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Abstract

Although a closed form solution can be obtained for the shock response to an impulse by using the Duhamel integral
method for a single degree-of-freedom system, it is analytically verified herein that an extra amplitude distortion will be
introduced at the end of the impulse by using the Newmark method. In fact, the relative amplitude error in the
displacement response due to the discontinuity at the end of the impulse can be reliably estimated by the ratio of the area of
extra impulse over the area of input impulse, where the area of extra impulse is equal to a half of the product of the time
step and load discontinuity. It seems that the momentum equation of motion can be used to easily overcome the
discontinuity problem at the end of an impulse. This is because the external force is replaced by its corresponding external
momentum, which is obtained from the time integration of external force, and thus the discontinuity problem
automatically disappears by using the momentum equation of motion. Numerical studies reveal that this technique is
applicable to nonlinear systems. Meanwhile, it is also numerically illustrated that the discontinuity problem can be
overcome by performing a very small time step immediately upon termination of the applied impulse.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical expressions to define the dynamic displacements are the equations of motion of a structure,
and solutions of these equations of motion give the desired displacement time history. The mathematical
formulation of equations of motion for a dynamic system might be the most important and sometimes the
most difficult phase of the entire dynamic analysis procedure. The d’Alembert’s principle provides the concept
that a mass develops an inertial force proportional to its acceleration and opposing it [1,2]. Therefore, it is
convenient to express equations of motion as equations of dynamic equilibrium, which consists of the four
types of forces acting on the structure. In general, these are elastic constraints which oppose displacements,
viscous damping forces which resist velocities, inertial forces which resist accelerations and independently
defined external forces. Thus, the external force must be accurately represented so that a reliable solution can
be obtained.
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In the time history analysis, the external force may be a very rapidly changing function of time. Hence, a very
small time, which may be much smaller than that required by accuracy consideration, is required to accurately
represent the external force so that reliable solutions can be achieved. This difficulty can be effectively overcome by
using the integrated equation of motion to smooth out the rapid changes of dynamic loading [3,4]. Meanwhile, in
the step-by-step solution of the response to an impulse, a very small time step, which might be much smaller than
the duration of the impulse and/or that required by accuracy consideration, is generally needed to yield a reliable
solution. It will be shown that the discontinuity at the end of the impulse is responsible for this difficulty if the
Newmark method is used. Since this discontinuity disappears after utilizing the time integration, the integrated
equation of motion seems very promising. In addition, the maximum displacement response to an impulse depends
principally upon the magnitude of the applied impulse and is not strongly affected by the form of the impulse. Both
imply that the use of the principle of impulse and momentum to develop a governing equation is promising. In fact,
the dynamic equilibrium of spring, damping, inertial and external momentums acting on the system lead to the
momentum equation of motion. This derivation is similar to that of the conventional form of equation of motion,
which is referred to as the force equation of motion herein. However, the basic component “force” is replaced by
the “momentum”. A simple way is used to prove that the discontinuity at the end of impulse will result in a
displacement error by using the Newmark method and a reliable way to estimate the relative amplitude error is
presented. It is also shown that this discontinuity disappears on using the momentum equation of motion.
Analytical results are confirmed by numerical examples.

2. Equation of motion

The equation of motion for a structural system is formulated based on the dynamic equilibrium of force,
which includes four types of forces that include the elastic spring resisting force, damping resisting force,
inertial resisting force and external force. A schematic sketch of such an idealized single degree-of-freedom
system is shown in Fig. 1, and its force free-body diagram is depicted in Fig. 2. As a result, the equation of
motion for the system can be derived from the dynamic equilibrium of the four types of force acting on it and
has the following expression:

fitfp+fs=/e (1)
where
f1 = mii(¢) = inertial force,
fp = cu(t) = damping force,
f's = ku(t) = spring force,

f g =f(t) = external force, )
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Fig. 1. Idealized single degree-of-freedom system.
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Fig. 2. Dynamic equilibrium of forces.
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in which m is the mass, ¢ the viscous damping coefficient, k the stiffness and f the external force;
i(?), u(t) and u(t) are the displacement, velocity and acceleration, respectively. After substituting Eq. (2) into
Eq. (1), it becomes

mii(t) + ci(t) + ku(t) = £ (). (3)

The initial value problem for this equation of motion is to find a solution u(f) having the given initial
conditions of u(0) = uy and @(0) = 1.

