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Abstract

Recently, scanning laser Doppler vibrometry experiments have been conducted in order to identify structural faults in

frescoes at the US Capitol. In these experiments, the artwork is subjected to force excitations over a range of frequencies

and a laser vibrometer is used to measure the velocity response of the structure over an array of spatial locations. At each

frequency, a two-dimensional spatial image of the force–velocity transfer function is obtained. Spatial locations that

consistently exhibit large responses are indicative of potential regions of delamination. In this paper the use of proper

orthogonal decomposition, also known as principle component analysis, to identify coherent features in the structural

response and obtain a succinct representation of the data is described. It is shown that, for the fresco studied in this paper,

the response can be characterized in terms of only a few proper orthogonal decomposition modes. Unfortunately, these

modes are corrupted by spatially varying noise. This noise is a result of surface irregularities that affect the direction in

which the incident laser beam is reflected, which in turn corrupts the measured response at those locations. Therefore, the

use of spatial filtering techniques is also explored for removing this ‘‘speckle noise’’ from the measured force–velocity

transfer functions prior to performing the proper orthogonal decomposition analysis. Wavelets are particularly well suited

for this application because they decompose images into functions that are localized in the spatial and frequency domains.

In this paper, several wavelet bases with differing properties are used to filter the scanning laser Doppler vibrometry

images. In addition, wavenumber filters, which essentially act as low-pass filters, are also employed. While the results do

not definitively show which filtering technique is most effective for this application, it is clear that both wavelet processing

and wavenumber filtering can reduce speckle noise while retaining the salient physical features in the image data.

Therefore, it is demonstrated that proper orthogonal decomposition analysis coupled with spatial filtering is an effective

tool for analyzing scanning laser Doppler vibrometry data in fault detection applications.
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1. Introduction

Over the past decade, numerous structural deficiencies have been observed and treated in frescoes at the US
Capitol building. Frescoes are paintings that are built directly into walls or ceilings by applying paint to fresh
plaster, examples of which include da Vinci’s ‘‘Last Supper’’ painting and Michelangelo’s ceiling of the Sistine
Chapel. Over time, the structure of the plaster substrate that supports the artwork can become degraded,
potentially leading to delamination or cracking of the fresco. In order to accurately assess the extent
of structural plaster damage, the Physical Acoustics division of the US Naval Research Laboratory (NRL)
began a broad survey (�700m2) of the frescoes and wall paintings in the US Capitol Building in 2003.
This study encompassed eight pre-selected spaces: Brumidi’s first work at the Capitol building in the House
Appropriations Committee room, the Parliamentarian’s office, the House Speaker’s office, the Senate
Reception room, the President’s Room, and three areas of the Brumidi Corridors [1].

In order to identify regions of potential degradation, the structure was excited by using either an
electromechanical shaker or acoustical waves from a loudspeaker. A scanning laser Doppler vibrometer was
used to measure the velocity response of the structure over a two-dimensional array of spatial locations and a
range of excitation frequencies. Structural deficiencies are most likely to correspond to those locations that
consistently exhibit high mobility. The scanning laser Doppler vibrometry technique, which was first applied
to frescoes by researchers at the University of Ancona [2,3], mirrors the traditional ‘‘tap test’’ in which a
curator taps at various locations on the artwork in order to audibly detect potential faults. In principle, the tap
test is a qualitative measurement of the frequency changes that often signify a structural fault. Scanning laser
Doppler vibrometry offers several obvious advantages over the tap test, namely that it is a relatively
automated procedure and it does not require one to physically tap on the frescoes. Because it is a remote
sensing technique, it does not require physical access to every test point. Therefore, for example, there is no
need to erect a scaffolding to examine a painting on the ceiling. In scanning laser Doppler vibrometry
experiments, the measured data consists of two-dimensional images that represent the force–velocity transfer
function at each discrete excitation frequency. In the experiments conducted at the US Capitol, the size of the
frescoes that were examined ranged from 1 to 4m2, with a typical scan density of 400 points per square meter.
At each spatial location, a linear chirp excitation was applied with a bandwidth ranging from under 100Hz
to 1 kHz.

In this paper, proper orthogonal decomposition (POD) is used to process the scanning laser Doppler
vibrometry experimental data in an attempt to identify coherent features in the data. Proper orthogonal
decomposition is a statistical method that uses covariance analysis to decompose the data into a series of
modes through the solution of an eigenvalue problem. In many cases, such as in certain fluid flows, proper
orthogonal decomposition has been used to generate reduced-order models of high-dimensional systems [4,5].
Indeed, as will be shown in this paper, proper orthogonal decomposition studies performed on scanning laser
Doppler vibrometry data from the North Lunette fresco in the House Appropriations Committee Room have
shown that only a few proper orthogonal decomposition modes are significant and the eigenvalue of the first
proper orthogonal decomposition mode is an order of magnitude larger than the others. This result implies
that, in this particular example, the most significant features in the data can be represented in terms of a single
proper orthogonal decomposition mode. Unfortunately, when taking laser vibrometer measurements, surface
irregularities can alter the direction in which the incident laser beam is reflected. Therefore, at certain locations
the measured data is unreliable, resulting in a spatially varying ‘‘speckle noise’’. This speckle noise manifests
itself in the proper orthogonal decomposition modes that are calculated from the raw scanning laser Doppler
vibrometry data. Therefore, this paper investigates wavelet-based methods for filtering the scanning laser
Doppler vibrometry images prior to performing proper orthogonal decomposition analysis. Wavelets and
multiresolution analysis decompose image data in terms of functions that are localized in the spatial and
frequency domains. In this paper, several wavelet bases are employed including the Haar basis, biorthogonal
wavelets, and piecewise-polynomial orthonormal multiwavelets. Alternatively, wavenumber filters, which
effectively act as spatial low-pass filters, are used to remove small-scale features (i.e., speckle noise) in the data.
Proper orthogonal decomposition results obtained from the wavenumber filtered data and the wavelet-
processed data are compared with those generated from the raw data, demonstrating the benefits of filtering
prior to applying the proper orthogonal decomposition analysis.
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2. Scanning laser Doppler vibrometry experimentation

