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Abstract

Direct numerical simulations (DNS) are conducted of noise generated at an infinitely thin trailing edge (TE). The aim is
to predict the far-field sound and the near-field hydrodynamics, thereby providing an insight into the physical mechanisms
of sound generation at airfoil TEs and potentially helping to validate acoustic theories. One of the theories widely used is
the classical inviscid theory of Amiet, where the far-field sound can be evaluated in closed form if the convecting surface
pressure spectrum upstream of the TE is known. For the first time, data from DNS including viscous effects are compared
to the classical inviscid TE noise theory. In the present investigation, Tollmien—Schlichting waves are introduced close to
the inflow boundary. The disturbances propagate downstream producing pressure fluctuations at the TE. In conducting
two-dimensional DNS the theoretical method requires modification to account for the radiation of the total pressure
difference in two dimensions only, as opposed to the three-dimensional sound radiation originally considered by Amiet.
The modified theoretical analysis and a comparison between DNS and theoretical results are presented, scrutinizing the
assumptions made in the derivation. Amiet’s surface pressure jump transfer function is found to predict the scattered
pressure field accurately. Directivity plots of DNS data show that viscous effects appear to smear individual lobes and that
a downstream pointing lobe is present at higher Mach number which is attributed to an additional wake source.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Noise generated by turbulent flow over trailing edges (TEs) is an important aspect in the design of quieter
airplanes and propulsion systems as it contributes to airframe noise, fan noise and other sources of sound. The
acoustic analogy developed by Lighthill [1,2] states that turbulent fluctuations in free space are inefficient
radiators of noise in low-speed flows. Due to the quadrupole-type character of turbulent fluctuations the
radiated acoustic intensity scales as M®. In the presence of solid boundaries, surface dipoles lead to a M®
scaling as predicted by Curle [3]. However, when a turbulent eddy passes a sharp edge of a solid body, the
turbulent fluctuations radiate even more strongly (M>-scaling), as shown by Ffowcs Williams and Hall [4].
Therefore, due to this scaling, in the absence of significant other generating mechanisms, such as ingestion of
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Nomenclature Greek letters
Agist amplitude of disturbance B V1= M?
b semi-chord 0 Dirac delta function
¢ speed of sound oF displacement thickness
C,K,T,Y,; transformation variables Oik Kronecker operator
d half-span Ap pressure difference between top and
E total energy E = T/[y(y — 1)M? + 0.5ujy; bottom surface
E* Fresnel integral € convergence factor
fi scaling of incident pressure field Y ratio of specific heats
F; forcing term I,Q transformation variables
9s two-dimensional Green’s function in U molecular viscosity

time domain Ho reduced frequency py = wb/ (cp?)
G two-dimensional Green’s function 0 density
Hf,z) th order Hankel function of the second o m

kind
Hp, Hs surface pressure jump transfer function Tik stress tensor
K, non-dimensional wavenumber K, =wb/ U, ® frequency _
M Mach number 14 integration variable
p pressure ]
Pr Prandtl number Subscripts
qx heat-flux vector o )

5 5 5 1,2 indices for streamwise and wall-normal
R \/0’1 —x1) + 0 —x2) directions
/5 > i incident

Ra X+ i,j,k  indices for Cartesian tensor notation
Re Reynolds number s scattered
L tme t total
T temperature
u; velocity vector
U, U. streamwise freestream velocity, convec-

tion speed

X;,y;  coordinates normalized with b

turbulence, formation of tip-vortices, etc., TEs are one of the most significant sources of sound, particularly at
low Mach numbers.

A review of TE theories was conducted by Howe [5]. He identified three categories, namely (i) theories based
on Lighthill’s acoustic analogy, (ii) theories based on the solution of special problems approximated by
linearized equations, and (iii) ad hoc models. Howe concluded that all methods, when interpreted properly,
essentially gave the same results. The theoretical results were supported by TE noise experiments on a
NACAO0012 airfoil [6]. Out of the second category, the theory of Amiet [7] appears to be an attractive
approach as the far-field noise can be predicted with the convecting surface pressure spectrum upstream of the
TE as the required input rather than having to provide the turbulence quadrupole sources in full.

