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Abstract

This paper deals with the dynamic analysis of infinite beam models. The translational and the rotational dynamic

stiffness of both Timoshenko and Euler–Bernoulli beams on Winkler foundation are derived and compared in the

frequency-domain. The situation of vanishing elastic foundation is included as a special case. Here, special emphasis is

placed on the asymptotic behaviour of the derived stiffness expressions for high frequencies, since this is of importance in

case of transient excitations. It is shown that the dynamic stiffness of the infinite Timoshenko beam follows a linear

function of io, whereas rational powers of io are involved in case of Euler–Bernoulli’s model. The stiffness formulations

can be transformed into the time-domain using the mixed-variables technique. This is based on a rational approximation

of the low-frequency force–displacement relationship and a subsequent algebraic splitting process. At the same time, the

high-frequency asymptotic dynamic stiffness is transformed into the time-domain in closed-form. It is shown that the

Timoshenko beam is equivalent to a simple dashpot in the high-frequency limit, whereas Euler–Bernoulli’s beam model

leads to fractional derivatives of the unknown state variables in an equivalent time-domain description. This finding

confirms the superiority of Timoshenko’s model especially for high frequencies and transient excitations. Numerical

examples illustrate the differences with respect to the two beam models and demonstrate the applicability of the proposed

method for the time-domain transformation of force–displacement relationships.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is devoted to the dynamic analysis of infinite beams in the frequency- and time-domain, with
special emphasis on the asymptotic behaviour for high frequencies.

Continuous beam models are of practical importance in railway engineering. Within this context, a
comprehensive review of historical literature and recently published methods to model vehicle and track in
dynamic interaction problems has been given in Ref. [1]. There, the theoretical importance of classical
continuous models is substantiated by fifteen references and the adequacy of simple railway models to certain
types of problems is addressed.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In connection with railway engineering applications both beam models based on Euler–Bernoulli’s [2–4] and
on Timoshenko’s beam theory [5–9] have been used. It is a well-known fact, that shear deformation and
rotatory inertia should be taken into account when considering the dynamic response of beams [10,11]. This is
particularly important if mode shapes and eigenfrequencies of finite beams are computed [12–14].
Euler–Bernoulli’s theory is sufficiently accurate only for wave lengths approximately lX10r or frequencies
foc=10r with the velocity c of travelling waves in case of beams with circular cross-section of radius r as
can be seen from a figure in Ref. [15, p. 325]. Consequently, especially for higher frequencies [16], dynamic
analyses of beams under arbitrary transient excitations should be based on Timoshenko’s theory.

Another important aspect of the use of the above beam models in the context of railway engineering is the
infinite extent of the system. For transient excitations, a correct representation of radiation damping
is necessary. Sun [3,17] and Kargarnovin [7,8] derived closed-form analytical solutions for infinite
Euler–Bernoulli and Timoshenko beams on different types of foundation under harmonic loads using
complex Fourier transformation together with the residue and convolution integral theorem. In this paper,
dynamic stiffness coefficients relating the amplitude of a time-harmonic unit force or moment to that of the
resulting displacement or rotation, respectively, are derived for both the Timoshenko and Euler–Bernoulli
beam on elastic Winkler foundation. The former is an extension of the derivation presented in Ref. [16], the
latter is a summary of material published previously in Refs. [18,19]. Here, special emphasis is placed on the
high-frequency asymptotic behaviour of the dynamic stiffness. The resulting limit values for the dynamic
stiffness confirm the discrepancy between Timoshenko’s and Euler–Bernoulli’s model in the medium to high
frequency range. This is of special importance for transient time-domain calculations. In this paper, time-
domain models of the two different infinite beams are obtained using the mixed-variables technique [20]. The
latter is based on a rational approximation of a given set of frequency-stiffness pairs and a subsequent
algebraic splitting process. Here, the asymptotic value of the dynamic stiffness for high frequencies is
transformed into the time-domain in closed-form. This leads to first-order time-derivatives of the unknown
state variables in case of the Timoshenko beam. However, fractional derivatives are obtained in case of
Euler–Bernoulli’s model. In both cases, the resulting time-domain formulations can be used as absorbing
boundaries in transient analyses of finite, inhomogeneous and possibly nonlinear railway–vehicle analyses.
2. Dynamic stiffness of infinite beams

In this paper, the dynamic behaviour of infinite beams resting on a Winkler foundation is described in the
frequency-domain in order to formulate the dynamic stiffness relationship,

F̂

M̂

" #
¼ KðioÞ

ŵ

ĵ

" #
; f̂ ¼ Kd̂; fðtÞ ¼ f̂eiot; dðtÞ ¼ d̂eiot, (1)

between the deformations d̂ and the generalized forces f̂ in the point where fðtÞ acts onto the beam. The
definition of the above forces and deformations is shown in Fig. 1 for a Timoshenko beam on elastic
foundation.
Fig. 1. Infinite Timoshenko beam. Definition of forces and deformations.
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2.1. Infinite Timoshenko beam

If shear deformations are considered, the slope of the deflection curve wðxÞ depends not only on the rotation
j of the beam cross-section but also on the shear angle g:

q
qx

wðx; tÞ ¼ �jðx; tÞ � gðx; tÞ. (2)

