(20)

with Rw½n� the autocorrelation function of the data-window w½n�.
Note that this simple estimator13 is a direct transcription of the formal definition (11) where the expected

value (ensemble average operator) has been replaced by a (finite) average over segments, and where the limit to
infinity of the integration interval has been omitted. Note also that it does not require any key phasor signal as
sometimes advocated, and that the choice of Nw is completely independent of the cyclic frequency a.
Moreover, as compared to other potential spectral estimators, we claim that the averaged cyclic periodogram
has the advantage of (i) ease of implementation and (ii) enjoying a fast and efficient computation by means of
several short FFT’s of fixed size.
13When a ¼ 0, it also boils down to the classical averaged periodogram—or Welch’s estimator—of the power spectral density.
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3.2. Practical guidelines

3.2.1. Setting the window shape and the amount of overlap

We have shown in Ref. [17] that the window shape and the amount of overlap must be jointly chosen so that
the condition

Xþ1
k¼�1

wk½n�
2 ¼ C (21)

is met for some arbitrary constant C—see bottom of Fig. 5. If that condition was not met, the estimator
Ŝ
ðLÞ

x ðf ; aÞ would possibly yield non-zero values at incorrect cyclic frequencies, an effect that has been coined
cyclic leakage. Typical configurations that will ensure condition (21) are:
�

1

NF
a hanning or a hamming window with 2/3 overlap between adjacent segments,

�
 a halfsine window with 1/2 overlap between adjacent segments—as illustrated in Fig. 5.
It is noteworthy that these recommendations also bring the variance reduction factor (20) to a near minimal
value without increasing too much the computational demand.

3.2.2. Setting the cyclic frequency resolution Da
The cyclic frequency resolution Da is the minimum spacing between two cyclic frequencies at which the

cyclic power spectrum is evaluated. It must be fine enough so that no cyclic information is lost, but not
excessively fine so as to avoid unnecessary computations. It is shown in Ref. [17] that the critical (i.e. coarser
allowable) cyclic frequency resolution is given by

Da ¼
F s

L
, (22)

where L is the record length. Hence, the cyclic frequency axis should be sampled like ak ¼ kFs=L,
k ¼ 0;�1;�2; . . . and the cyclic power spectrum evaluated at each of these cyclic nodes. As a corollary, the
longer the recording time, the finer the available cyclic frequency resolution. Consequently, in
vibration-based monitoring of rolling-element bearings, the user should be careful to record long enough
signals to as to be able to resolve between the different types of faults, and between the various types of
sidebands—see Table A.1.

3.2.3. Setting the frequency resolution Df

Given a data-window shape w½n�, the frequency resolution may be evaluated as

Df ¼

PNw�1
n¼0 w½n�2

j
PNw�1

n¼0 w½n�j2
Fs. (23)

For instance, Df ’ 1:5F s=Nw with a hanning data-window, and 1:2Fs=Nw with a halfsine data-window.
Setting the frequency resolution Df then amounts to choosing the data-window length Nw. In turn, given Nw

the frequency axis is sampled14 like f k ¼ kFs=NFFT, k ¼ 0; 1; . . . ;NFFT � 1 where NFFTXNw is typically the
smallest power of 2 greater than or equal to Nw.

Clearly, the shorter the data-window, the coarser the resolution Df . We claim that imposing a coarse

resolution is necessary for at least two reasons. First, it is the main control lever to pull down the estimation
variance (19) to reasonably small values since the variance reduction factor (20) is a decreasing function of Nw.
In order to achieve sufficient statistical stability of the estimates, the user should be careful to ensure that
Nw=L51, or equivalently that

Da5Df , (24)
4This frequency sampling is accomplished automatically when computing the FFT of the windowed data (possibly zero-padded if

FT4Nw) over NFFT lines.
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where the ratio Da=Df can be shown to be on the order of the variance reduction factor (20). It is our
feeling that this condition has been missed in several earlier works where the images obtained for the cyclic
spectra displayed as functions of f and a hardly exhibited the expected discrete structure along the cyclic
frequency axis.

The second reason why the resolution Df should be kept coarse enough is to reduce the memory allocation
required to store the collection of NFFT-long cyclic spectra computed at several cyclic frequencies ak.

3.2.4. The analytical signal

Because the discrete Fourier transform is a periodic function of frequency, it results that X
ðkÞ
Nw
ðf þ

a
2
ÞX
ðkÞ
Nw
ðf � a

2
Þ
� in Eq. (17) truly measures the correlation between spectral components spaced apart by a (and

not a� kFs, ka0) only within the principal frequency domain—see Fig. 6(a):

jf jp
F s � jaj

2
. (25)

All values of the cyclic power spectrum outside this domain should be disregarded as they produce artifacts.
One straightforward solution to ensure that condition (25) is met is to compute the cyclic power spectrum on
the analytical signal15 [8]—see Fig. 6(b).

3.3. Illustrative Example 2

The estimation of the cyclic power spectrum is briefly illustrated here on the synthetic signal of Example 1.
All simulation parameters are as specified in Section 2.5—see Table 1—except that an inner-race fault was
now generated. According to Table A.1, the signal is thus expected to exhibit cyclostationarity at the inner-
race element passing frequency and its multiples, that is at a ¼ k=T ¼ k � 137:5Hz, k ¼ 0;�1;�2 . . . as well
as at k=T þ l=P ¼ k � 137:5þ l � 10:8Hz, l ¼ 0;�1;�2 . . . due to modulations. The estimation of the cyclic
power spectrum was carried out using the averaged cyclic periodogram (17) with the parameters as indicated
in Table 2.Different window lengths were tried, so as to produce different frequency resolution Df and
variance reduction factors E.

The results are displayed in Fig. 7. It is seen that the theoretical ‘‘discrete in a and continuous in f’’ property
of the cyclic power spectrum shows off correctly only after sufficient averaging is performed, i.e. when
Ep:0076 (at least 132 equivalent number of averages) or, equivalently when DfX100Da. The spectral
15The analytic signal may be simply obtained from the DFT by applying the transformation X ðf Þ ! ð1þ signðf ÞÞX ðf Þ.