With the recent dramatic growth in computing power, conducting numerical simulations in order to
compute acrodynamically generated sound has become increasingly feasible. Solving the full unsteady
Navier—Stokes equations to directly compute both the far-field sound and the near-field hydrodynamics is
desirable. The use of direct numerical simulations (DNS) avoids difficulties with hybrid approaches, such as
the coupling of different numerical methods, storage of intermediate data [8], and the sensitivity to the
position of integration surfaces [9]. Also, uncertainties with using subgrid-stress models for the small-scale
structures in LES [10,11] are eliminated. Thus, DNS can provide an insight into the physical mechanisms of
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sound generation and potentially help to validate acoustic theories. Here, DNS of TE noise are conducted to
evaluate the inviscid theory of Amiet [7]. Amiet’s classical theory was derived for flow past a flat plate.
Therefore, an infinitely thin plate with a laminar boundary layer on each side is considered. In order to
generate a surface pressure difference, Tollmien—Schlichting (TS) waves are introduced on the top side of the
flat plate close to the inflow boundary. The instability waves convect downstream and pass the sharp TE,
generating TE noise. An additional motivation for using TS waves is the observation of boundary-layer
instability noise on airfoils. Tonal noise from airfoil TEs was already observed in the 1970s [12,13] and more
recently Nash et al. [14] were able to link tonal noise in airfoil experiments to boundary layer instabilities. The
paper presents the first DNS that have been conducted of boundary layer instability waves convecting over an
infinitely thin TE, providing data containing the effects of viscosity that are used to scrutinize the classical
inviscid theory of Amiet.

To allow for parametric studies, DNS are conducted in two dimensions. Amiet’s theory considers three-
dimensional (3-D) sound radiation, hence a modification of Amiet’s theory accounting for two-dimensional
(2-D) sound radiation is derived. The modified theoretical analysis is presented and comparisons between
theoretical results and DNS data are made, scrutinizing the assumptions made in the derivation. For the
present investigation, a high-order accurate numerical method is chosen which is free of upwinding, artificial
dissipation or any form of explicit filtering.

2. Governing equations
2.1. Theoretical approach

The classical theory of Amiet [7] is valid for compressible flow and assumes a pressure pattern on the airfoil
surface which convects past the TE, producing a radiating pressure field of similar magnitude. Amiet’s theory
considers 3-D sound radiation. In the current investigation, 2-D laminar flows with single-frequency
disturbances are investigated. Therefore, a modification of Amiet’s theory accounting for 2-D sound radiation
of single-frequency disturbances is derived in the coordinate system x = [x,x»]T, where x; and x, are the
streamwise and the wall normal directions non-dimensionalized with the semi-chord b, respectively. A plate
with zero thickness is assumed to be semi-infinite, i.e. the leading edge is not considered. However, the
integration of the sources along the plate coordinate y; is conducted over a finite length, namely —2 <y, <0.
Goldstein’s formulation [15] of the acoustic analogy, which represents the fundamental equation governing
the generation of aerodynamic sound in the presence of solid boundaries in a moving reference frame, is used
as the starting point. Neglecting viscosity and performing a Fourier transform in time yields the acoustic
pressure at a single frequency
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Eq. (1) is derived for a moving reference frame. Here, the sources and the observer are fixed while the flow
moves downstream. Therefore, the Green’s function G, needs to be a solution for the wave equation with
mean flow
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results in the wave equation for a stationary medium
o 1@

—t— 4
aY%JraYg cror (4)

X, Y, I, T) = —Ba(y X)b(T MYI—F).

B g
Inverting the above transformation coordinates and substituting them into the known stationary medium

Green’s function [16] and performing a Fourier transform in time results in the 2-D Green’s function in
frequency space

Ga(x,y, ) = i H(2){w7: + o[M(y; — x1) + R]). (5)
Setting the wall-normal origin of the plate to y, =0, Eq. (1) can now be written as
ix,0b
pxo) =2 | Apxy, o) HO WM, —x0) + R) dy, (©)

The total pressure difference on the surface is the sum of the incident pressure difference and the scattered
pressure difference

Ap, = Ap; + Ap,. (7)

In cases where the entire time-series of the surface pressures is available (which it is for DNS) Eq. (6) can be
integrated directly to obtain the acoustic pressure field. However, when only the incident pressure field is
known, the total pressure field at the TE can be determined from the incident pressure field through a transfer
function [17]. This is because the incident pressure on one side of the plate is equivalent to a pressure jump
when no incident pressure is considered on the other side of the plate. As a prerequisite, the unsteady Kutta
condition is assumed to hold at the TE, i.e. Ap, = 0, and the condition of no-flow across the plate is imposed.
With the above conditions, the Schwartzschild solution can be employed to derive a surface pressure jump [17]
(for incident pressure fluctuations on one side of the airfoil)

Aps(yl > K\) = HS(yl ) K,‘C)p[(yl ) K’C)

with  Hs(r, Kx) = (1 + DE[—(o(1 + M) + Kp,] - 1). @®)
The function E* is a combination of Fresnel integrals
X 1 .
E*(x) = / e € dé. 9)
0 /2mn¢ (