The scanning laser Doppler vibrometry apparatus consists of two parts: an excitation mechanism and a
measurement system. A schematic of the setup is shown in Fig. 1. Excitation may be accomplished either
acoustically or electromechanically. In the acoustical method, a multifrequency chirp is repeatedly directed at
the artwork by a set of loudspeakers operating at approximately �90 dB. Because they have greater mobility,
areas with defects respond with greater displacement and velocity amplitudes than typical ‘‘intact’’ regions of
the wall. The scanning laser Doppler vibrometry instrument is used to measure the velocity response, allowing
precise identification of regions suspected of defect in the structure. In the mechanical method, the artwork is
excited by an electromechanical shaker rather than a sound wave. This is done by means of a shaker with a
Teflon-coated tip that leans against the fresco and propagates the multifrequency chirp directly into the wall,
without the intervening medium of air. This method is analogous to the conservator’s ‘‘tap test’’, and has some
advantages over the loudspeaker method. For example, it transfers energy more efficiently into the artwork
and is less disruptive to the surrounding workplace.

Velocity data is collected by a Polytec scanning laser Doppler vibrometry which uses a laser emitting
�1mW of power at a wavelength of 6328A. Such a low level of laser power does no harm to the artwork and
may be used around humans without any special safety precautions. Velocities are derived from the measured
Doppler shifts of light rays reflected off the vibrating surface. Once the velocity data has been collected, it
undergoes a suite of post-processing. The result is a color-coded overlay which may be superimposed on an
image of the artwork to give a precise map of the location of structural defects. By ‘‘defects’’ this paper refers
to all manner of cracks, delaminations, detachments, and inhomogeneities. For more information on the
scanning laser Doppler vibrometry technique, see Refs. [2,3,6].

A scanning laser Doppler vibrometry scan file contains data that may be interpreted as a complex-valued
function on a three-dimensional space. The first two dimensions are simply the spatial coordinates, labeled m

and n. The third coordinate is frequency, labeled k. The amplitude of the complex-valued function
corresponds to velocity at that particular location in three-space. Explicitly, the scanning laser Doppler
vibrometry assigns to each point in fm; n; kg-space a velocity amplitude X ðm;nÞ;k. The subscript ðm; nÞ; k
emphasizes that the velocity is associated with physical grid point ðm; nÞ and excitation frequency k. Fig. 2 is an
illustration of the array of raw experimental data being collected.

For example, a graphical display of scanning laser Doppler vibrometry data taken from the North Lunette
Fresco in the Speakers Appropriations Committee Room of the Capitol, shown in Fig. 3, is given in Fig. 4.
Fig. 1. Schematic of scanning laser Doppler vibrometry experiment for nondestructive evaluation of frescoes.
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Fig. 2. Graphical depiction of the three-dimensional scanning laser Doppler vibrometry data array. The elements of the data array are

complex-valued, force-normalized velocities for a given spatial location and frequency.

Fig. 3. North Lunette Fresco, House Appropriations Committee Room.
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Each thumbnail image in Fig. 4 displays the characteristic response within the specified frequency bin of each
point scanned on the artwork. By visually comparing different thumbnails (i.e., responses at different
frequencies) points can be identified where the velocity response is persistently high across a range of
frequencies. These are points of unusually high mobility; they correspond to points where the substructure
may have been compromised.

3. Proper orthogonal decomposition

Several analytical tools have been used in this survey to analyze the data acquired in the scanning laser
Doppler vibrometry experiments. In this paper, proper orthogonal decomposition, a common approach for
post-processing time series, is used to extract the essential features from the scanning laser Doppler vibrometry
data. This method is also known in statistical applications as principal component analysis, or covariance
analysis, of the time series. Depending on the context, proper orthogonal decomposition/principal component
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Fig. 4. Magnitude of force–velocity transfer functions over the X–Y scan region for a frequency range of 200–298Hz.
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analysis methods are described as methods that extract the coherent structures in a vector field or extract the
statistically most significant components of a time series [7]. In this paper, the proper orthogonal
decomposition method is generalized for a multidimensional (two spatial, one spectral) analysis of the
vibratory response. An operator-theoretic description of the foundations of proper orthogonal decomposition
can be found in many sources including Lumley [4], who first used the proper orthogonal decomposition
method to describe large eddy coherent structures in a turbulent boundary layer, and Holmes [5].
Alternatively, descriptions based on statistical notions may be found in Ref. [8]. The description that follows is
statistical in nature. This context is chosen because the theoretical discussion is more concise in this case.

Suppose that fXk : 1pkpnF g represents some stochastic process. The index k may be thought of as
referring to ‘‘frames of data’’. Each of the frames of data might be comprised of several channels of
simultaneous measurements. In the application discussed in this paper, the set fXk : 1pkpnF g is the
collection of scanned velocity data indexed by the frequency bin, where nF is the total number of frequency
bins. Each of the random variables Xk is assumed to be an nX � 1 column vector whose individual components
are scalar random variables X j;k, where 1pjpnX and 1pkpnF . If the stochastic process fXk : 1pkpnF g has
zero mean, the covariance matrix is given by

C ¼
1

nF

XnF

k¼1

XkX
T
k , (1)

with individual entries

Ci;j ¼
1

nF

XnF

k¼1

X i;kX j;k. (2)

Otherwise, the covariance matrix is given by

C ¼
1

nF

XnF

k¼1

ðXk � EðXÞÞðXk � EðXÞÞT. (3)

In this expression, EðXÞ is the expected value of the stochastic process fXk : 1pkpnF g and hence it is an
nX � 1 column vector.
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It only remains to carry out the modicum of book-keeping required to map the two-dimensional arrays
obtained from the scanning laser Doppler vibrometry scans, which are indexed by frequency bin, to the
framework outlined above. Each frequency bin k 2 f1; . . . ; nF g can be viewed as a two-dimensional array Ak

whose entries are denoted Aðm;nÞ;k, where m is the row index and n is the column index in the array. It is
assumed that 1pmpnR and 1pnpnC , where nR and nC are the number of rows and columns, respectively, in
the two-dimensional array. In this case, these two indices will correspond to a two-dimensional spatial
location in a two-dimensional grid. By unpacking the two-dimensional arrays fAk : 1pkpnF g (in either row
major or column major format), it is straightforward to define the vector of random variables Xk. Introduce
the correspondences