ARTICLE IN PRESS

0 2 4 6 8 10
f  frequency [kHz] f  frequency [kHz]

0 2 4 6 8 10

α 
 f

re
qu

en
cy

 [
H

z]
α 

 f
re

qu
en

cy
 [

H
z]

0

40

80

120

160

200

240

280

320

360

0

40

80

120

160

200

240

280

320

360

137.5 Hz

2x137.5 Hz

10.8 Hz

Fig. 7. Estimated cyclic power spectrum of Example 1 displayed as a grey-level image. (a) Variance reduction factor E ¼ 1, (b) E ¼ 0:1401,
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Table 2

Estimation parameters of Example 2

Fixed parameters

Sampling frequency ðFsÞ (kHz) 20

Record length ðLÞ 16 384 samples

Window type Hanning

Overlap 2/3

a Frequency resolution ðDaÞ (Hz) 1.2

Scrutinised cyclic frequency range (Hz) [0;366]

Variable parameters

Window length ðNw samples) 16 384 4096 1024 256

f Frequency resolution ðDf in Hz) 1.8 7.3 29.3 117.2

Variance reduction factor ðEÞ 1 .1401 .0312 .0076

Equivalent number of independent averages ð1=EÞ 1 7 32 132

J. Antoni / Journal of Sound and Vibration 304 (2007) 497–529510
signature of the fault is then clearly recognisable, with its harmonics and sidebands (horizontal lines) at the
expected positions. Very similar results have been obtained with various signal-to-noise ratios.

3.4. Some common pitfalls

We insist on the fact that the inherent assumption when computing the cyclic power spectrum or the cyclic
coherence of a cyclostationary signal is that the signal is random. This is why the estimation process requires
a large amount of averaging in the f direction, as is always the case in the experimental spectral analysis of
random vibrations. As a consequence it is erroneous to try to compute the cyclic power spectrum of a
harmonic signal [18,19]. Indeed, purely harmonic signals should be computed with other dedicated tools (e.g. a
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very long DFT which allows preserving a very fine frequency resolution) which are outside the scope of this
paper.16 Nevertheless, in practice the signal of interest is likely to be of a mixed nature, that is a mixture of
random and harmonic components. Ideally, all harmonic components should therefore be removed before
cyclic spectral analysis in order to avoid interferences that would mask the cyclostationary structure of the
random contribution [5,10]. Ref. [20] provide some algorithms to blindly filter out all the random components
from a signal, which have been purposely devised for bearing diagnostics. However, provided that the
harmonic and the random components happen to fall in different frequency regions, the removal of the former
may be needless. This is actually the situation that frequently occurs with rolling-element bearing vibrations,
where the fault excites some high-frequency resonance that is well beyond the lower frequency region where
masking harmonics (from gears, unbalance, blade frequency, etc) take place.
4. Cyclic spectral analysis for bearing diagnostics

It has been explained in Section 2 that classical spectral analysis may fail to detect bearing faults because of
masking noise and of the marked randomness of the vibrations. Yet, the diagnostic information has been
shown to rise up intact in the cyclic frequency domain in the form of symptomatic discrete spectral signature.
The natural idea is therefore to devise a diagnostic strategy based on the detection of such signatures.
Moreover, in order for this strategy to be credible and possibly implemented in an automated monitoring
system, its sensitivity must be assessed by means of a (user-specified) rate of false alarm.

Several strategies have actually been proposed in the specialised literature in order to detect the
cyclostationary signature of rolling-element bearings or related mechanical components [6–9]. Most of them
are based on the direct visual inspection of the magnitude of the cyclic power spectral density displayed as an
image over the ðf ; aÞ frequency domain. Obviously the sensitivity of such an approach is rather subjective as it
strongly depends on the diagnostician expertise. Moreover nothing justifies that the cyclic power spectrum is
the best spectral quantity to be considered. We prove below that the cyclic coherence should be considered
indeed, for several reasons.

4.1. An optimal test

Let us first recast the diagnostics issue into a statistical decision test. Namely, given a characteristic cyclic
frequency a at which a fault is likely to occur, a probability p of false alarm (i.e. of wrongly concluding to the
presence of a fault), and a finite-length record fx½n�gL�1n¼0 of L samples, one must decide between to the two
alternative hypotheses:

H0 : ‘‘The vibration signal does not contain a fault at the cyclic frequency a:’’

H1 : ‘‘The vibration signal contains a fault at the cyclic frequency a:’’
(26)

It is proved in the Appendix that the following decision rule is optimal:

‘‘Reject the null hypothesis H0 if jĝðLÞx ðf ; aÞj
2 ¼

jŜ
ðLÞ

x ðf ; aÞj
2

Ŝ
ðLÞ

x ðf þ
a
2
ÞŜ
ðLÞ

x ðf �
a
2
Þ

X
E

2
� w21�p;2 ’’, (27)

where w21�p;2 is the percentile of the chi-square law with two degrees-of-freedom and E is the variance reduction
factor defined in Eq. (20).

The optimality of the decision rule (27) is understood in the sense that:
(1)
16
it is invariant under any linear filtration of the signal,

(2)
 it maximises the probability of detection given a fixed record length L and a fixed probability of false alarm

p or, put differently, it minimises the necessary record length L to not exceed a given probability of error
(erroneous detectionþmissed detection).
This discussion is reminiscent to recognising the fundamental difference between pure and impure second-order cyclostationarity [5].
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Table 3

Estimation parameters of Example 3

Record length ðLÞ 22 050 samples

Window type Hanning

Overlap 2/3

Window length ðNwÞ 128 samples

f Frequency resolution ðDf Þ (Hz) 234.4

a Frequency resolution ðDaÞ (Hz) 0.9

Scrutinised cyclic frequency rangea [0.9;600]

Variance reduction factor ðEÞ 0.0028

aThe zero cyclic frequency is excluded as it produces a constant unit-valued cyclic coherence.
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Fig. 8. (a) Estimated cyclic power spectrum (magnitude in signal-units2=Hz) of Example 2. (b) Estimated cyclic coherence (squared-

magnitude)—the 0.1%-statistical threshold is 0.024.
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The optimality holds true for the (squared-magnitude) cyclic coherence jĝðLÞx ðf ; aÞj
2 but not for the cyclic power

spectrum. Yet another considerable advantage linked with the cyclic coherence—notwithstanding its sound
interpretation as a signal-to-noise ratio as explained in Section 2—is that it involves an easy-to-compute
threshold (27) that is independent of frequency. This is illustrated in the following example.