Therefore, the total pressure difference becomes

Apr(yl s K’C) = HD(yla KX)pi(yl > K‘C)
=[fiv1, Kv) + Hs(y, K)pi(vy, Ky). (10)
In Amiet’s original paper [7], f;(y;, Ky) was set to unity to account for the incident pressure. However, a
convergence factor ¢ was subsequently introduced [18] to gradually decrease the incident pressure towards the

leading edge such that f;(y,, K.) = exp(¢K.y;). In a single frequency case, the incident pressure disturbance
can be represented as

Pily1, Ky) = pye 10100, (11)
Hence, analogous to Eq. (2) in Amiet’s paper [7], the total pressure jump (normalized with p,) can be
evaluated as

Ap,(y1, Ky) = Hp(yy, K )e K1, (12)

Inserting Eq. (10) into Eq. (6) yields the 2-D acoustic pressure field as a function of the incident pressure field
1x,wb

px,0) =2 / Hp(v, Kpi(y. K g HP My —x0) + Rl dy. (13)

Note that, in contrast to the orlgmal theory, no far-field approximation has been made.
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2.2. Direct numerical simulations

The flow under consideration is governed by the full compressible Navier—Stokes equations. The fluid is
assumed to be an ideal gas with constant specific heat coefficients. All quantities are made dimensionless using
the flow-quantities at a reference location in the flow; here the freestream/inflow location is used. The non-
dimensional continuity, momentum and the energy equations are:

op O
o + gk(ﬂuk) =0, (14)
g( )+i[ . + Oir. — .]_F. (15)
o1 PU; axk PUUk + Poik — Tik] = Ii,
0 0 p
&(pE) + o |:,0uk (E + p> +q — uifik] =0, (16)

where F; is a volume force and the total energy is defined as E = T /[y(y — 1)M?] + 0.5u;u;. The stress tensor
and the heat-flux vector are computed as

Lo M (Oui  Ow 20w __ -k o7
* T Re\ox; ox; 30y %) qk_(y—l)MzPrReaxk’

respectively, where the Prandtl number is assumed to be constant at Pr = 0.72, and y = 1.4. The molecular
viscosity u is computed using Sutherland’s law [19], setting the ratio of the Sutherland constant over
freestream temperature to 0.36867. To close the system of equations, the pressure is obtained from the non-
dimensional equation of state p = (pT)/(yM?). In order to introduce disturbances into the boundary layers, a
volume force F;j is added to the right-hand side of the governing equations. To minimize the sound generation
of the disturbances, a solenoidal and therefore quiet forcing is used [20].

(17)

F=2® o % i (18)
a)Q le
¢ = Agist sin(w?) ll — Cos <M>1 [1 — cos <m>] , (19)
xle—xlb XZB—Xzb

with x;, and x;, being the start and end points of the forcing, respectively.
3. Numerical method

Results from DNS will be compared to theoretical results. Hence, two numerical codes are used: one solves
for the acoustic pressure as a function of the surface pressure difference, while the other solves the
Navier—Stokes equations. For the analytical approach Eqs. (6) or (13) are integrated using a fourth-order
accurate integration. The plate is discretized with a non-uniform grid, clustering most points in the vicinity of
the TE to reduce computational cost.

The compressible Navier—Stokes equations are solved using a high-order numerical scheme applicable to
general geometries. The extension to general coordinates is achieved through metric terms pre-multiplying the
derivatives of the governing equations. No upwinding, artificial dissipation or explicit filtering are employed.
Stability is rather achieved through appropriate conditioning of the governing equations, namely an entropy-
splitting approach that splits the nonlinear terms into conservative and non-conservative parts and a
Laplacian formulation of the viscous and heat conduction terms. The latter is used to avoid odd-even
decoupling when using central finite-difference schemes. In addition, compatible spatial difference operators
for the interior and boundary points are employed. Further details on the fundamental numerical approach
are given in Ref. [21]. A non-reflecting zonal boundary condition is used to avoid spurious pressure-
oscillations from the boundaries, in particular the outflow boundary. The method is based on commonly used
characteristic boundary conditions. Here, incoming characteristics are ramped to zero in a buffer zone as
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opposed to merely setting them to zero at the boundary [22]. In contrast to most other zonal approaches, the
method is free of coefficients that require calibration and only the length of the fringe zone needs to be
specified.

4. Validation

To ensure that the numerical codes used in the current work produce accurate results a thorough validation
was conducted of both the analytical approach and the DNS.