X j;k3Aðm;nÞ;k

j3ðm; nÞ ð4Þ

and define nX ¼ nRnC . The entries of the covariance matrix defined in Eq. (3) then take the form

Cðm;nÞ;ðs;tÞ ¼
1

nF

XnF

k¼1

ðAðm;nÞ;k � EðAðm;nÞÞÞðAðs;tÞ;k � EðAðs;tÞÞÞ, (5)

where EðAðm;nÞÞ represents the expected value of fAðm;nÞ;k : 1pkpnF g.
Once the covariance matrix has been computed, coherent patterns appearing in the collection of two-

dimensional arrays fAk : 1pkpnF g can be determined directly. The nX � nX eigenvalue problem

fC� lkIgCk ¼ 0 (6)

must be solved for nX eigenvalues and eigenvectors fðlk;CkÞjk ¼ 1; . . . ; nX g. Again, each eigenvector will have
length nX and there will be nX real eigenvalues since the covariance matrix is real and symmetric. A physical
interpretation of the one-dimensional eigenvectors fCkg is achieved by renumbering their entries into matrices
fFkg in exactly the same fashion that the two-dimensional arrays fAkg are associated with one-dimensional
vectors fXkg. That is, define the correspondences

Cj;k3Fðm;nÞ;k
j3ðm; nÞ. ð7Þ

Images of coherent structures are obtained by ordering the eigenvectors according to the magnitude of the
corresponding eigenvalues. The contribution of a particular eigenvector-image to the subspace spanned by all
nF frames of data can be rigorously related to the magnitude of the corresponding eigenvalue. Thus, for some
integer nK of kept modes that satisfies nK5nX and nK5nF , the images

fFk jk ¼ 1; . . . ; nKg � fFk j k ¼ 1; . . . ; nX g (8)

are retained as a good representation of the coherent features in the original data set.
4. Wavelets and multiresolution analysis

Spatially varying speckle noise in the raw scanning laser Doppler vibrometry data scans can contribute to
spurious proper orthogonal decomposition modes. In this paper, wavelets and multiresolution analysis are
used to filter the scanning laser Doppler vibrometry data scans prior to applying the proper orthogonal
decomposition algorithm. Generally speaking, wavelets are compactly supported, oscillatory functions
designed to satisfy certain properties such as orthogonality or biorthogonality, smoothness, and symmetry or
antisymmetry. A wavelet basis is obtained from the scaled translates and dilates of a small number of wavelet
functions. The resulting basis is composed of wavelet functions that are localized in both the spatial and
wavenumber domains. Therefore, a wavelet decomposition (or wavelet transform) yields information
regarding the spatial location of wavenumber components occurring within a signal. For this reason, wavelets
and multiresolution analysis have been widely applied for the filtering of signals and images. The
multiresolution-based structure of the wavelet transform is effective for differentiating coherent features in the
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image from noise artifacts. The wavelet coefficients corresponding to the noise are then removed, effectively
replacing the noisy data with spatially averaged data from adjacent locations.

Numerous wavelet families with differing combinations of properties have been constructed for a myriad of
applications. Therefore, there are many options for the image processing application discussed in this paper
and it is difficult, if not impossible, to determine a priori which choice of wavelet basis will yield the best
results. In this paper, three wavelet bases are considered for filtering scanning laser Doppler vibrometry data.
These include the well-known Haar basis, a biorthogonal wavelet basis, and a piecewise-polynomial,
orthonormal multiwavelet basis. Each has certain advantages and disadvantages that are representative of the
trade-offs one typically encounters when choosing a wavelet basis for a particular application. Before delving
into the differences between these three wavelet families, this section provides a review of the basic principles
of wavelet representations of functions and, in particular, two-dimensional images. While well known in the
image processing community (see, for example, Refs. [9,10]), this overview is provided for readers less familiar
with this family of spatial analysis techniques. The discussion is given in the general context of biorthogonal
multiwavelets, of which each of the specific wavelet bases considered in this paper is a special case.

A multiwavelet basis for L2ðRÞ, the space of square-integrable functions, is composed of the scaled
translates and dilates of multiple wavelet functions fc1; . . . ;cr

g that are generated from r scaling functions
ff1; . . . ;fr

g. In biorthogonal multiwavelet families, there exists a set of dual scaling functions f ~f1; . . . ; ~fr
g that

generate a set of dual wavelets f ~c1; . . . ; ~cr
g such that the following biorthogonality relationships are satisfied,

8k;m 2 Z, and s; t 2 f1; . . . ; rg: Z
R

fs
ðx� kÞ ~ft

ðx�mÞdx ¼ ds;tdk;mZ
R

cs
ðx� kÞ ~ct

ðx�mÞdx ¼ ds;tdk;mZ
R

cs
ðx� kÞ ~ft

ðx�mÞdx ¼ 0Z
R

fs
ðx� kÞ ~ct

ðx�mÞdx ¼ 0 ð9Þ

where Z is the set of all integers and the Kronecker delta ds;t is defined in the usual manner as

ds;t ¼
1 s ¼ t;

0 sat:

(
(10)

The scaling functions ff1; . . . ;fr
g and wavelets fc1; . . . ;cr

g are commonly termed the analysis scaling
functions and wavelets while their dual counterparts are often termed the synthesis scaling functions and
wavelets. Here, it should be noted that a large number of wavelet families can be considered special cases of
biorthogonal multiwavelets. The vast majority of biorthogonal wavelet families in the literature correspond to
the single generator case where there is a single scaling function and wavelet pair ðf;cÞ and an associated dual
pair ð ~f; ~cÞ. Orthonormal wavelets are self-dual; that is, the dual scaling functions and wavelets are equivalent
to the original analysis scaling functions and wavelets. Once again, the single generator case constitutes by
far the largest number of orthonormal wavelet families. For the purposes of this paper, then, biorthogonal
multiwavelets represent the most general class of wavelet bases.