4.2. Illustrative Example 3

The outer-race fault signal of Example 2 is considered again. However, it was further corrupted by a
narrow-band noise so as to simulate the contribution of another dominant vibration source. This extra noise
source was generated by filtering a white Gaussian noise with a second-order system filter with natural
frequency f n ¼ 2 kHz and damping ratio z ¼ 5%, such as to produce an overall signal-to-noise ratio of
�24 dB. Such a small signal-to-noise ratio is not uncommon in practice—the corresponding signal really looks
stationary in the time-domain—and it illustrates well a typical situation where cyclic spectral analysis, if
properly applied, will succeed.

The cyclic power spectrum and the cyclic coherence were computed according to the algorithm outlined in
Section 3, with the parameters given in Table 3.

The results are displayed in Figs. 8(a,b) as functions of f and a. It is seen that in the cyclic power spectrum
the fault signature is now completely masked by the presence of the narrow-band noise around f	2 kHz and
whatever the cyclic frequency a. This is because from Eq. (19) the estimation variance of the cyclic power
spectrum is roughly proportional to the square of the power spectrum, so that regions where the noise power
predominates can completely absorb the picture dynamics at the expense of other regions where the (weak)
diagnostic information lies. Obviously, performing a statistical test on that cyclic power spectrum would be
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hardly feasible because the threshold would have to follow the spectral variations of the estimation variance.
On the other hand, the cyclic coherence perfectly exhibits the expected fault signature in the frequency range
[5;8] kHz where the signal-to-noise ratio is the greatest, in spite of the extreme background noise. This is
because the dynamics of its estimation variance is equalised throughout the whole f frequency domain.17 For
the same reason it easily allows performing a statistical test: according to the decision rule (27), any value of
the (squared-magnitude) cyclic coherence that is greater than or equal to the constant threshold 1

2
E � w21�p;2 will

point out the emergence of the fault signature in 100ð1� pÞ% of the cases. For instance, with a probability of
false alarm p ¼ 0:001 (0.1%), this is a threshold of 1

2
E � w2:999;2 ¼ 0:024 whatever f and a.

5. Substantial simplifications

The statistical test introduced in the previous section is optimal in several respects and would certainly
benefit to a diagnostics protocol as such. However, there are at least two reasons why further simplifications
may be deemed desirable.

First, the computation time and the memory allocation required to evaluate the cyclic coherence over a
large ðf ; aÞ domain with a fine Da resolution may still be too onerous in certain industrial applications where
near real-time processing is required (for instance, the cyclic coherence of example 2 took about 2min to be
computed with a x86, 996MHz processor and was stored as a 660� 128 pixel image). Second, the degree of
expertise required by the user to interpret the cyclic coherence displayed as an image—and any matrix
diagnostic indicator in general—may be too demanding. In such cases, substantial simplifications are still
possible. They essentially rely on designing sub-optimal indicators that do not consist in a complete
exploration of the ðf ; aÞ plane, and that can be displayed in a vectorial form. Two different situations should
be distinguished whether the cyclic frequencies at which the diagnostic information lies is (partially) known or
totally unknown. The first situation leads to considering the cyclic coherence at only one cyclic frequency. The
second one leads to the integrated cyclic coherence and the squared-envelope spectrum.

5.1. The cyclic coherence at only one cyclic frequency

This first simplification trivially consists in computing the cyclic coherence at the cyclic frequency that
coincides with the expected characteristic fault frequency. In practice, the fault frequency is only known
approximately (it depends on rough estimates of the rotation speed and of the angle of contact) so that the
cyclic coherence should actually be computed in a narrow cyclic frequency band around the expected fault
frequency, and its greatest value retained.

Although the proposed strategy involves the cyclic coherence, it is sub-optimal in the sense that only one
cyclic frequency is taken into consideration and that the full spectral fault signature ðfundamentalþ
harmonicsþ sidebandsÞ is not exploited. This might rise some difficulties to discriminate fault types if it
happens that the cyclic frequency resolution Da is set too coarse to properly resolve between different
characteristic frequencies.

5.2. The integrated cyclic coherence (ICC)

The preceding simplification has led to a vectorial diagnostic indicator by considering only one single cyclic
frequency of interest. When the latter is unknown, or when the full spectral signature ðfundamentalþ
harmonicsþ sidebandsÞ is to be preserved, another strategy consists in scrutinising the whole cyclic frequency
domain while shrinking the f frequency domain. Surely the most natural way to do so is to integrate the
(squared-magnitude) cyclic coherence along the f variable. In order to retain only the relevant diagnostic
information and not to pollute it with other interferences (e.g. harmonic interferences from the lower-
frequency range), the integration should be carried out in the frequency band where the signal-to-noise ratio is
the highest, say ½F 1;F 2� (0pF 1oF2pFs). Practically, by denoting f k ¼ k=NFFT the sampled frequency
17The cyclic coherence (13) may be seen as the cyclic power spectrum (11) normalised by its variance (19).
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variable—see Section 3.2.3—this amounts to computing the indicator

ICCðLÞx ðaÞ ¼
1

K2ðaÞ � K1ðaÞ þ 1

XK2ðaÞ

k¼K1ðaÞ

jĝðLÞx ðf k; aÞj
2, (28)

where fK1ðaÞpkpK2ðaÞg stands for the set of frequency nodes that fall within the intersection of the
frequency band ½F1;F 2� and of the principal domain (25), that is such that, for each a—see Fig.9:

K2ðaÞ ¼ bNFFT �minðF2;Fs=2� jaj=2Þc;

K1ðaÞ ¼ bNFFT �maxðF1; jaj=2Þc (analytic signal);

K1ðaÞ ¼ bNFFT � F 1c (real signal):

(29)

It is proved in the Appendix that the corresponding decision rule reads:

‘‘Reject the null hypothesis H0 if ICCðLÞx ðaÞX
E

2
� w21�p;n ’’, (30)

where n ¼ b2ðK2ðaÞ � K1ðaÞ þ 1ÞNFFT=Nwc.
Note that, in spite of being vectorial, the integrated cyclic coherence (28) does not solve the computation

impediment for real-time applications since it first requires evaluating the cyclic coherence over the whole ðf ; aÞ
domain before condensing the information by integration. A further simplification arises with the squared-
envelope spectrum.