4.1. Analytical approach

In Amiet’s original theory [7], a closed-form solution was obtained for the far-field sound spectrum. For the
modified 2-D theory, the equations to be solved are only available in integral form. Therefore, the correctness
of the non-equidistant integration needs to be established. Given the lack of published results for a 2-D theory,
the numerical code was applied to Amiet’s 3-D theory, solving

1x,wb

p(x, )

0
oy | Hol Kge ettt/ gy, 20)

by numerically integrating over y,;. The first validation case was conducted with M = 0.05, y, = 5.0125 and
K, = 100. These values correspond to the parameters investigated by Roger and Moreau [23] when using
‘kc = 10°. For comparison, the closed-form solution (Eq. (5)) of Amiet [7] was solved, dropping the last term
to be consistent with using the convergence factor ¢ in Hp(y;, K) [18]. Fig. 1 shows the magnitude of acoustic
pressure obtained from numerically integrating the 2-D and 3-D theory for two different radii R. Amiet’s
closed-form solution is added for comparison. The results obtained from numerically integrating Amiet’s
original theory and using the closed-form solution (0°<0<180°) match exactly, validating the numerical
integration procedure. At R; = 2, the solution of the 2-D theory (—180°<60<0°) is similar in magnitude but
different in shape, with all lobes pointing further upstream than in the 3-D case. This can be attributed to the
fact that no far-field approximation was made in the derivation of the 2-D theory, i.e. near-field effects are
included. When increasing the radius to R; = 10, the 2-D theory predicts a larger magnitude than 3-D theory.
This was expected as the radiation is confined to two dimensions and should therefore show a smaller decay
(p < 1/4/Ry for 2-D radiation versus p o« 1/Ry for 3-D radiation). The amplitude of the 2-D result is divided
by 1.75 to allow for a detailed comparison of the shape with the 3-D result. For the current parameters, the
difference in shape is negligible.
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Fig. 1. Magnitude of acoustic pressure at R; = 2 (a) and R; = 10 (b); (-) closed-form solution of Amiet [7], (o) numerical integration of

Amiet’s 3-D theory (upper half-plane only), (¢) numerical integration of 2-D theory (lower half), (+) numerical integration of 2-D theory
divided by 1.75 (lower half); u, = 5.0125, K, = 100 and M = 0.05.
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Fig. 2. Magnitude of acoustic pressure at R; = 2 (a) and R; = 10 (b); (-) closed-form solution of Amiet [7], (o) numerical integration of

Amiet’s 3-D theory (upper half-plane only), (¢) numerical integration of 2-D theory (lower half), (+ ) numerical integration of 2-D theory
divided by 1.4 (lower half); u, = 5.0125, K, = 100 and M = 0.6.

Judging from the results obtained in the far field (R; = 10), the use of a strictly 2-D theory does not appear
to be necessary for this low Mach number case. However, significant differences occur when increasing the
Mach number. The calculations were repeated at M = 0.6 using the same non-dimensional parameters 1, and
K. The results are shown in Fig. 2. For R; =2 the downstream pointing lobe appears to be the most
significant one when employing 2-D theory. That this is not a near-field effect is demonstrated by the graph
showing the results at R; = 10. The amplitude of the 2-D result is again scaled to allow for a detailed
comparison with the 3-D result. The lobes that are inclined in the upstream direction are highly similar to
those calculated with 3-D theory. However, the downstream pointing lobe is considerably larger in amplitude.
Thus not only is the magnitude increased due to the confinement of the sound field to a plane, it also appears
that the radiation in the downstream direction gains in significance.

4.2. DNS code

The computation of TS waves in a flat plate zero pressure gradient boundary layer was chosen as a
challenging test for validation of the DNS code. A viscous hydrodynamic instability is responsible for the
growth of small amplitude waves (TS waves) in a boundary layer. Therefore, an accurate representation of the
physical mechanisms in the near-wall region is crucial for capturing the correct behavior of the waves, such as
phase and amplitude distributions and, in particular, the growth rates. The set-up of the calculation follows
case 1 from Fasel and Konzelmann [24]. Our data are compared to linear stability theory (LST) and
incompressible results [24] where a DNS code was employed and, therefore, potential deviations from LST
caused by non-parallel effects were accounted for. The Mach number was set to M = 0.25 in order to
minimize the effect of compressibility while still allowing for practical timesteps. The disturbances were
introduced into the flow as described above using Eq. (18).