By construction, the analysis scaling functions and wavelets and their dual counterparts satisfy the two-scale
relationships:

fs
ðxÞ ¼

ffiffiffi
2
p X

p;t

as;t
p ft
ð2x� pÞ; ~fs

ðxÞ ¼
ffiffiffi
2
p X

q;t

~as;t
q
~ft
ð2x� qÞ,

cs
ðxÞ ¼

ffiffiffi
2
p X

p;t

bs;t
p ft
ð2x� pÞ; ~cs

ðxÞ ¼
ffiffiffi
2
p X

q;t

~bs;t
q
~ft
ð2x� qÞ, ð11Þ

for s ¼ 1; . . . ; r. The two-scale equations state that the scaling functions and wavelets are formed as linear
combinations of scaling functions with half the support (or double the frequency). The analysis scaling
functions and wavelets are ultimately defined by the filters fas;t

p g and fb
s;t
p g. Similarly, the dual scaling functions
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and wavelets are uniquely defined via the filters f ~as;t
p g and f

~bs;t
p g. The scaled translates and dilates of these

functions are defined using the notation

fs
j;kðxÞ ¼ 2j=2fs

ð2jx� kÞ; ~fs
j;kðxÞ ¼ 2j=2 ~fs

ð2jx� kÞ,

cs
j;kðxÞ ¼ 2j=2cs

ð2jx� kÞ; ~cs
j;kðxÞ ¼ 2j=2 ~cs

ð2jx� kÞ. ð12Þ

The parameter j 2 Z is a dilation index that defines the scale, or resolution level, of the function. The
parameter k 2 Z is a translation index that determines the position of the function on the real line. The 2j=2

term is a normalization factor that renders the functions orthonormal in L2ðRÞ.
The scaled translates and dilates of the scaling functions are the generators of a series of approximation

spaces fV jgj2Z, where each space Vj is defined as

V j ¼ spanffs
j;k : s 2 f1; . . . ; rg; k 2 Zg. (13)

The spaces fVjg are nested such that

f0g � � � � � V j�1 � V j � V jþ1 � � � �L
2ðRÞ. (14)

This series of approximation spaces is termed a multiresolution analysis because it enables one to view a
function or signal at varying levels of resolution. In a similar manner, the scaled translates and dilates of the
wavelets form a series of spaces fW jgj2Z, where each space W j is defined as

W j ¼ spanfcs
j;k : s 2 f1; . . . ; rg; k 2 Zg. (15)

Each wavelet space W j represents the difference between two adjacent approximation spaces such that

Vj ¼ Vj�1 �W j�1, (16)

where � denotes the addition of vector spaces. In other words, the space W j provides the details that are
present in the approximation of a function in V j but do not appear in the coarser approximation in Vj�1.
Given that each approximation space can be decomposed in this manner, a recursive application of Eq. (16)
yields the following decomposition of V j:

V j ¼ V j0 �W j0 �W j0�1 � � � � �W j�2 �W j�1, (17)

where j0 is the coarsest resolution level in the decomposition. In the limit as j!1 and j0!�1,

L2ðRÞ ¼
X1

l¼�1

W l . (18)

That is, the scaled translates and dilates of the wavelets fc1; . . . ;cr
g form a basis for L2ðRÞ. It should be noted

that, in an analogous manner, a multiresolution analysis f ~V jgj2Z is generated by the dual scaling functions
f ~f1; . . . ; ~fr

g and a series of wavelet spaces f ~W jgj2Z is formed from the dual wavelets f ~c1; . . . ; ~cr
g.

A multiwavelet-based representation of a one-dimensional function f is obtained by first forming a single-
scale expansion of the function in V j:

f jðxÞ ¼
X
k2Z

Xr

s¼1

as
j;kf

s
j;kðxÞ. (19)

By using the biorthogonality of the scaling functions, the single-scale coefficients fas
j;kg can be computed as

as
j;p ¼

Z
R

f ðxÞ ~fs
j;pðxÞdx. (20)

In many cases, especially when the scaling functions are not defined in closed form, the single-scale coefficients
are taken as sampled values of the function f. Such an approximation is reasonable if the resolution level j is
sufficiently fine. Eq. (17) implies that an equivalent multiscale representation of f j can be written as

f jðxÞ ¼
X
k2Z

Xr

s¼1

as
j0;k

fs
j0;k
ðxÞ þ

Xj�1
l¼j0

X
k2Z

Xr

s¼1

bs
l;kc

s
l;kðxÞ. (21)
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This multiscale representation is in terms of wavelets on resolution levels j0 through j � 1 and scaling functions
on the coarsest level j0. In this representation, the contribution of the scaling functions on the coarsest
resolution level can be viewed as a low-pass filtering of the function f while the wavelets on different resolution
levels act as a series of band-pass filters. The attractiveness of the multiscale representation in Eq. (21) is that it
provides information in both the spatial and frequency domains.

A key property of biorthogonal multiwavelets is that the multiscale basis coefficients can be calculated from
the single-scale coefficients in Eq. (19) in a fast, efficient manner. This is accomplished by using the
decomposition formulas

as
j�1;m ¼

X
k

Xr

t¼1

~as;t
k�2ma

t
j;k, ð22Þ

bs
j�1;m ¼

X
k

Xr

t¼1

~bs;t
k�2ma

t
j;k. ð23Þ

These formulas are derived by using the two-scale equations and the biorthogonality properties of the scaling
functions and wavelets. Note, in particular, that the dual scaling function and wavelet filters f ~as;t

p g and f
~bs;t
p g

appear in these decomposition formulas. Eqs. (22) and (23) can be used to compute the decomposition of
scaling coefficients on one resolution level into scaling and wavelet coefficients on the next coarser level, as in
Eq. (16). Applied recursively to the scaling coefficients at each level, these formulas are used to compute the set
of multiscale coefficients in Eq. (21). Similarly, the single-scale coefficients can be reconstructed from the
multiscale coefficients through a recursive application of the reconstruction formula

as
j;m ¼

Xr

t¼1

X
k

at;s
m�2ka

t
j�1;k þ

Xr

t¼1

X
k

bt;s
m�2kb

t
j�1;k. (24)

Note that the analysis scaling function and wavelet filters fas;t
p g and fb

s;t
p g are used in the reconstruction.