5.3. The squared-envelope spectrum (SES)

If ½F 1;F 2� is a narrow-band selection (as is often the case in practice), then the integrated cyclic coherence
(28) is very well approximated18 by the discrete Fourier transform of the squared-magnitude signal pre-filtered
in the ½F 1;F 2� band (up to an unimportant scaling factor). Namely,

ICCðLÞx ðaÞ /
1

L

XL�1
n¼0

jx½n� � g½n�j2e�j2pna=Fs

�����
�����
2

¼ jDFTfjx½n� � g½n�j2gj2

¼ SESðLÞx ðaÞ, ð31Þ
18Equality would hold exactly if the complex values of the cyclic coherence were averaged rather than their squared magnitudes [8].
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where x½n� � g½n� stands for the signal convolution with an equivalent impulse response g½n� that encompasses
the following cascade of linear operations:
(1)
19

20

21

22

23

discu
whitening of the signal (to account for the power normalisation that distinguishes the cyclic coherence as
opposed to the cyclic spectrum),
(2)
 analytic signal transformation,

(3)
 band-pass filtering in the ½F 1;F 2� band.
The so-obtained vectorial indicator SESðLÞx ðaÞ is known as the squared-envelope spectrum19 and has been
thoroughly studied in Refs. [16,22]. It is noteworthy that it involves only elementary linear transformations (all
of which that can be implemented by means of fast algorithms20) which makes it a good candidate for real-
time applications.

Based on Eq. (27), the decision rule relative to the squared-envelope spectrum can be shown to take the
following form (irrespectively of whether the pre-whitening operation and/or the analytic signal
transformation are actually performed or not21):

‘‘Reject the null hypothesis H0 if SESðLÞx ðaÞX
s4xng

2L

Fs

F2 � F 1
f ðaÞ � w21�p;2’’, (32)

where sx%g stands for the standard deviation of the filtered signal x½n�ng½n�, and

f ðaÞ ¼
1� jaj=ðF2 � F1Þ; jajoF2 � F 1;

0 elsewhere:

�
(33)

Note that if the analytical signal is not considered (which we warn against), it is essential that at least the
demodulation condition

F 2 � F1ominð2F1;Fs � 2F 2Þ (34)

is met in order to avoid spectral leakage when squaring the signal.

5.4. A few remarks

The idea of condensing the information displayed over the ðf ; aÞ by integrating along the f variable has been
proposed in several earlier works [6,7,9]. However, we strongly advise the reader to perform this integration on
the cyclic coherence rather than the cyclic spectrum (the reason of which is very obvious after comparing Figs.
8(a) and (b)). In particular the frequently advocated ‘‘degree of cyclostationarity index’’22 is not optimal in this
respect. Moreover, if the integration is to be carried out explicitly as in Eq. (28), it does not alleviate the need
of properly estimating the cyclic power spectrum, i.e. by being careful of imposing that Da5Df .

On the other hand, the squared-envelope spectrum (31) eludes completely this estimation issue. Very
interestingly the squared-envelope spectrum23 (also named the ‘‘high-resonance frequency technique’’ or
‘‘demodulate resonance analysis’’) was recognised as being one of the most effective diagnostic tool for rolling-
element bearings well before the introduction of cyclostationarity [23–25]. Yet cyclostationarity probably
provides for the first time the theoretical framework to formally justify the effectiveness of this empirical
technique [8]. Among other things, such a framework has allowed the derivations of the decision rule (32)
associated with the squared-envelope.
Note this is a squared-amplitude spectrum (signal-units2) as opposed to the power spectra (signal-units2/Hz) introduced in Section 2.

A fast solution to whiten a signal is by means of the Levinson–Durbin algorithm.

Pre-whitening may be needless when the ½F1;F2� selection is very narrow.

The degree of cyclostationarity index is defined as [21]:

DCSðaÞ ¼
Z Fs=2

0

jSxðf ; aÞj2 df =

Z Fs=2

0

jSxðf ; 0Þj
2 df .

In the past the envelope was often computed by rectifying the signal. The advantage of taking the squared-magnitude signal instead is

ssed in Ref. [22].
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A few words must be said, finally, on the inherent difficulty associated with the selection of the frequency
band ½F1;F 2� where to demodulate the signal before computing the squared-envelope spectrum. Ideally this
frequency band would be obtained as that which maximises the cyclic coherence values, i.e. the signal-to-noise
ratio; but the computation of the cyclic coherence is specifically what we have tried to avoid by the
introduction of the sub-optimal squared-envelope spectrum (31)! A sounder solution consists in comparing
the actual vibration spectrum with a template spectrum constructed from historical data, and then to select the
frequency band where the difference is the greatest. Another common solution is to directly demodulate
around a marked structural resonance—or the accelerometer resonance—that is likely to carry the fault
impacts. Other solutions have recently been proposed to automatically find the best demodulation band,
without any a priori knowledge, based on the spectral kurtosis [26,27]. Their coupling with the proposed cyclic
indicators is straightforward.

5.5. Illustrative Example 4

The signal of Example 3 is considered again. Fig. 10(a) shows the cyclic coherence evaluated at
the cyclic frequency equal to the inner-race fault frequency—this actually amounts to taking a slice of
Fig. 8(b) at a ¼ 137:5Hz. The coherence largely overrun the 0:1% statistical threshold in the ½5; 8�kHz band,
thus indicating the presence of a fault in that band. For sake of completeness, Fig. 10(b) also show
the cyclic coherence evaluated at the theoretical outer-race and rolling-element fault frequencies (a ¼ 111:6
and a ¼ 101:7Hz, respectively). As expected it is well confined below the statistical threshold in
both cases. Fig. 10(c) shows the integrated cyclic coherence obtained by summing the cyclic coherence of
Fig. 8(b) along the f-axis. It is noteworthy that this way of doing perfectly preserve the diagnostic
information: the symptomatic fundamental, harmonics, and sidebands of the inner-race fault nicely appear,
with a significant overrun of the 0:1% statistical threshold. Finally, Fig. 10(d) shows the squared-
envelope spectrum computed after band-pass filtering the signal in the ½5; 8�kHz band where the
signal-to-noise ratio was found the highest. As argued above, the squared-envelope spectrum is very
comparable to the integrated cyclic coherence.