The amplification rate of the inner maximum of the streamwise velocity component is shown in Fig. 3 as a
function of Reynolds number based on displacement thickness, Reg«. The results obtained with the
compressible Navier—Stokes code agree well with LST and the reference DNS. A larger amplification rate than
that predicted by LST is found and the maximum is shifted downstream, consistent with the findings of Fasel
and Konzelmann [24] when using DNS. The amplitude distribution of the streamwise velocity component at
Reg« = 800 shows excellent agreement with the reference data. This demonstrates that the Navier—Stokes code
is capable of accurately representing the development of hydrodynamic instabilities.

In the intended TE calculations a wake will develop downstream of the TE containing highly energetic
structures. It is essential that residual pressure oscillations caused by these vortical structures crossing the
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Fig. 3. Amplification rate (a) of inner maximum of streamwise velocity and amplitude distribution (b) of streamwise velocity component
at Reg = 800; (o) current compressible DNS, (- - ) linear stability theory, (—) incompressible reference; M = 0.25, f* = 2.222.

outflow boundary are significantly reduced to avoid interference with the low amplitude sound waves
produced at the TE. This motivated the development of a zonal characteristic boundary condition offering a
coefficient-free and inexpensive way of drastically reducing spurious pressure oscillations. It was demonstrated
that the DNS code incorporating this novel boundary treatment is suitable for simulations of the acoustic
scattering of TS waves convecting over a TE [22].

5. Results

DNS of TE sound generation were conducted for two different Mach numbers. The computational domain
has the dimensions —2.286<x; <2.142 and —3.714<x; <3.714 with the infinitely thin plate extending from
—2.286<y,<0at y, = x, = 0. At the TE, the top and bottom boundary layers have a displacement thickness
of 6* = 6.686 x 1073, resulting in Reg = 1170, and the Mach number is specified at M = 0.4 and 0.6. 2500
and 600 non-equidistantly spaced points are used for the x;- and x,-direction, respectively, with the finest
resolution at the TE. The surface is discretized with 620 points in the streamwise direction. Additional
simulations were conducted with different domain sizes and grid resolution and did not show a difference in
the results. A zonal characteristic boundary condition is used at the outflow (for x; >1.571), and a traditional
sponge employing a dissipation term is used for the upper and lower freestream boundaries (|x;]|>2.857) and
the inflow boundary (—2.286<x; < — 2). The simulations are first conducted without applying forcing. An
unsteady wake forms downstream of the TE for both Mach numbers, shedding large vortices. Once a quasi
time-periodic state is reached, time-dependent forcing is introduced at x; = —2.129 and x; = 0.00286 with
Agist = 8 x 1073, The non-dimensional forcing frequency w = 6.4n was found from LST to generate TS waves
that are amplified up to the TE. The amplitude of the pressure disturbance associated with the TS wave is
smaller than 1% of the mean pressure value at the TE. The reasons for choosing this amplitude are the
following. The disturbance amplitude must exceed a lower threshold so that the sound field can be reliably
detected at a distance from the TE. At the same time, the amplitude of the disturbances must be below the
nonlinear saturation level of TS waves in order to avoid higher harmonics. The above parameters result in the
non-dimensional parameters p, = 8.38 and K, =45.11 at M =04, and p; =16.49 and K, =41.89 at
M = 0.6.

For an overview of the resulting flow field, instantaneous contours of dilatation are shown in Fig. 4 for both
Mach numbers. The graphs reveal the unsteady wake forming downstream of the TE and the TS waves on the
upper side of the singular plate. Acoustic waves generated by the scattering of the instability waves at the TE
can be clearly seen. These waves radiate in both the positive and negative x,-direction in phase opposition and
exhibit a wavelength considerably greater than that of the original TS wave.
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Fig. 4. Contours of dilatation obtained from DNS trailing edges with TS waves; M = 0.4, y, = 9.57, and K, = 54.34 with contour levels
[—0.002;0.002] (a); M = 0.6, puy = 18.85, and K = 50.27 with contour levels [—0.003; 0.003] (b).
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Fig. 5. Total pressure difference Ap, from DNS for M = 0.4 (a) and M = 0.6 (b); (- - -) upstream of TE (y; = —0.02), (—) at TE
O, =0.0), v = 6.4x.

5.1. Surface pressure jump transfer function Hg

The far-field pressure is evaluated as a function of the total pressure difference on the surface in both the
2-D and 3-D theory. Therefore, it is essential that an accurate representation of Ap, is available. Amiet’s theory
relies on the surface pressure jump transfer function Hg to determine Ap,. Therefore, this essential component
will be the first subject of scrutiny. One of the key assumptions for deriving Hy is the validity of the unsteady
Kutta condition at the TE [17]. Until today, there remains uncertainty regarding the accuracy of this premise
for viscous flows [25]. Howe [26] demonstrates that the imposition of the Kutta condition results in a
considerable reduction of sound generated by convection of disturbances past a TE. Here, the validity of the
Kutta condition is investigated by analyzing the entire time-series of the surface pressure obtained from DNS.