Since the maximum displacement response to an impulse depends principally upon the total amount
of the applied impulse (external momentum) [1,2] and is almost unaffected by the form of the loading
impulse, it is very promising to solve this problem by considering the external momentum directly.
Therefore, there is a great motivation to construct the governing equation of motion from the dynamic
equilibrium of momentums, which involves using external momentum in the formulation. The free-body
diagram to describe dynamic equilibrium of momentums corresponding to the single degree-of-freedom
system defined in Fig. 1 is plotted in Fig. 3 and the governing equation of motion for the free-body diagram
can be written as

M+ Mp+ Ms= Mg, 4)

where
t t
M; = / F(r)dt = / mii(t)dt = inertial momentum,
0 0
t t
Mp = / Fp(r)dr = / cu(tr)dtr = damping momentum,
0 0
t t
Mg = / Fg(t)dr = / ku(t)dt = spring momentum,
0 0

t t
Mg = / Fg(t)dr = / f(1)dt = external momentum. (5)
0 0

In general, m, ¢ and k are constant for a linear elastic system and the result of Eq. (5) is
M = mu(t) — mu(0),
Mp = cu(t) — cu(0),
Mg = ki(t) — ki(0),

Mg =f(1) = f(0). (6)
After the substitution of Eq. (6) into Eq. (4), the explicit expression of Eq. (4) is
mi(t) + cu(t) + ki(t) — f(£) = mi(0) + cu(0) + kia(0) — £(0). (7)

It is reasonable to assume that the dynamic equilibrium of momentums is satisfied at the beginning of
motion. This implies tllat the momentum equation of motion is satisfied at the time of =0, ie.,
mi(0) + cu(0) + ki(0) = £(0). As a result, Eq. (7) is reduced to be

mit) + cu(t) + kii(t) = £(z), ()

MS }—> u(t)
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Fig. 3. Dynamic equilibrium of momentums.
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where

() = /0 ude, (1) = /0 f()dr. 9)

Apparently, () is the integral of displacement with respect to time once and f(f) = M is the external
momentum. Unlike using the dynamic equilibrium of momentums to develop Eq. (8), it can be derived by
integrating Eq. (3) with respect to time once [3,5].

3. Step-by-step solution of shock response

To obtain an analytical solution of the equation of motion is almost impossible if the external force varies
arbitrarily with time or the system is nonlinear. It seems the step-by-step integration method is the most
powerful technique to solve such problems. The Newmark method [6] is very commonly used in the solution of
initial value problems and has the general formulation of

maiy1 + cvip1 +kdipr = [y,
1
vt =i+ @00+ 002 | (5= o+ |

vip1 = v; + (AD[(1 — Pa; + yai1], (10)

where d;, v;, and a; are the approximate solutions of the displacement, velocity and acceleration, respectively,
and f; = f(t = t,). The subscript i denotes the time step at ¢t = ¢; = i(At). Numerical characteristics of this family
of the Newmark methods are mainly controlled by the parameters ff and y. On the other hand, the Newmark
method can be also applied to solve the momentum equation of motion as shown in Eq. (8). However, slight
modifications are needed. In general, it can be expressed as

Mot + cdigy + ks = fin1s
1
Sip1 = 8+ (ADd; + (Al)2 KE - ﬁ) Ui + ﬁUz’H] ,

div1 = d; + (AD[(1 — p)vi + pvig1], (11)

where s; is the approximation to the time integral of the displacement of #(¢;) for the ith time step . The first
line of this equation reveals that the external momentum is directly inputted into the system.

4. Shock response to point load

In order to analytically prove that the discontinuity in the external force will result in an extra displacement
by using the Newmark method while there is no discontinuity in the corresponding external momentum and
thus no extra displacement, the shock response to a point load is obtained from both the force equation of
motion and the momentum equation of motion. Although viscous damping is included in the force and
momentum equations of motion as shown in Egs. (3), (8), (10) and (11) for completeness, it is generally not
considered in computing the shock response to an impulse. This is because damping has much less importance
in controlling the maximum response of a system to an impulse than for harmonic or periodic loads since the
maximum response to an impulse will be reached in a very short time, before the damping force can absorb
much energy from the system [1,2]. Hence, viscous damping is excluded in this study of impulse.