ARTICLE IN PRESS
J. Antoni / Journal of Sound and Vibration 304 (2007) 497–529 517
6. Experimental results

This section illustrates the use of the cyclic coherence, and of the simplified vectorial indicators that have
been derived from it, on experimental data. All data have been collected at the Laboratory of Vibration and
Acoustics of the University of New South Wales (Sydney), under the supervision of Professor Bob Randall.
6.1. First experiment

This first experiment is concerned with bearing signals recorded on rail vehicle bearings, which have been
overloaded on a test rig so that faults have developed. Details of the geometry of the bearings with the
Table 4

Bearing characteristics of Experiment 1

Dimensions

Speed of shaft ðOÞ (rev/min) 650

Bearing roller diameter ðdÞ (mm) 21.4

Pitch circle diameter ðDÞ (mm) 203

Number of rolling elements ðnÞ 23

Contact angle ðyÞ (deg) 9.0

Expected fault frequencies

Inner-race fault frequency (Hz) 120.74

Outer-race fault frequency (Hz) 97.76

Rolling-element fault frequency (Hz) 89.34

Cage frequency (Hz) 4.25
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Fig. 11. Vibration signals of Experiment 1: (a) reference, (b) inner-race fault, (c) outer-race fault.
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Table 5

Estimation parameters of Experiment 1

Sampling frequency ðFsÞ (Hz) 32 768

Record length ðLÞ 32 768 samples

Window type Hanning

Overlap 2/3

Window length ðNwÞ 128 samples

f frequency resolution ðDf Þ (Hz) 384

a frequency resolution ðDaÞ (Hz) 1

Scrutinised cyclic frequency rangea [1;350]

Variance reduction factor ðEÞ 0.0019

aThe zero cyclic frequency is excluded as it produces a constant unit-valued cyclic coherence.
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Fig. 12. Power spectral densities of (a) the reference, (b) the inner-race fault, and (c) the outer-race fault signals of Experiment 1.
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expected fault frequencies are given in Table 4. Fig. 11 displays the recorded time signals in the case of (a) a
good bearing, (b) a bearing that has developed an inner-race fault, and (c) a bearing with an outer-race fault.
Clearly, the temporal analysis of the vibrations does not help to provide a diagnosis: at first sight all signals
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look gently stationary, and the slight modulation of signal (b) which coincides with the shaft rotation at
10.8Hz is quite typical even in normal condition. The power spectral densities (computed with the parameters
listed in Table 5) of the vibration signals are displayed in Fig. 12. It is seen that signals (b) and (c) evidence
some significant changes in their spectral distribution, with a maximum relative increase of energy within the
6;12 kHz frequency band. These changes would tell the experienced diagnostician that something abnormal
has happened, however, they are still not enough to diagnose the faults.

The cyclic coherences were then computed with the parameters displayed in Table 5. They are shown in
Figs. 13–15. The signal issued from a good bearing—Fig.13—is seen to have a very stationary behaviour since
its cyclic coherence is statistically zero: most of its values (in theory 99:9%) remain below the 0:1% statistical
threshold of 0.0131. This is in agreement with our fundamental assumption that a good bearing should
not produce significant cyclostationarity. On the other hand, the cyclic coherences of the damaged bearings—
Figs. 14 and 15—evidence significant cyclostationary behaviours that are well above the 0.0131 threshold.
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The cyclic coherence in Fig. 14 shows a fundamental spectral line at a ¼ 120:63Hz plus its
harmonics: according to Table 4 this tells the occurrence of an inner-race fault. Furthermore, as expected
from the model of Section 2, the fault signal is strongly modulated by the shaft speed due to the
periodic passing of the fault in the load zone; this explains the numerous symptomatic sidebands around the
fault frequencies, that are spaced apart by 10:8Hz. Besides, the cyclic coherence in Fig. 15
shows a fundamental spectral line at a ¼ 97:87Hz plus its harmonics, without sidebands: this is the
characteristic of an outer-race fault.

As explained in Section 2, when read as a function of f, the cyclic coherence points out the frequency bands
where the signal-to-noise ratio of the fault is maximum. In the cyclic coherences of Figs. 14 and 15, such bands
are located within [0;3] kHz and [6;12] kHz, and within [5;12] kHz, respectively. They surely correspond to
structural resonances that are excited by the impacts of the rolling elements on the faults. These observations
are coherent with the frequency regions of maximum variations that were observed in the power spectral
densities of Fig. 12. However, it should be emphasised that these frequency bands are readily available in the
cyclic coherence without requiring any comparison with historical data, as required for instance when
comparing power spectral densities.

Fig. 16 displays in a matrix the cyclic coherences of (a) the reference, (b) the inner-race fault,
and (c) the outer-race fault signals evaluated at the expected cyclic frequencies of (i) an inner-race, (ii) an
outer-race, and (iii) a rolling-element fault. Because the characteristic fault frequencies are only
predictable within certain limits, the cyclic coherence with maximum value in a narrow neighb-
ourhood centred on the theoretical frequency was actually returned in each case. Inspection of these
indicators leads, yet in a lighten way, to similar observations as obtained from the full (3D) cyclic
coherences. In particular the inner-race fault in signal (b) and the outer-race fault in signal (c) are clearly
detected from abnormally high values above the 0:1% statistical threshold at the corresponding
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expected fault frequencies—see cells (b-i) and (c-ii). On the other hand, the reference signal (a) does not show
any significant cyclostationary activity at any fault frequency.

Finally, the integrated cyclic coherence and the squared-envelope spectrum were computed. The former was
considered here only to corroborate our claim that it gives nearly the same results as the latter. The frequency
band of interest was set to [6;12] kHz because it is where the signal-to-noise ratio was previously found to be
maximal (either from comparing the power spectra of Fig. 12, or from inspecting the cyclic coherences of Figs.
13–15 or 16). Fig. 17(a–f) shows that both indicators essentially lie below their statistical threshold when the
bearing is in good condition,24whilst they display values well above it when a fault has developed. Here again
the typical spectral signatures ðfundamentalþ harmonicsþ possible sidebandsÞ of the inner-race and outer-
race faults are easily recognised. It is seen that the squared-envelope spectrum shows little difference with the
integrated cyclic coherence so that it could very well replace it in actual applications, as it is much faster to
compute. Indeed, if the relevant ½6; 12�kHz frequency band was obtained by some other means than cyclic
spectral analysis (e.g. by means of the spectral kurtosis [27]), the squared-envelope spectrum would certainly
replace the cyclic coherence analysis as well (at least for diagnostics)!