Fig. 5 shows a time-series of the total pressure difference upstream of the TE and at the TE for both Mach
numbers. At y; = —0.02, the total pressure difference oscillates with the forcing frequency w = 6.4n and an
amplitude of roughly 0.01 in both cases, indicating that the TS wave can still be considered a linear
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disturbance. At the TE itself, the amplitude of Ap, is considerably reduced for both Mach numbers.
Considering that the Reynolds number in the present simulations is moderate, the unsteady Kutta condition
appears to be a reasonable approximation even for viscous flows.

To assess whether the surface pressure jump transfer function Hg can correctly predict the total pressure
difference, in spite of the unsteady Kutta condition not being exactly satisfied, the DNS were repeated
extending the plate surface up to the outflow domain. Thus, simulations were conducted of the development of
TS waves in a zero pressure gradient flat plate boundary layer. Due to the absence of a TE, no scattered
pressure field was present and the simulations permitted recording the incident pressure field only. With the
availability of p;, Eq. (10) was applied in order to obtain p,. Note that here only the total pressure on either
side of the surface is computed, hence p, = [f,— +0.5H S] p; for the top side (where TS waves are introduced)
and p, = —0.5H sp; for the lower side.

The resulting magnitudes of disturbance pressure on top and bottom side of the surface are shown in Fig. 6
for simulations at M = 0.4. It can be observed that the incident pressure magnitude obtained from the
boundary-layer DNS grows up to the TE location, i.e. in the flat plate boundary layer case the TS wave is
amplified over the entire plate. Applying the surface pressure jump transfer function setting f; = 1, good
agreement with the total pressure obtained from the TE DNS is achieved in terms of frequency and phase,
albeit the magnitude is slightly overpredicted in the vicinity of the TE. This is most likely caused by the fact
that the TS wave in the TE simulation is subjected to a slight favorable pressure gradient just upstream of the
TE. The growth is therefore reduced slightly such that the slope of the envelope of the incident pressure wave
is reduced. To account for this change of the magnitude of p;, the correction f; =1—0.24e"07Kx1 is
introduced. Making a better approximation of the ‘true’ incident pressure field the total pressure obtained by
using Amiet’s transfer function Hg matches closely that from the TE DNS. In fact the agreement is
noteworthy, in particular for the phase, considering that Hg assumes the validity of the unsteady Kutta
condition while the DNS data contains a non-zero value of Ap, at the TE. For completeness, the total pressure
was also computed using f; = e’ with ¢ = 0.3. A far too strong decay away from the TE can be observed,
which was expected as the convergence factor was intended for a turbulent boundary layer and not TS waves
in a laminar flow. Looking at total pressure on the bottom side of the plate (which only consists of the
scattered pressure component) the magnitude of p, obtained from H is again in good agreement with the TE
DNS data.

Fig. 7 shows the magnitudes of disturbance pressure on the top and bottom sides of the surface for
simulations at M = 0.6. Qualitatively the results correspond to those obtained at M = 0.4. It is particularly

(a) (b)

x 103
5
45 | 0.016 |
4t f 0.014 |
357 0012 |
< 3 < 001 f
3‘ 257 s 0.008
a 2 L a Y
15| 0.006 |
1| 0.004
05 F ] 0.002 |
0 ' 0
-1 0.8 0.6 0.4 0.2 0
Y1 Y1

Fig. 6. Magnitude of disturbance pressure on top (a) and bottom (b) surface; (- - -) incident pressure p; from boundary-layer DNS,
(—) total pressure p, from TE DNS, (---) p, = (1 +0.5Hs)p;, (O) p, = (X1 +0.5Hs)p; [7], (©) p, = (1 — 0.24e*7Kx1 1 0.5Hs)p;,
(A) p, = —0.5Hsp;; uy =8.38, Ky =45.11, and M = 0.4.
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Fig. 7. Magnitude of disturbance pressure on top (a) and bottom (b) surface; (- - -) incident pressure p; from boundary-layer DNS,
(—) total pressure p, from TE DNS, (---) p, = (1+0.5Hg)p;, (O) p, = (51 + 0.5Hs)p; [7], (0) p, = (1 —0.24e"751 +0.5H5)p;,
(D) p, = —=0.5Hsp;; uy = 1649, K, = 41.89, and M = 0.6.

encouraging that good qualitative agreement with the TE DNS data can again be achieved using the same
correction f; = 1 — 0.24e%97Kx1 | especially for the phase. Overall it can be concluded that the surface pressure
jump transfer function Hg performs well for different Mach numbers and reduced frequencies.