Most importantly for the image filtering application discussed in this paper, the representation of two-
dimensional functions or images is achieved by using two-dimensional scaling functions and wavelets that are
formed from the tensor products of the one-dimensional functions. Thus, we obtain the following sets of
analysis and dual two-dimensional scaling functions and wavelets:

Fðs;tÞðx; yÞ ¼ fs
ðxÞft
ðyÞ; ~Fðs;tÞðx; yÞ ¼ ~fs

ðxÞ ~ft
ðyÞ;

C1;ðs;tÞðx; yÞ ¼ fs
ðxÞct
ðyÞ; ~C1;ðs;tÞðx; yÞ ¼ ~fs

ðxÞ ~ct
ðyÞ;

C2;ðs;tÞðx; yÞ ¼ cs
ðxÞft
ðyÞ; ~C2;ðs;tÞðx; yÞ ¼ ~cs

ðxÞ ~ft
ðyÞ;

C3;ðs;tÞðx; yÞ ¼ cs
ðxÞct
ðyÞ; ~C3;ðs;tÞðx; yÞ ¼ ~cs

ðxÞ ~ct
ðyÞ;

(25)

where s; t 2 f1; . . . ; rg. We introduce the following notation for the scaled translates and dilates of the two-
dimensional functions:

Fðs;tÞj;ðk;mÞðx; yÞ ¼ fs
j;kðxÞf

t
j;mðyÞ; ~Fðs;tÞj;ðk;mÞðx; yÞ ¼

~fs
j;kðxÞ

~ft
j;mðyÞ;

C1;ðs;tÞ
j;ðk;mÞðx; yÞ ¼ fs

j;kðxÞc
t
j;mðyÞ;

~C1;ðs;tÞ
j;ðk;mÞðx; yÞ ¼

~fs
j;kðxÞ

~ct
j;mðyÞ;

C2;ðs;tÞ
j;ðk;mÞðx; yÞ ¼ cs

j;kðxÞf
t
j;mðyÞ;

~C2;ðs;tÞ
j;ðk;mÞðx; yÞ ¼

~cs
j;kðxÞ

~ft
j;mðyÞ;

C3;ðs;tÞ
j;ðk;mÞðx; yÞ ¼ cs

j;kðxÞc
t
j;mðyÞ;

~C3;ðs;tÞ
j;ðk;mÞðx; yÞ ¼

~cs
j;kðxÞ

~ct
j;mðyÞ:

(26)

Similar to the one-dimensional case, the scaling functions are the generators of a multiresolution analysis
fV jgj2Z where

V j ¼ spanfFðs;tÞj;ðk;mÞ : s; t 2 f1; . . . ; rg; k;m 2 Zg. (27)

The wavelet spaces are defined as

W
p
j ¼ spanfCp;ðs;tÞ

j;ðk;mÞ : s; t 2 f1; . . . ; rg; k;m 2 Zg; p ¼ 1; 2; 3, (28)
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such that the space V j can be decomposed as

V j ¼ V j�1 �W 1
j�1 �W 2

j�1 �W 3
j�1. (29)

Over multiple resolution levels, we have

V j ¼ V j0

Mj�1
l¼j0

fW 1
l �W 2

l �W 3
l g, (30)

where, once again, j0 is the coarsest resolution level in the decomposition.
A single-scale representation of a two-dimensional function f, such as an image, can be written as

f jðx; yÞ ¼
X

k;m2Z

Xr

s;t¼1

aðs;tÞj;ðk;mÞF
ðs;tÞ
j;ðk;mÞðx; yÞ. (31)

An equivalent, multiscale expansion is given by

f jðx; yÞ ¼
X

k;m2Z

Xr

s;t¼1

aðs;tÞj0;ðk;mÞ
Fðs;tÞj0;ðk;mÞ

ðx; yÞ

þ
Xj�1
l¼j0

X
k;m2Z

Xr

s;t¼1

b1;ðs;tÞl;ðk;mÞC
1;ðs;tÞ
l;ðk;mÞðx; yÞ

þ
Xj�1
l¼j0

X
k;m2Z

Xr

s;t¼1

b2;ðs;tÞl;ðk;mÞC
2;ðs;tÞ
l;ðk;mÞðx; yÞ

þ
Xj�1
l¼j0

X
k;m2Z

Xr

s;t¼1

b3;ðs;tÞl;ðk;mÞC
3;ðs;tÞ
l;ðk;mÞðx; yÞ. ð32Þ

In decomposing an image, the scaling functions on the coarsest level produce a large-scale averaging, or low-
pass filtering, of the image while the wavelets provide details at different resolution levels. The three different
types of wavelets each focus on a particular form of detail in the image. The type 1 wavelets provide the most
detail about horizontal features, the type 2 wavelets focus the most on vertical features, and the type 3 wavelets
are best-suited for extracting diagonal details. As in the one-dimensional case, the multiscale basis coefficients
in Eq. (32) can be computed from the single-scale coefficients in Eq. (31) via a recursive application of the
decomposition formulas

aðu;vÞj�1;ða;cÞ ¼
P

k;m;s;t

~au;s
k�2a ~a

v;t
m�2ca

ðs;tÞ
j;ðk;mÞ;

b1;ðu;vÞj�1;ða;cÞ ¼
P

k;m;s;t

~au;s
k�2a

~bv;t
m�2ca

ðs;tÞ
j;ðk;mÞ;

b2;ðu;vÞj�1;ða;cÞ ¼
P

k;m;s;t

~bu;s
k�2a ~a

v;t
m�2ca

ðs;tÞ
j;ðk;mÞ;

b3;ðu;vÞj�1;ða;cÞ ¼
P

k;m;s;t

~bu;s
k�2a

~bv;t
m�2ca

ðs;tÞ
j;ðk;mÞ:

(33)

The single-scale coefficients can be recovered from the multiscale coefficients by using the reconstruction
formula

aðu;vÞj;ða;cÞ ¼
X

k;m;s;t

fas;u
a�2kat;v

c�2ma
ðs;tÞ
j�1;ðk;mÞ þ as;u

a�2kbt;v
c�2mb

1;ðs;tÞ
j�1;ðk;mÞ

þ bs;u
a�2kat;v

c�2mb
2;ðs;tÞ
j�1;ðk;mÞ þ bs;u

a�2kbt;v
c�2mb

3;ðs;tÞ
j�1;ðk;mÞg. ð34Þ
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5. Wavelet-based image processing

The preceding section has provided the necessary background for the application of wavelets to the filtering
of images. In this section, the wavelet-based filtering procedure using three different wavelet bases with
varying properties is discussed. In addition, an alternative approach, that of using wavenumber filters, which
are essentially spatial low-pass filters, is presented for comparison with the wavelet-based techniques.

5.1. Wavelet-based filtering

Regardless of the particular wavelet basis employed within the broad classification of biorthogonal
multiwavelets, one obtains a multiscale representation of the original image I that takes the general form in
Eq. (32). This representation is obtained by first computing a single-scale approximation of the image, which
requires the calculation of the basis coefficients in Eq. (31). The original image is represented in terms of pixels
and thus can be viewed as a two-dimensional, piecewise-constant function of the form

Iðx; yÞ ¼
Xnx

p¼1

Xny

q¼1

cj;ðp;qÞwj;ðp;qÞðx; yÞ. (35)

where wj;ðp;qÞ is the characteristic function over one pixel, defined as

wj;ðp;qÞðx; yÞ ¼
1 x 2 ½2�jp; 2�jðpþ 1Þ� and y 2 ½2�jq; 2�jðqþ 1Þ�;

0 otherwise;

(
(36)

and j; p; q 2 Z. The coefficients fcj;ðp;qÞg are then simply equivalent to the grayscale pixel values. In Eq. (35), nx

denotes the number of horizontal pixels while ny is the number of vertical pixels. Note that, for ease of
computation with wavelets, it has been assumed that the pixel size is dyadic (i.e. a power of two). While this
may not be the case for the original image, the representation in Eq. (35) can be obtained via an appropriate
rescaling of the image. The single-scale basis coefficients can be obtained by computing directly, via
integration, the projection of the original image representation in Eq. (35) onto the scaling functions in
Eq. (31). Then, a multiscale representation of the image can be generated in a fast, efficient manner by using
the decomposition formulas given in Eq. (33) to compute the multiscale basis coefficients.

The multiscale representation of the image given by Eq. (32) contains all of the information present in the
original image. Thus, any noise in the original image is also contained in the wavelet representation. The
standard approach to denoising is to remove those wavelet coefficients whose absolute values are below a
given threshold T [9]. Removing these small coefficients amounts to the elimination of low-amplitude noisy
variations in the image. Denoting the entire set of multiscale coefficients generically as fbkg, a hard
thresholding strategy can be used to compute a new set of coefficients fb̂kg as

b̂k ¼
bk jbkj4T ;

0 jbkjpT :

(
(37)

Alternatively, a soft thresholding strategy can be employed:

b̂k ¼

bk � T bk4T ;

bk þ T bko� T ;

0 jbkjpT :

8><
>: (38)

The soft thresholding approach provides additional smoothing of the original image. Donoho [10] showed
that the estimation error associated with thresholding can be guaranteed to be no more than a 2 lnðNÞ factor
larger than the ideal estimation error (i.e., the wavelet estimation error if it were possible to perfectly extract
the image from the noise) provided that the threshold value is chosen to be

T ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðNÞ

p
, (39)
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where N is the total number of basis coefficients and s is the standard deviation of the noise. For Gaussian
white noise, Donoho [10] showed that s can be estimated in terms of the median of the finest-scale wavelet
coefficients, which we denote as fbj�1;kg:

ŝ ¼
1

0:6745
Medðfbj�1;kgÞ. (40)

A more detailed discussion can be found in the signal processing text by Mallat [9].
While the above denoising approach is optimal for images corrupted by Gaussian white noise, it is not

optimal for the scanning laser Doppler vibrometry images studied in this paper. The laser vibrometry data is
subject to a spatially varying noise that is a result of variations in the texture of the object being measured (i.e.,
a fresco). These textural variations result in the incident laser beam not being directly reflected back to the
vibrometer. Thus, as the laser vibrometer scans an area, certain locations do not yield reliable data, resulting
in speckle noise. The speckle noise typically appears on the smallest scale (on the order of one pixel) and a
reasonable approach would be to remove the corrupted pixels and replace them with averages of surrounding
pixels. To do this perfectly would require a great deal of user interaction in processing each image. Clearly,
an automated approach is desired since the proper orthogonal decomposition analysis incorporates many
image frames.