6.2. Second experiment

This second experiment is concerned with bearing signals recorded on a two-stage gearbox where one of the
bearings supporting the primary shaft was purposely damaged by introducing an inner-race fault, an outer-
race fault, and a rolling-element fault. Details of the geometry of the bearings with the expected fault
24This is except a few isolated values that overrun the statistical threshold, however in the allowable 0:1% probability of false alarm—i.e.

0:1% of the spectral lines over the displayed frequency range will overrun the threshold on the average. Obviously much looser thresholds

could be used in practice if diminishing the rate of false alarm was of concern: this would be readily achieved by increasing the statistical

threshold to a higher value. Incidentally, from our experience the chi-square rules of Eqs. (27), (30) and (32) tend to produce conservative

values, which means that they give slightly larger rates of false alarm than specified. This seems all the more true as the stationary

assumption (no faults) under which they have been derived is not strictly respected in practice, such as in the presence of impulsive noise or

other non-stationary sources. In such cases an ad hoc correction factor may be required.
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Table 6

Bearing characteristics of Experiment 2

Dimensions

Speed of shaft ðOÞ (Hz) 10

Bearing roller diameter ðdÞ (mm) 7.12

Pitch circle diameter ðDÞ (mm) 38.5

Number of rolling elements ðnÞ 12

Contact angle ðyÞ (deg) 0

Expected fault frequencies

Inner-race fault frequency (Hz) 71.10

Outer-race fault frequency (Hz) 48.90

Rolling-element fault frequency (Hz) 52.22

Cage frequency (Hz) 4.08
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frequencies are given in Table 6. Fig. 18 displays the recorded time signals in the case of (a) the good bearing,
(b) the inner-race fault, (c) the outer-race fault, and (d) the rolling-element fault. Just as in the first experiment,
the time history of the vibration signals look rather stationary and are useless, as such, for diagnostics. Into
addition, they seem to contain numerous harmonic interferences due to gears operation. Fig. 19 shows the
power spectral densities computed with the parameters of Table 7. It is seen that the low-frequency part of the
spectra is dominated by gear-mesh harmonics and sidebands (clearly evidenced by using a finer frequency
resolution Df ), so that the diagnostic information is likely to be masked below 10 kHz. The dB-difference
spectra between the faulty cases and the good case—lower panel of Fig. 19—confirm the former assertion.

The cyclic coherences were then computed with the parameters of Table 7. They are shown in Figs. 20–23.
The signal issued from a good bearing—Fig. 20—is seen to have a fairly stationary behaviour in the frequency
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Table 7

Estimation parameters of Experiment 2

Sampling frequency ðFsÞ (Hz) 48 000

Record length ðLÞ 65 536 samples

Window type Hanning

Overlap 2/3

Window length ðNwÞ 128 samples

f frequency resolution ðDf Þ (Hz) 562.5

a frequency resolution ðDaÞ (Hz) 0.73

Scrutinised cyclic frequency rangea (Hz) [0.73;256]

Variance reduction factor ðEÞ 0.0011

aThe zero cyclic frequency is excluded as it produces a constant unit-valued cyclic coherence.
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range above 10 kHz: the spectral lines in the lower-frequency range are recognised to be harmonics of the shaft
speed and sidebands of the gear-mesh frequency. As explained in Section 3, they should ideally be removed
from the signal before computing the cyclic coherence because they might produce interferences on the
spectral signature of the fault; however since they fall in a different frequency range ðo10 kHzÞ than where the
diagnostic information is expected ð410 kHzÞ, this precaution is needless here. The cyclic coherence of the
inner-race fault—Fig. 21—shows a fundamental spectral line at a ¼ 71:10Hz plus its harmonics, with small
sidebands at 10Hz. This is in excellent agreement with the expected fault frequency given in Table 6. The fact
that the side-bands have low amplitudes is because the axial load was small. Into addition the cyclic coherence
shows very high values, close to one, at a ¼ 71:10Hz and f410 kHz; this indicates a very high signal-to-noise
ratio in the high-frequency range, where the operation of the gears has few effect. The cyclic coherence
of the outer-race fault—Fig. 22—also shows spectral lines positioned exactly at the expected fault
frequency (48:90Hzþharmonics), as given in Table 6. Finally, the cyclic coherence of the rolling-element
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fault—Fig. 23—bears a very similar interpretation as that of the inner-race, where the fault frequency is
52.22Hz and where the sidebands due to shaft modulation are replaced by numerous sidebands due to the
cage modulation (4.08Hz), again as expected from the theory.

The presence of these faults is similarly detected when the cyclic coherence is computed only at the
characteristic cyclic frequencies where the faults are supposed to occur. This is illustrated in Fig. 24
which reads as Fig. 16. The inner-race fault in signal (b), the outer-race fault in signal (c) and the
rolling-element fault in signal (d) are clearly detected from abnormally high values above the 0:1% statistical
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threshold25 at the corresponding expected fault frequencies—see cells (b-i), (c-ii) and (d-iii). It is noteworthy
that the rolling-element fault also exhibit significant a cyclostationary activity near the inner-race and outer-
race fault frequencies; this is because it produces so many tight sidebands due to the cage modulation that
25Note that in this experiment the 0:1% statistical threshold is more severe than in the previous experiment (given the same probability

of false alarm). This is because longer records are analysed, which allows a lower estimation variance of the cyclic coherence.
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some of them happen to fall very close to those latter frequencies. This phenomenon was clearly visible in Fig.
23. On the other hand, the reference signal (a) does not show any significant cyclostationary activity at any
fault frequency. Incidentally, the similitude in shape and in relative amplitude between the cyclic coherences of
Fig. 24(a–c) and the dB-differences in spectra of Fig. 19(b) is striking. We insist again on the remarkable fact
that the formers can be obtained without the need of historical data, contrary to the latters.