4.1. Force equation of motion

Fig. 4(a) shows a point load with the magnitude of ¢ at the time of = 0. Apparently, the displacement
response to this point load is theoretically found to be zero, since the point load leads to a zero external
momentum as shown in Fig. 4(b). This is because that the point load has a finite magnitude with an infinitely
small duration. However, the displacement response to the point load is nonzero if it is computed from a
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step-by-step integration method. In fact, it can be computed from Eq. (10) for the initial data of dy = vy =0
and fy = ¢q. At first, ag = g/m is obtained from the equation of motion. Using the first line of Eq. (10), it is

found that a; = —(k/m)d; as f; = 0. Thus, the displacement response d; can be computed from the second line
of Eq. (10) after the substitutions of ay and a; with dy = vy = 0 into it and the result is found to be

4y = a0 where Eg = 2= P% 12

1= dcn(E)W ere dcn—TﬂQz, (12)

where Q = w(Ar) and w = \/k/m is the natural frequency of the system, and Eg4, represents the error
amplification factor for discontinuity. This result reveals that the displacement response to the point load is
nonzero on using the Newmark method. This is because that the value of ¢ is the input external force at the
beginning and then an extra impulse of g(Af)/2, which is represented by the shaded area shown in Fig. (4a), is
introduced into the system. Hence, an extra displacement is generated subsequently.

It is clear that the extra impulse and the extra displacement are closely related to the magnitude of
the discontinuity in external force ¢ and the integration time step A¢. Furthermore, a different member of the
Newmark method might lead to a different extra displacement for the same extra impulse, since the
displacement d; is a function of f. In order to show the difference for different members, variations of
the error amplification factors for discontinuity Eg4., with Q are plotted in Fig. 5 for the Newmark explicit
method (f = 0), the Fox—-Goodwin method (f = 11—2), the linear acceleration method (ff = %), the constant
average acceleration method (f = %) and the trapezoidal rule with § = % In this figure, it is found that the error
amplification factor generally increases with the increase of © for each method except for the trapezoidal rule
with f§ = %, since its error amplification error is always equal to zero for any positive value of Q. Meanwhile, it
decreases with the increase of the value of f for a given value of Q. This implies that, among the five
integration methods, the Newmark explicit method will result in the largest displacement error due to the
discontinuity in external force while the trapezoidal rule with § = % leads to no displacement error. Although
the five integration methods, in general, have different error amplification factors for a given value of Q these
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Fig. 4. Point load and its time integral: (a) nonzero external force and (b) zero external momentum.
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Fig. 5. Variations of error amplification factor for discontinuity Ey4., with Q.
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factors are small for a small value of Q. On the other hand, since all modal responses are important for the
shock response to impulse, an accurate integration of each mode entails the use of a small time step and thus
the value of Q is small for each mode. Consequently, for small Q, the difference in error amplification factor
among the members of the Newmark method is insignificant except for the trapezoidal rule with f = %, since it
has a zero error amplification factor for any positive value of Q.

4.2. Momentum equation of motion

Fig. 4(b) shows that the area of the point load tends to zero since it has a finite magnitude with an infinitely
small duration. Therefore, the displacement response obtained from using the Newmark method to solve the
momentum equation of motion as shown in Eq. (11) is zero for the initial data of dy = vy = 0 and f;, = 0. This
implies that there is no discontinuity in the external momentum and thus no extra displacement response if the
step-by-step solution of the shock response to the point load is obtained from solving the momentum equation
of motion.

5. Shock response to arbitrary impulse

A closed form solution for the shock response to an arbitrary impulse can be found from the Duhamel
integral [1,2] and is

u(t) = <mla)) /Otf(r) sin(t — 1)dr, (13)

where o is the natural frequency of the system and f{t) the impulse. Thus, the discontinuity problem is caused
by the choice of time step and the choice of f if using the Newmark method to solve the equation of motion. In
fact, the above study reveals that the discontinuity at the end of an impulse will lead to an extra impulse and
thus an extra displacement in the step-by-step integration. It is found from the fundamental theory of
structural dynamics that the maximum displacement response to impulse is almost proportional to the
magnitude of the applied impulse and is not strongly influenced by the form of the impulse. Thus, the relative
displacement error arising from the extra impulse is the ratio of the area of the extra impulse over the area of
the input impulse. A schematic sketch for computing the relative amplitude error is shown in Fig. 6(a). In fact,
it is estimated by
Aext 1