5.2. Acoustic pressure

Having shown that the total pressure difference on the surface can be predicted accurately using the
pressure jump function Hg, the focus is now shifted to the acoustic pressure prediction. In one method the
acoustic pressure p is evaluated using Eq. (6) where Ap, = Priop ~ Prioriom” i.e. the difference of the top and
bottom surface total pressures, from TE DNS. Alternatively, p is computed from Eq. (13) with Hp =
(1 —0.24e%97Kx01 + H ) using the incident pressure field from the DNS of a boundary-layer without TE. The
results computed using 2-D theory are then compared to the acoustic pressure predicted by DNS. In DNS the
acoustic pressure was obtained by conducting simulations over a period of at least four flow-through-times
and computing prvs-

Fig. 8 shows the resulting acoustic pressure magnitudes at R; = 2. For both Mach numbers, good
agreement between the results using either Eq. (6) or (13) can be observed. This was expected considering that
the surface pressure jump transfer function predicted Ap, fairly accurately. Therefore, in both cases roughly
the same surface pressure difference is radiated to the far field. However, comparing the results from 2-D
theory with the acoustic pressure obtained directly from DNS appears to be more interesting. In order to
obtain a reliable comparison, it is important to recognize the effect of the inflow sponge zone: the application
of a volume force to generate TS waves causes a pressure peak on the top surface. The amplitude of the surface
pressure difference at the disturbance location is considerably larger than in the vicinity of the TE. However,
the disturbance generation was placed within the sponge zone in order to attenuate noise produced by the
forcing. Thus the surface pressure difference within the sponge zone does not contribute to the far-field sound
obtained directly from DNS. For this reason, only the pressure difference outside the sponge region is taken
into account, i.e. the sources are integrated over the surface for —2.0<y, <0.0 according to Eq. (6) or (13). It
should be noted that when including the surface pressure difference within the sponge zone, the magnitude of
the acoustic pressure was considerably overpredicted, although the directivity was not changed significantly.

At M = 0.4 the agreement of the 2-D theory with the DNS data is good in terms of the location of the
maxima and minima, in particular for the top surface. On the bottom surface, the DNS data curve appears
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Fig. 8. Magnitude of acoustic pressure at R; =2 for M = 0.4 with u, = 8.38 and K, =45.11 (a), and M = 0.6 with u, = 16.49 and
K = 41.89 (b); () |p| from Eq. (13) using Hp = (1 — 0.24¢"7%1 4 H), (- - -) |p| from Eq. (6) using Ap, = p,,,, from trailing
edge DNS, (—) |p| from DNS.
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smoother, i.e. differences between minima and maxima are fairly small for the range —140° <0< — 60°. This
might be caused by the dissipating effect of viscosity, however an additional reason is discussed below. Similar
behavior can be observed for the M = 0.6 case, albeit here significant additional downstream pointing lobes in
the DNS data appear. The agreement of the upstream pointing lobes with 2-D theory also is not as good as in
the lower Mach number case although the general trend is captured reasonably well. The current results have
also been compared to additional calculations employing a far-field assumption. The amplitudes of the
acoustic pressure were found to be similar regardless of whether the far-field approximation was made or not.
However, the near field has a significant effect on the phase, i.c. when employing the far-field assumption the
lobe structure of the DNS data could not be predicted accurately.