One approach to eliminating speckle noise is to apply a spatial low-pass filter to the raw image data. The
implicit assumption here is that the useful information, the regions of high mobility that are indicative of
delamination, is present over large scales (or low wavenumbers) while the speckle noise occurs at high
spatial wavenumbers. The wavenumber filtering approach essentially denoises the images by performing this
type of low-pass filtering. Wavenumber domain analysis reveals a broad range of elastic wave speeds present
in the structures, some as low as �30m=s. Wave speeds are derived from two-dimensional spatial Fourier
transforms of the decomposed scanning laser Doppler vibrometry data. Because the multiscale wavelet
representations of images are equivalent to a low-pass filter and a series of band-pass filters acting on the
image, wavelets can also be used to perform spatial low-pass filtering. This is accomplished by truncating the
vector of multiscale wavelet coefficients, retaining only those coefficients on the coarser resolution levels.
Eliminating entire levels of resolution is arguably the simplest wavelet-based filtering strategy but may also
correspond to the most effective means for eliminating speckle noise. The approach taken is this paper is to
both truncate the coefficients on the finest resolution levels and apply soft thresholding to the remaining
coefficients.
5.2. Wavelet bases

In this paper the performance of three different wavelet bases for the filtering of scanning laser Doppler
vibrometry image data are considered. Each of these bases can be considered a special case in the general class
of biorthogonal multiwavelets.
5.2.1. Haar wavelet

The Haar wavelet is the simplest wavelet and is typically used as a prototype for studying more complicated
wavelet families (see, for example, Refs. [9,10]). The Haar family consists of a single orthonormal scaling
function and wavelet pair ðf;cÞ. Thus, it is a special case of self-dual, single-generator biorthogonal
multiwavelets. The advantage of working with the Haar basis is that it is composed of piecewise-constant
functions, capable of exactly representing images, which can be viewed as piecewise-constant surfaces whose
amplitudes correspond to the pixel intensity values. In addition, the Haar basis is supported over square
domains with no overlap, so there is no need for any special boundary treatments. The final advantage of the
Haar basis is the ease of computation: there are only two filter coefficients and the simple form of the functions
renders them easy to plot. The main disadvantage of the Haar basis is that, because the functions are
piecewise-constant, they do not yield smooth representations. This may not seem like a disadvantage when
working with images that have discrete pixels, but some smoothness is desirable once the filtering has been
performed.



ARTICLE IN PRESS
R.J. Prazenica et al. / Journal of Sound and Vibration 304 (2007) 735–751 747
5.2.2. Cohen, Daubechies and Feaveau biorthogonal wavelets

The second wavelet basis considered in this paper is a single-generator family of biorthogonal wavelets
constructed by Cohen et al. [11]. The particular choice of the analysis scaling function and wavelet pair ðf;cÞ
is much smoother than the Haar scaling function and wavelet. The dual scaling function and wavelet pair
ð ~f; ~cÞ, not explicitly used in the image approximation, is actually equivalent to the Haar scaling function and
wavelet. The main advantage of these biorthogonal wavelets over the Haar basis is the increased smoothness
of the image approximation. One disadvantage of this biorthogonal basis is that the functions must be adapted
to the finite boundaries of the image. This requires some form of boundary extension (e.g., symmetric,
antisymmetric, or periodic) that inevitably introduces error in the form of edge artifacts in the image
representation. The analysis scaling functions are also not available in closed form, making it more difficult to
compute the coefficients of the single-scale representation via integration. Instead, the single-scale coefficients
are approximated as scaled samples of the image (i.e., pixel values). Such an approximation is reasonable if the
resolution level is sufficiently fine.

5.2.3. Donovan, Geronimo and Hardin piecewise-linear multiwavelets

The final wavelet basis employed in this paper is a piecewise-polynomial family of orthonormal
multiwavelets. In particular, a set of piecewise-linear scaling functions and associated wavelets, constructed by
Donovan et al. [12] via the technique of intertwining, is used. These functions are orthonormal and can be
adapted to the finite image domain in a straightforward manner. Because the functions are piecewise-linear in
form, it is relatively easy to perform quadratures to compute the single-scale basis coefficients. It should be
noted that piecewise-quadratic and piecewise-cubic multiwavelets have also been constructed using the same
techniques, but these bases were not considered in this paper. The main disadvantage of using these
multiwavelets is the additional computational burden associated with using multiple scaling functions and
wavelets. Due to computational considerations, there is a limit on the finest resolution level that can be used
for the single-scale representation of the image. Thus, in this case, some a priori smoothing of the image takes
place before performing the wavelet transform and filtering.

5.3. Filtering example

Wavenumber filters and the three different wavelet bases have been used to filter the raw scanning laser
Doppler vibrometry images. As an example, the magnitude of the original force–velocity transfer function for
the North Lunette fresco at a frequency of 246Hz and the filtered images obtained by using the three wavelet
bases and two wavenumber filters are shown in Fig. 5. The first wavenumber filter corresponds to a mild low-
pass filter while the second wavenumber filter performs a strong low-pass filtering of the image. In all cases,
the images have been plotted on a dB scale. Each of the filtered images, to a certain degree, exhibits less of the
speckle noise evident in the original image. The difference between the mild and strong wavenumber filters is
clear, with the strong filter providing a more aggressive denoising of the image. The piecewise-linear
multiwavelets appear to perform better than the Haar and biorthogonal wavelets. In particular, some edge
effects are evident in the image that was filtered using biorthogonal wavelets.

6. Experimental results

The filtered scanning laser Doppler vibrometry data have been processed using proper orthogonal
decomposition analysis. In this example, there were a total of 251 discrete frequencies, corresponding to a
bandwidth of 100–600Hz in increments of 2Hz. The first 5 proper orthogonal decomposition modes obtained
by using the raw scanning laser Doppler vibrometry image data without the benefit of filtering are shown in
Fig. 6. Also shown is a plot of the first 10 eigenvalues from which it is evident that the first eigenvalue is a full
order of magnitude larger than the next largest eigenvalue. Therefore, the vast majority of energy resides in the
first proper orthogonal decomposition mode and the other modes are relatively insignificant. The first proper
orthogonal decomposition mode shows large areas of potential delamination both at the bottom of the fresco
and on the lower right side. Note that a significant amount of speckle noise appears in each of these modes. It
is interesting to note that proper orthogonal decomposition possesses some inherent denoising properties in
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Fig. 5. Filtering of the force-transfer function at 246Hz using wavenumber filtering and wavelets: (a) original image; (b) mild wavenumber

filtering; (c) strong wavenumber filtering; (d) Haar wavelet filtering; (e) biorthogonal wavelet filtering; (f) multiwavelet filtering.

Fig. 6. First 5 proper orthogonal decomposition modes using raw image data without filtering: (a) first mode; (b) second mode; (c) third

mode; (d) fourth mode; (e) fifth mode; (f) eigenvalues.