Eet = Ainp s Aext = 2Q(AZ)’ (14)
where Ai,, and Ay are the area of the input impulse and the extra impulse, respectively. It should be
mentioned that the estimation of the relative amplitude error E. is very accurate for the shock response to
impulse. This might be explained by two considerations. First, it is manifested from Eq. (12) or Fig. 5 that the
extra displacement response is almost proportional to ¢ and Az for a small Q. Secondly, the value of Q is
always very small for accurate integration of a shock response. This is because for an impulse, the loading time

(@) f@ (b) f@
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Fig. 6. Arbitrary impulse and its time integral: (a) discontinuity at end of external force and (b) no discontinuity at end of external
momentum.
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to is required to satisfy 7/ TS%. Furthermore, the time step Af must be smaller than ¢y in order to have an
accurate representation of the impulse.

Fig. 6(b) shows the external momentum, which is the result of the time integration of the arbitrary impulse
as shown in Fig. 6(a). This figure reveals that the external momentum becomes a constant after the loading
duration and there is no discontinuity in the external momentum at the time ¢#,. It is apparent that the constant
external momentum is equal to the total amount of the impulse. This implies that a time step larger than the
loading duration z, may still lead to a reliable solution since the total amount of the impulse is inputted into
the system in the step-by-step solution of momentum equation of motion. This phenomenon is named an
external momentum-dependent effect herein.

6. Numerical verifications

In these numerical verifications, the shock responses to three different shapes of impulses for a single degree-
of-freedom system and those to a triangular ground impulse for a 5-story structure are obtained from the
Newmark method. These results are used to confirm that

(1) The discontinuity at the end of an impulse will lead to an extra displacement error if the force equation of
motion is used, while this error disappears if the momentum equation of motion is used, since there is no
discontinuity in external momentum. The external momentum-dependent effect for the momentum
equation of motion is also verified.

(2) The relative amplitude error caused by the discontinuity at the end of an impulse can be reliably estimated
by Eq. (14).

(3) The displacement response errors obtained from different members of the Newmark method are
insignificant for the response to impulse since the value of Q is small.

(4) The discontinuity of external force can be eliminated by performing a very small single time step right after
the end of the discontinuity while using much larger time step subsequently.

(5) The momentum equation of motion is also applicable for nonlinear systems.

It should be mentioned that to avoid the difficulty arising from linearization errors [7-10], linear elastic
systems are generally considered in this numerical study. In addition, the solution theoretically obtained is
considered as an “exact’ solution for comparison for linear elastic analysis. However, Example 4 is employed
to show that the numerical characteristics are also preserved for nonlinear systems.

6.1. Example 1

An undamped single degree-of-freedom system subject to three different shapes of impulses, which are in
the shapes of descending triangle, rectangle and rising triangle, are considered. The lumped mass and stiffness
of the system are taken as 1 kg and 7*> N/m, respectively. These lead to a period of 2s for the system. The shape
of each impulse f() and its external momentum £(¢) for the three impulses are shown in Fig. 7. In each plot,
the external momentum is the resultant of the time integration of the impulse. To satisfy the requirement of
to/Tgi for an impulse [1,2] the loading duration #, is chosen to be 0.05 s, which leads to 7,/ T = ﬁ for the three
impulses. In addition, the amplitude is appropriately specified for each impulse in order to have exactly the
same external momentum for the three impulses. It is found that the shapes of the three impulses vary
significantly with time. However, differences in the three shapes of the external momentums are insignificant in
the forced vibration phase and the same external momentum is found in the free vibration phase. The external
force is zero after loading duration while it becomes a constant for the external momentum. Apparently, the
discontinuity in the rectangular and rising triangular impulses is no longer found after the time integration of
these impulses.

The Newmark explicit method is used to solve the force and momentum equations of motion. For brevity,
Scheme (a) denotes the use of Newmark explicit method to solve the force equation of motion while the
momentum equation of motion solved by this method is referred to as Scheme (b). Four time steps, which are
At = 0.005, 0.025, 0.05 and 0.1 s, are used for the step-by-step integration. Thus, the ratios of At/t, are found
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Fig. 7. Three different impulses and their corresponding external momentums: (a) half sine-wave impulse, (b) rectangular impulse and (c)
triangular impulse.

a5 25 and 55, where T'is the period of the system
and is equal to 2s. This implies that accuracy consideration is unnecessary since the ratios of A¢/T are so small
and thus almost no period distortion is introduced. Schemes (a) and (b) are used to compute the responses to
the three impulses, and the displacement response errors, which are the differences between the numerical and
theoretical solutions, and are depicted in Figs. 8-10.