Finally, Fig. 25(a–h) compare the integrated cyclic coherence and the squared-envelope spectrum. Just as in
the previous experiment, very similar results are obtained for both techniques in the frequency band
½10; 24�kHz where the signal-to-noise is maximised (as observed either from comparing the power spectra of
Fig. 19, or from inspecting the cyclic coherences of Figs. 20–23 or Fig. 24(a–c)). Due to the excellent signal-to-
noise ratio in that frequency band, these indicators show values that are well above the statistical threshold.
The characteristic patterns of the fault signatures are perfectly recognised in the three cases.

7. Conclusion

The intent of this paper was to gather a number of results concerning the cyclic spectral analysis of rolling-
element bearings signals, for use in diagnostics. Some of these results are new and presented here for the first
time, while others have been published in earlier works but are purposely repeated in order to correct a few
misconceptions that seem to have survived in the specialised literature. First of all we have shown that
vibrations produced by faulty rolling-element bearing are essentially random cyclostationary (instead of
harmonic) in the high-frequency range where the signal-to-noise ratio is maximal, thus explaining why
classical spectral analysis often turns out a failure. Second, we have proved the diagnostic information is
perfectly preserved in the cyclic frequency domain in the form of a symptomatic pattern of spectral lines. We
have then demonstrated that, given a finite-length record of data, the cyclic coherence (power-normalised
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Fig. 25. Integrated cyclic coherence of (a) the reference signal, (b) the inner-race fault (a ¼ 71:10Hz), (c) the outer-race fault

(a ¼ 48:90Hz), (d) the rolling-element fault (a ¼ 52:22Hz) (resp., squared-envelope spectrum in (e–h)) of Experiment 2. The frequency

band of interest is ½10; 24�kHz.

Table A.1

Typical fault frequencies

Inner-race fault n
2
Oð1þ d

D
cos yÞ

Outer-race fault n
2
Oð1� d

D
cos yÞ

Rolling-element fault Od
D
ð1� ðd

D
cos yÞ2Þ

Cage fault O
2ð1�

d
D
cos yÞ

Inner-race modulation O
Cage modulation O

2
ð1� d

D
cos yÞ

where O ¼speed of shaft; d ¼ bearing roller diameter; D ¼pitch circle diameter; n ¼number of rolling elements; y ¼contact angle.
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cyclic power spectrum) is the cyclic spectral quantity that offers the best detection capability of the
fault. In short, when read as a function of the cyclic frequency a, the cyclic coherence reveals the discrete
spectral signature of the fault, whilst when read as function of the f frequency, its magnitude
serves as a relative measure of the fault severity. This has been formalised through the proposal of an
optimal statistical test which consists in comparing the value of the estimated cyclic coherence against a
statistical threshold that depends on the record length and on a user-defined probability of false
alarm. This test can be used as such in an automated diagnostics system, yet we have also proposed
simplified (but sub-optimal) versions of it that are computationally more advantageous by avoiding the
exhaustive exploration of the ða; f Þ frequency domain. Indeed, one important conclusion of the paper is that
the familiar squared-envelope spectrum turns out to be a special case of the cyclic coherence that returns just
as good results, provided that it benefits from the adequate information to be properly computed (i.e.
knowledge of the demodulation band where the signal-to-noise ratio is maximal). This observation has been
supported by theoretical arguments as well as intensive experimental results. Therefore the reason of not using
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the squared-envelope spectrum—on behalf of more complex indicators—is probably questionable in many
instances.

Appendix A. Characteristic frequencies of rolling-element bearing faults

The following equations (Table A.1) assume the inner-race rotates at the shaft speed and the outer-race is
stationary.

Appendix B. Proof of Eq. (26)

Let us denote by XNw ðf Þ the K � 1 vector of spectral components X
ðkÞ
Nw
ðf Þ, k ¼ 0; . . . ;K � 1 as defined in

Eq. (18). Then, under H0, XNw ðf þ a=2Þ is uncorrelated with XNw ðf � a=2Þ for any f, whereas under H1 the two
vectors must share some correlation over a non-empty set of f frequency values. Testing for H1 against H0

then amounts to detecting the existence of a statistical correlation between XNw ðf þ a=2Þ and XNw ðf � a=2Þ.
There are a variety of possible statistical tests to do so. The generalised likelihood ratio test is optimal in the
sense that it maximises the probability of detection given a probability of false alarm, and the union
intersection test in the sense that it is invariant under any scaling of the data XNw ðf Þ. Now considering that
XNw ð�Þ tends to Gaussianity in virtue of the Central Limit theorem applied to the discrete Fourier transform—
at least in the frequency range of interest where the random part of the signal was shown to predominate—
both tests can be shown to consist in comparing26

jXNw ðf � a=2ÞHXNw ðf þ a=2Þj2

kXNw ðf � a=2Þk � kXNw ðf þ a=2Þk
(B.1)

to some statistical threshold that depends on the estimation parameters. Note that Eq. (B.1) is nothing else
than the averaged cyclic periodogram estimate of the cyclic coherence (13). The latter divided by E=2 can be
shown to be approximatively chi-square distributed with two degrees of freedom [17], so that the 100ð1� pÞ%
threshold is as given in Eq. (27).

Appendix C. Proof of Eq. (29)

According to the preceding discussion, 2ICCðLÞx ðaÞ=E is a sum of K2ðaÞ � K1ðaÞ þ 1 chi-square random
variables with two degrees of freedom each. However, if NFFT4Nw in Eq. (18), then only NFFT=Nw of the
variables in the sum are independent due to frequency interpolation in the DFT. Hence the sum is chi-square
distributed with b2ðK2ðaÞ � K1ðaÞ þ 1ÞNFFT=Nwc degrees of freedom. The values of K2ðaÞ and K1ðaÞ are
obtained as illustrated in Fig. 9, where care is taken to perform the integration only over the principal domain
(25).

Reproducible research

The algorithms used to obtain the figures presented in this paper are available upon request to the author
(antoni@utc.fr), or downloadable at www.utc.frn	antoni. So do the detailed proofs of our theoretical results.
References

[1] N. Tandon, A. Choudhury, A review of vibration and acoustic measurement methods for the detection of defects in rolling element

bearings, Tribology International 32 (1999) 469–480.