In order to potentially uncover the origin of the discrepancies between the DNS data and results obtained
from 2-D theory, TE DNS were conducted without forcing. The main difference between theory and the DNS
is not only the presence of boundary layers on the plate surface, but also, as mentioned previously, an
unsteady wake downstream of the TE. The acoustic pressure was again obtained by calculating pryg Over a
period of at least four flow-through-times. The magnitude of acoustic pressure at R; = 2 from the unforced
DNS at M = 0.6 is shown in Fig. 9. In the absence of the forcing on one side of the surface, the resulting
pressure pattern is symmetric with respect to x, = 0. A dominant lobe is visible pointing in the upstream
direction and a secondary lobe is present which is inclined in the positive xj-direction. This implies that
significant noise is generated by the wake in the DNS simulation. The large value of the upstream pointing
lobe most likely causes the smoothness of the DNS data shown in Fig. 8, as the TE noise is superposed with
the wake noise. However, the magnitude of the secondary lobe is far too small to be the origin of the
pronounced downstream pointing lobes seen in the forced DNS cases. To shed some light on what might cause
these dominant lobes, the unsteady wake is scrutinized. The structure of the unsteady wake can clearly be
identified when looking at vorticity contours (shown in Fig. 9). The wake remains steady for a long distance
(up to x; ~ 0.5 = 836). A Kelvin—Helmholtz (K-H) type instability leads to amplification of disturbances in
the wake and a subsequent shedding of vortices. The spacing of the vortices in the resulting vortex street is
highly regular, i.e. a dominant frequency is present. On the other hand, when looking at the wake of the DNS
with TS wave at M = 0.6 (Fig. 9¢c) several significant differences can be detected. The wake becomes unsteady
much farther upstream (x; ~ 0.3 ~ 500*). The reason is partly that the shear layer is perturbed with a larger
amplitude (the TS wave) than in the unforced case. More importantly, the vortex street does not look as
regular as in the unforced case. This is due to the fact that two separate frequencies are now present, the
forcing frequency and the shedding frequency. The superposition of the TS waves with the K—H instability
waves in the wake leads to vortex packets convecting downstream. Once the amplitudes of the disturbances
become sufficiently large, nonlinear interaction can generate low frequencies that can radiate into the far field
[27].Looking at contours of dilatation (Fig. 9) it appears as if the above described phenomenon is indeed
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(b)

Fig. 9. Magnitude of acoustic pressure at R; = 2 (a) and contours of vorticity [—3; 3] (b) from unforced DNS of trailing edge; contours of
dilatation [—0.001;0.001] with an insert of contours of vorticity [—3; 3] (c) from DNS with py, = 16.49 and K, = 41.89; M = 0.6.

responsible for sound generation in the wake. Clearly, acoustic waves originate at x; &~ 0.7, the location where
shedding occurs, i.e. where the disturbances in the wake become nonlinear. These acoustic waves can be seen
in Fig. 4b to propagate downstream at an angle that corresponds to the angle of the additional lobes found in
the directivity plots. It is therefore suggested that the downstream pointing lobes are caused by nonlinear
sound generation in the wake. The fact that the additional lobes were only observed at the higher Mach
number can most likely be explained by observing that the additional source in the wake should be
quadrupole-like according to the acoustic analogy. Therefore, the TE noise will be dominant at low Mach
number.

Additional DNS of TEs were performed specifying slip walls [28], thus eliminating the unsteady wake
downstream of the TE and, hence, the K—H instability waves. The slip wall simulations did not exhibit the
pronounced downstream pointing lobes of Fig. 9, corroborating the above findings that these lobes are a
consequence of nonlinear interaction between the K—H and the TS instability waves. It should be noted that
the additional noise generation mechanisms might be enhanced by conducting 2-D simulations because only
two distinct harmonic waves are present. In fully 3-D simulations, the boundary layer and the wake are
turbulent and nonlinear interactions will most likely occur for many frequencies, albeit at lower amplitudes.

6. Summary

2-D DNS of an infinitely thin TE were conducted at M = 0.4 and 0.6. TS waves were introduced close to the
inflow boundary to produce pressure fluctuations on the surface, generating TE noise. The aim of these
simulations was to evaluate Amiet’s theory. The original theory was modified to account for the radiation of
the total pressure difference in 2-D only. In addition, no far-field approximation was made in the derivation of
the 2-D theory.

The magnitude of the acoustic pressure in the far field obtained from the 2-D theory is larger than in
Amiet’s original theory due to the confinement of the radiation to a plane. For very low Mach numbers the
directivity is similar to 3-D theory in the far field, however, for increasing Mach number the radiation in the
downstream direction gains in significance relative to the 3-D theory. The DNS revealed that the unsteady
Kutta condition is not exactly satisfied but constitutes a reasonable approximation for viscous flows. Despite
having been derived assuming the unsteady Kutta condition to hold exactly, the surface pressure jump transfer
function was shown to perform well for different Mach numbers and reduced frequencies.
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The strictly 2-D theory was applied to numerically obtain the acoustic pressure as a function of the surface
pressure obtained from DNS. Several differences appeared when comparing the results to the acoustic
pressure directly computed by DNS. Firstly, the magnitude of the acoustic pressure computed by DNS is
lower than that predicted by theory. This can most likely be attributed to viscosity, in particular to the
presence of boundary layers. Secondly, the individual lobes computed by 2-D theory appear to be smeared in
the DNS. Unforced DNS of TEs suggest that in addition to viscous effects, noise generated by the wake is
partly responsible for smearing the lobes. Finally, high amplitude downstream pointing lobes can be observed
in the DNS. Circumstantial evidence was presented that these lobes are caused by nonlinear sound generation
in the wake.
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