In Fig. 8, the displacement errors for using Scheme (a) with Az¢/#y = %, %, and 1 are very small, while those in
Figs. 9 and 10 are much larger and these errors are increased with the increase of time step. This is because the
descending triangular impulse has no discontinuity at its end while the discontinuity is found at the end of the
rectangular and rising triangular impulses. It is apparent that the increase of displacement error with an
increasing time step is because the extra impulse is proportional to the size of time step. On the other hand, the
displacement errors for using Scheme (b) with A¢/t) = %,% and 1 are very small for the three impulses. No
discontinuity in the three external momentums is responsible for the very small errors. It is very interesting to
find that for At/ty =2, Scheme (b) always provides reliable solutions, while Scheme (a) gives inaccurate
solutions except for the shock response to the rectangular impulse. This can be explained next. An accurate
shock response can be obtained if the total amount of the impulse is considered. Apparently, this amount is
the constant external momentum after the loading duration and is entirely taken into account by using Scheme
(b), although a time step used is larger than the loading duration. However, it is almost impossible for Scheme
(a) to capture the total amount of an impulse if a time step larger than the loading duration is used. In this
example, the total amount of impulse considered for the descending triangular impulse, rectangular impulse
and the rising triangular impulse is 1, 0.5 and 0 N's, respectively. Since the correct amount should be of 0.5 N's,
this thoroughly explains why Scheme (a) with At¢/7y = 2 gives reliable solutions for the rectangular impulse

to be 5, 1, 1 and 2, and, the ratios of A7/T are found to be 45, 4
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Fig. 8. Displacement error for response to descending triangle impulse.
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Fig. 9. Displacement error for response to rectangular impulse.
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Fig. 10. Displacement error for response to rising triangle impulse.

while it provides inaccurate solutions for the two other impulses. This confirms that the momentum equation
of motion can effectively reflect the external momentum-dependent effect although the time step used is larger
than the loading duration.
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In order to confirm the reliability of Eq. (14), the estimated and actual relative amplitude errors are listed in
Table 1 for the three impulses with Az = 0.005, 0.025, 0.05 and 0.1. In this table, E%, and E”, represent the
actual relative amplitude errors on using Schemes (a) and (b), respectively, while E. denotes the estimated
relative amplitude error by using Eq. (14). It is found that Ej is generally consistent with E¢ except for the
rising triangular impulse with a time step of Az = 0.1s. This is because the starting and ending points, both
which are zero for this time step and thus a zero response is found. This consistency implies that the relative
amplitude error caused by the discontinuity at the end of an impulse can be reliably estimated by Eq. (14). The
slight difference in the descending triangular impulse for Az = 0.1 and that in the rising triangular impulse for
At = 0.05 might be due to the loss of the peak displacement by using a large time step. However, it should be
mentioned that £, = 0 for the three impulses with Az = 0.005, 0.025, 0.05 and 0.1 implies the total amount of
each impulse is exactly inputted into the system and thus an accurate shock response is achieved.

6.2. Example 2

To confirm that the shock response to impulse is insignificant to the use of a different member of the
Newmark method except for the trapezoidal rule with § = %, the system used in example 1 is also considered in
this example. In fact, the Newmark explicit method, Fox—Goodwin method, linear acceleration method,
constant average acceleration method and the trapezoidal rule with f :% are applied to solve the force
equation of motion to obtain the shock response to the rising triangular impulse. The time step of Az = 0.05 is
used in all computations. Displacement errors are shown in Fig. 11. It is apparent that the displacement errors
are almost the same for the Newmark explicit method, Fox—Goodwin method, linear acceleration method and
constant average acceleration method, while those for the trapezoidal rule with f = % are much smaller. This
can be explained by next example. For this time step, the very small value of Q is 0.157 and thus the error
amplification factors of discontinuity for the Newmark explicit method, Fox—Goodwin method, linear

acceleration method and constant average acceleration method are 1.2%, 1.0%, 0.8% and 0.6%, respectively.