[2] J.I. Taylor, Identification of bearing defects by spectral analysis, Journal of Mechanical Design 102 (1980) 199.

[3] J. Mathew, R.J. Alfredson, The condition monitoring of rolling element bearings using vibration analysis, Journal of Vibration,

Acoustics, Stress, and Reliability in Design 106 (1984) 447.
26The symbol H stands for the transpose conjugate operator, and k � k for the euclidian norm of a vector.

http://www.utc.fr~antoni
http://www.utc.fr~antoni


ARTICLE IN PRESS
J. Antoni / Journal of Sound and Vibration 304 (2007) 497–529 529
[4] Y.-T. Su, S.J. Lin, On the initial fault detection of a tapered roller bearing: frequency domain analysis, Journal of Sound and Vibration

155 (1) (1992) 75–84.

[5] J. Antoni, F. Bonnardot, A. Raad, M. El Badaoui, Cyclostationary modelling of rotating machine vibration signals, Mechanical

Systems and Signal Processing 18 (6) (2004) 1285–1314.

[6] A.C. McCormick, A.K. Nandi, Cyclostationary in rotating machine vibrations, Journal of Sound and Vibration 12 (2) (1998) 225–242.

[7] I. Antoniadis, G. Glossiotis, Cyclostationary analysis of rolling-element bearing vibration signals, Journal of Sound and Vibration 248

(5) (2001) 829–845.

[8] R.B. Randall, J. Antoni, S. Chobsaard, The relationship between spectral correlation and envelope analysis for cyclostationary

machine signals: application to ball bearing diagnostics, Mechanical Systems and System Processing 15 (5) (2001) 945–962.

[9] C. Capdessus, M. Sidahmed, J.-L. Lacoume, Cyclostationary processes: application in gear faults early diagnosis, Mechanical

Systems and Signal Processing 14 (3) (2000) 371–385.

[10] J. Antoni, R.B. Randall, Differential diagnosis of gear and bearing faults, ASME Journal of Vibration and Acoustics 124 (2) (2002)

165–171.

[11] W.A. Gardner, Introduction to Random Processes with Applications to Signals and Systems, second ed., McGraw-Hill, 1990

(Chapter 12).

[12] G. Giannakis, Cyclostationary signal analysis, The Digital Signal Processing Handbook, CRC Press and IEEE Press, New York, 1998

(Chapter 5).

[13] J. Antoni, R.B. Randall, A stochastic model for simulation and diagnostics of rolling element bearings with localized faults, ASME

Journal of Vibration and Acoustics 125 (3) (2003) 282–289.

[14] P.D. McFadden, J.D. Smith, Model for the vibration produced by a single point defect in a rolling element bearing, Journal of Sound

and Vibration 96 (1) (1984) 69–82.

[15] D. Ho, R.B. Randall, Manifestation of bearing fault vibrations in gearboxes, Sixth International Congress on Sound and Vibration,

5–8 July 1999, Copenhagen, Denmark.

[16] D. Ho, R.B. Randall, Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals, Mechanical

Systems and Signal Processing 14 (5) (2000) 763–788.

[17] J. Antoni, Cyclic spectral analysis in practice, Mechanical Systems and Signal Processing 21 (2) (2007) 597–630.

[18] J. Antoni, R.B. Randall, On the use of the cyclic power spectrum in rolling element bearing diagnostics, Journal of Sound and

Vibration 281 (1–2) (2005) 463–468.

[19] L. Li, L. Qu, Cyclic statistics in rolling bearing diagnosis, Journal of Sound and Vibration 267 (2) (2003) 253–265.

[20] J. Antoni, R.B. Randall, Unsupervised noise cancellation for vibration signals, Mechanical Systems and Signal Processing 18 (1)

(2004) 89–117.

[21] G. Ivanovi, W. Gardner, Degrees of cyclostationarity and their application to signal detection and estimation, Signal Processing 22

(1991) 287–297.

[22] R.B. Randall, Developments in digital analysis techniques for diagnostics of bearings and gears, Fifth International Congress on Sound

and Vibration, December 15–18, 1997, Adelaide, Australia

[23] M.S., Darlow, R.H. Badgley, Applications for early detection of rolling element bearing failures using the high-frequency resonance

technique, ASME Paper 75-DET-46, 1975.

[24] D. Dyer, R.M. Stewart, Detection of rolling element bearing damage by statistical vibration analysis, Journal of Mechanical Design

100 (1978) 229–235.

[25] P.D. McFadden, J.D. Smith, Vibration monitoring of rolling element bearings by the high frequency resonance technique—a review,

Tribology International 117 (1) (1984) 3–10.

[26] J. Antoni, R.B. Randall, The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines,

Mechanical Systems and Signal Processing 20 (2) (2006) 308–331.

[27] J. Antoni, Fast computation of the kurtogram for the detection of transient faults, Mechanical Systems and Signal Processing 21 (2)

(2007) 108–124.


	Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions
	Introduction
	Context
	Exploiting cyclostationarity in bearing diagnostics
	Objectives of the paper

	Rolling-element bearing vibrations are cyclostationary
	Vibration models
	Assessment of the harmonic contribution
	Assessment of the random contribution
	Insufficiency of classical spectral analysis
	Illustrative Example 1
	The cyclic spectral analysis of bearing vibration signals

	Experimental cyclic spectral analysis
	The averaged cyclic periodogram
	Practical guidelines
	Setting the window shape and the amount of overlap
	Setting the cyclic frequency resolution Delta  
	Setting the frequency resolution Delta f
	The analytical signal

	Illustrative Example 2
	Some common pitfalls

	Cyclic spectral analysis for bearing diagnostics
	An optimal test
	Illustrative Example 3

	Substantial simplifications
	The cyclic coherence at only one cyclic frequency
	The integrated cyclic coherence (ICC)
	The squared-envelope spectrum (SES)
	A few remarks
	Illustrative Example 4

	Experimental results
	First experiment
	Second experiment

	Conclusion
	Characteristic frequencies of rolling-element bearing faults
	Proof of Eq. (26)
	Proof of Eq. (29)
	Reproducible research
	References