R.J. Prazenica et al. / Journal of Sound and Vibration 304 (2007) 735–751748
that the noise typically appears in the less significant modes associated with the smaller eigenvalues. This
would be the case for a Gaussian white noise distribution, for example. Speckle noise is unique, however, in
that it is caused by surface irregularities on the artwork; therefore, the noise appears in the same spatial
locations in the force–velocity transfer function images independent of frequency. As a result, speckle noise is
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Fig. 7. First 5 proper orthogonal decomposition modes obtained from images that have been filtered using piecewise-linear multiwavelets:

(a) first mode; (b) second mode; (c) third mode; (d) fourth mode; (e) fifth mode; (f) eigenvalues.
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a highly coherent feature in the transfer function images and appears in the most significant proper orthogonal
decomposition modes.

Fig. 7 illustrates the first 5 proper orthogonal decomposition modes generated from the multiwavelet-
processed data. The first mode clearly resembles the one generated from the raw data but contains less noise. It
is interesting to note that the other modes in Fig. 7 do not resemble those in Fig. 6. Once again, these modes
are not very significant, as evidenced by the relative size of the first eigenvalue. Noise in the scanning laser
Doppler vibrometry data can result in spurious proper orthogonal decomposition modes, which may explain
the vast differences between the proper orthogonal decomposition modes from the raw data and the denoised
data. In Fig. 8 are shown the first proper orthogonal decomposition mode obtained from the raw data, the
wavenumber filtered data, and the wavelet-processed data. In all cases, the wavenumber filtering and wavelet-
based filtering results in a reduction of speckle noise in the first proper orthogonal decomposition mode. While
the results are qualitatively similar, all three wavelet-based approaches retain some features in the upper left
and right-hand corners of the image that have been removed by both wavenumber filters. Whether these
features are noise artifacts that the wavelets failed to remove or true physical features that the wavenumber
filters failed to retain is an open issue that requires further investigation. Therefore, this study does not clearly
demonstrate the relative superiority of either the wavenumber filtering or the wavelet-based filtering approach.
It is clear, however, that either of these filtering methods, when applied to the raw scanning laser Doppler
vibrometry image data prior to performing proper orthogonal decomposition analysis, results in a cleaner,
more accurate set of proper orthogonal decomposition modes.

7. Conclusion

In this paper, the analysis of scanning laser Doppler vibrometry data for fault detection in frescoes at the
US Capitol has been described. During these experiments, several paintings were subjected to force
excitations, in the form of mechanical or acoustical inputs, over a range of frequencies. A scanning laser
Doppler vibrometer was used to measure the velocity response of the artwork over an array of spatial
locations. Qualitatively, spatial locations that consistently exhibit large velocity responses correspond to areas



ARTICLE IN PRESS

Fig. 8. Comparison of the first proper orthogonal decomposition mode obtained from the raw image data, weak and strong wavenumber

filtering, and wavelet filtering: (a) raw image data; (b) weak wavenumber filtering; (c) strong wavenumber filtering; (d) Haar wavelet

filtering; (e) biorthogonal wavelet filtering; (f) multiwavelet filtering.
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of possible structural degradation. The experimental data is obtained in the form of a three-dimensional
force–velocity transfer function that can be viewed as a series of two-dimensional spatial images. Each of these
images represents the transfer function within a discrete frequency bin.

The use of proper orthogonal decomposition has been explored as a means of efficiently analyzing this large
quantity of experimental data. Proper orthogonal decomposition is a covariance-based statistical method that
decomposes the data into a series of orthogonal modes. These modes are given as the eigenvectors generated
by solving an eigenvalue problem, where the magnitude of each eigenvalue is proportional to the energy
contained in the corresponding mode. In this paper, scanning laser Doppler vibrometry data taken from the
North Lunette fresco in the House Appropriations Room was analyzed using proper orthogonal
decomposition. In this example, the frequency ranged from 100 to 600Hz in increments of 2Hz, for a total
of 251 images. The proper orthogonal decomposition analysis showed that the data could be represented in
terms of 5 modes, where the first eigenvalue was an order of magnitude larger than the next largest one.
Therefore, in this case, it was shown that a single proper orthogonal decomposition mode was actually
sufficient to capture the salient features in the scanning laser Doppler vibrometry data.

While proper orthogonal decomposition can provide efficient representations of large quantities of scanning
laser Doppler vibrometry data, the individual images are corrupted with spatially varying speckle noise due to
irregularities on the surface of the artwork. It is interesting to note that proper orthogonal decomposition
analysis generally provides some denoising by associating the noise with the smaller, less significant
eigenvalues. In this application, however, the spatial dependence of the noise results in high coherence across
the transfer function images at different frequencies. Therefore, speckle noise appears in the most significant
proper orthogonal decomposition modes and can also result in the identification of spurious modes. As such,
another important goal of this paper has been to explore spatial filtering methods for removing speckle noise
from the images prior to performing proper orthogonal decomposition analysis. The Haar wavelet basis,
biorthogonal wavelets, and piecewise-linear orthonormal multiwavelets were all employed for image filtering
with the best qualitative performance provided by the multiwavelets. Both mild and strong wavenumber filters
were also used to filter the data. In all cases, when proper orthogonal decomposition analysis was performed
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using the filtered scanning laser Doppler vibrometry data, a cleaner set of proper orthogonal decomposition
modes was obtained. While the wavenumber filters and wavelet-based methods both reduced the amount of
noise in the dominant proper orthogonal decomposition mode, the wavelet-based techniques retained some
features that were removed by the wavenumber filters. Further investigation is required in order to determine
if these retained features have any physical significance or if they are merely noise artifacts. Therefore, the
limited study described in this paper does not clearly demonstrate which filtering approach, the wavenumber
filtering or the wavelet-based processing, is most effective for this application. The results do clearly show,
however, that proper orthogonal decomposition analysis coupled with image filtering provides a potentially
powerful tool for the evaluation of scanning laser Doppler vibrometry data for fault detection.
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