Table 1
Comparisons of relative amplitude errors

Shape At Descending triangular impulse Rectangular impulse Rising trianguar impulse
Egcl Egcl Eesl Efx’cl E‘{J’Cl Eesl E:\Lct Egct Eest
0.005 0.00 0.00 0.00 0.05 0.00 0.05 0.10 0.00 0.10
0.025 0.00 0.00 0.00 0.25 0.00 0.25 0.50 0.00 0.50
0.050 0.00 0.00 0.00 0.50 0.00 0.50 0.98 0.00 1.00
0.100 1.03 0.00 1.00 0.01 0.00 0.00 —1.00 0.00 N.A
0.3
Newmark explicit method - Fox-Goodwin method
—-—-- linear acceleration method - - — average acceleration method
02 - thapezoidal method with f=1/2

B
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=

m
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Fig. 11. Shock response from different members of Newmark method.
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Hence, commensurate displacement errors are found. On the other hand, a zero error amplification factor is
responsible for the smallest errors for the trapezoidal rule with f =%. It should be mentioned that the
displacement error for using the trapezoidal rule with § = % is not exactly equal to zero since a slight period
distortion is introduced for Ar = 0.05. This time step is the largest time step, which is equal to the loading
duration, to solve the force equation of motion. These results confirm that the displacement response error
caused by the discontinuity at the end of an impulse is insignificant to the member of the Newmark method
used for step-by-step integration except for the trapezoidal rule with = %

6.3. Example 3

Since the extra impulse is proportional to the time step, the discontinuity problem might be eliminated by
performing a very small single time step right after the end of the impulse while using much larger time step
subsequently. In order to illustrate this scheme, the system used in example 1 is employed again here. In fact,
the response to the rising triangular impulse as shown in (Fig. 7c) is obtained from the Newmark explicit
method with Ar = 0.05s, except that a very small single time step of a(Af), where = 1, 0.1 and 0.01 are taken,
is performed right after the end of the impulse. Displacement errors for the response to the rising triangular
impulse are plotted in Fig. 12. This figure reveals that the amplitude distortion decreases with the decrease of o
and a very reliable solution is obtained from the use of & = 0.01. Thus, an extra amplitude distortion caused by
the discontinuity at the end of an impulse is identified and the feasibility of performing a very small single time
step right after the end of the impulse to eliminate the discontinuity problem is confirmed without using the
momentum equation of motion.

6.4. Example 4

In order to confirm that the momentum equation of motion is also applicable to overcome the discontinuity
problem for nonlinear systems, the system used in example | is modified by changing the stiffness from a
constant value to a function of displacement u with the unit of N/m. In fact, the stiffness is taken to be

k = 7*(1 + u), (15)

where 7° is the initial stiffness, while the nonlinear stiffness is introduced after the system deforms and it is
found to be n°u. Numerical results for the nonlinear system subject to the rising triangular impulse as shown in
Fig. (7c) are plotted in Fig. 13. In this figure, the result obtained from the time step of Az = 0.0001 s can be
treated as an ‘“‘exact” solution. It is clear that Scheme (a) using Ar = 0.025 or 0.05s leads to very poor
solutions, while those obtained from Scheme (b) are acceptable. This implies that the momentum equation of
motion can also overcome the discontinuity problem for nonlinear systems.

0.3
a=1.00 Scheme (a)
—-—=--2=0.10 Scheme (a)
02+ ] e - o0=0.00 Scheme (a)

0.1

Displacement Error (1)

Time (sec)

Fig. 12. Displacement error for responses to rising triangular impulse obtained from Newmark explicit method using Scheme (a) with
different o values.
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6.5. Example 5

To further confirm that the momentum equations of motion can overcome the discontinuity at the
end of an impulse in the solution of a shock response for a multiple degree-of-freedom system, a 5-story
shear-beam type structure subject to a triangular ground impulse is considered. The mass and stiffness
for each floor are taken to be 1 kg and 100 N/m. The triangular ground impulse is in the form of ground
acceleration and its time integral is in the form of ground velocity as shown in Fig. 14. The maximum ground
acceleration and the duration of this impulse are assumed to be 100m/s*> and 7, = 0.01s, respectively.
Apparently, the product of the ground acceleration and each story mass is the input external force for each
story if the force equation of motion is used. Similarly, for the use of the momentum equation of motion, the
product of the ground velocity and each story mass is the input external momentum for each story. The
structural period and the ratio of At¢/T, for each mode of the 5-story shear-beam type structure are
summarized in Table 2.

In Table 2, the natural frequency w,, is in the unit of rad/s and the period 7, is in the unit of seconds. This
table shows that the use of Ar=0.0001, 0.001 and 0.03s for the step-by-step integration will introduce
insignificant period distortion if the Newmark explicit method is used, since the ratios of A¢/T,, are small for all
five modes. Numerical results are plotted in Fig. 15, where the solutions computed from Scheme (a) using a
time step of 0.0001 s are considered as “exact” solutions for comparison. Both Schemes (a) and (b) are used to
obtain the responses to the triangular ground impulse. It is manifested from this figure that Scheme (a) with a

0.5

—— Ar=0.0001 Scheme (a)
0 4 L =--= Ar=0.0250 Scheme (a)
* 0.0500  Scheme (a)
0.0250  Scheme (b)
03 F N e Ar=0.0500 Scheme (b)

0.2
0.1
0.0

Displacement (m)

S S
N =

-0.3

&
~

-0.5
Time (sec)

Fig. 13. Nonlinear responses to rising triangular impulse obtained from Newmark explicit method using both Schemes (a) and (b).

acc.(t) vel.(t)

100 m / cm? 1 m/sec

to=0.01 sec to=0.01 sec

+—>

Fig. 14. Five-story shear-beam type structure subject to triangular ground impulse.
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Table 2
List of 7, and A#/T,

o, 2.846 8.308 13.10 16.83 19.19

T, 2.207 0.756 0.480 0.373 0.327

00001 453%x107° 1.32x107* 2.08 x 107 2.68 x 107 3.06 x 1074
ol 453107 1.32x 1073 2.08x 1073 2.68 x 1073 3.06 x 1073
0.03 1361072 397x 107 6.25x 107 8.04x 1077 9.17x 107

0.4

—— Ar=0.0001 Scheme (a)
—-—-- Ar=0.0010 Scheme (a)
03 +F ] Ar=0.0300 Scheme (b)
N A

0.2

0.1

Displacement (m)

Time (sec)

Fig. 15. Top story response to triangular ground impulse.

time step of 0.001s, which is equal to ll—oto, still cannot provide accurate solutions, while reliable results are
obtained from Scheme (b) if a time step of 0.03s is used, which is three times that of the loading duration.
Thus, it is evident that the momentum equations of motion are superior to force equations of motion in the
solution of the shock response to impulse. Apparently, the discontinuity at the end of the ground acceleration
is responsible for the inaccurate solutions obtained from Scheme (a) with Az = 0.001 s. In fact, for this case,
the relative amplitude error is found to be Ef. = 0.09 which is in good agreement with the analytical result
estimated from Eq. (14) of E. = 0.1. On the other hand, accurate results obtained from Scheme (b) with
At =0.03s are due to the effective reflection of the external momentum-dependent effect and there is no
discontinuity in the external momentum.

7. Conclusions

In this study, an analytical procedure is used to show that the shock response to an impulse obtained from
the Newmark method will involve an extra amplitude distortion caused by the discontinuity at the end of the
impulse. Furthermore, it is found that the relative amplitude error in the displacement response due to the
discontinuity at the end of an impulse can be reliably estimated from the ratio of the area of the extra impulse
over the area of the input impulse in the step-by-step integration. This is basically derived from the fact that
the maximum displacement response to an impulse depends principally upon the magnitude of the applied
impulse and is not strongly affected by the form of the loading impulse. Finally, it is shown that the
momentum equation of motion, which is constructed from the dynamic equilibrium of momentums, can
effectively overcome the difficulty caused by the discontinuity at the end of an impulse. This is because the
discontinuity problem in dynamic loading will automatically disappear after the time integration of the
impulse, which results in no discontinuity in the external momentum. All these analytical results are confirmed
with numerical examples. The feasibility of using this technique for nonlinear systems is confirmed by
numerical experiments. On the other hand, it is numerically shown that to conduct a very small time step
immediately upon termination of applied impulse can effectively overcome the difficulty caused by load
discontinuity.
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