Bending moment Mðx; tÞ and shear force Qðx; tÞ are related to the corresponding deformations,

Mðx; tÞ ¼ EI
q
qx

jðx; tÞ,

Qðx; tÞ ¼ �kGAg ¼ kGA jðx; tÞ þ
q
qx

wðx; tÞ

� �
, ð3Þ

where EI ½Nm2� is the flexural stiffness, A ½m2� the cross-sectional area, G ½N=m2� the shear modulus from
E ¼ 2Gð1þ nÞ with Poisson’s ratio n, and k is the shear coefficient. k depends on the shape of the cross-
section, Poisson’s ratio and the considered frequency range. For circles, rectangles and thin-walled cross-
sections, Cowper [21] gave several relations. For high-frequency modes, values published by Mindlin [22]
should be considered. The elasticity equations (3) are coupled with the dynamic equilibrium concerning the
forces,

q
qx

Qðx; tÞ þ qðx; tÞ � bwðx; tÞ ¼ rA €wðx; tÞ (4)

and the moments,

q
qx

Mðx; tÞ �Qðx; tÞ þmðx; tÞ ¼ rI €jðx; tÞ, (5)

where r ½kg=m3� is the mass density per volume, I ½m4� the second moment of area about the y-axis through the
centre of the cross-section, qðx; tÞ ½N=m� is the prescribed distributed load on the beam, mðx; tÞ ½Nm=m� the
prescribed distributed moment along the beam and b N=m2

� �
is the distributed stiffness of the Winkler

foundation.
The constitutive relations (3) together with the equations of motion (4), (5) define the governing differential

equations for the displacements wðx; tÞ and the rotation jðx; tÞ:

� kGA
qj
qx
þ

q2w
qx2

� �
þ bwþ rA €w ¼ q,

kGA jþ
qw

qx

� �
� EI

q2j
qx2
þ rI €j ¼ m. ð6Þ

A wave-type representation

wðx; tÞ

jðx; tÞ

" #
¼

ŵ

ĵ

" #
e�x

ffiffi
l
p
þiot, (7)

solves the homogeneous part of Eqs. (6) yielding a quadratic equation for the roots l:

l2 � l
kGAMR þ EIMTb

kGAEI
þ

MTbðMR þ kGAÞ

kGAEI
¼ 0. (8)
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The new parameters are related to rotational ðRÞ and translational ðTÞ properties:

MTb ¼ rAðioÞ2 þ b,

MR ¼ rIðioÞ2,

c2T ¼
kG

r
,

c2R ¼
E

r
. ð9Þ

Use of a dimensionless frequency Z,

Z2 ¼ o2 rA

b
¼

kGA

b
o2

c2T
, (10)

facilitates the solution of the square root equation (8) for l:

l1 ¼
1

2

b
kGA

ð1� Z2Þ þ
c2T
c2R
ð�Z2 þ

ffiffiffiffi
R
p
Þ

� �
, (11)

l2 ¼
1

2

b
kGA

ð1� Z2Þ þ
c2T
c2R
ð�Z2 �

ffiffiffiffi
R
p
Þ

� �
, (12)

R ¼ 4
kGA2

Ib
c2R
c2T
ðZ2 � 1Þ þ

c2R
c2T
ð1� Z2Þ þ Z2

� �2
. (13)

In the special case Z2 ¼ 1, one of the two eigenvalues l1;2 degenerates to zero.

l1;2 ¼
1

2

b
kGA

c2T
c2R
ð�1� 1Þ; l1 ¼ 0; l2 ¼ �

b
kGA

c2T
c2R
¼ �

b
EA

. (14)

Moreover, l1 ¼ 0 is obtained if

ð1� ~Z2Þ þ
c2T
c2R
ð�~Z2 þ

ffiffiffiffi
R
p
Þ¼
!
0. (15)

This yields

4
kGA2

Ib
ð~Z2 � 1Þ ¼ 4~Z2 ð~Z2 � 1Þ. (16)

Thus, the infinite Timoshenko beam on a Winkler foundation is characterized by two typical frequencies,

~Z1 ¼ 1; ~Z22 ¼
kGA2

Ib
, (17)

~o2
1 ¼

b
rA

; ~o2
2 ¼

kGA

rI
¼ c2T

A

I
. (18)

In the special case of vanishing Winkler foundation, b ¼ 0, the roots l1;2 simplify as follows:

lb¼01 ¼ �
o2

2

1

c2T
þ

1

c2R

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2T
�

1

c2R

� �2

þ
4Ar
o2EI

s2
4

3
5, (19)

lb¼02 ¼ �
o2

2

1

c2T
þ

1

c2R

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2T
�

1

c2R

� �2

þ
4Ar
o2EI

s2
4

3
5. (20)
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Here, lb¼01 is strictly negative, whereas lb¼02 changes its sign for a certain angular frequency ~ob¼0:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2T
�

1

c2R

� �2

þ
4A

~o2Ic2R

s
¼

1

c2T
þ

1

c2R
, (21)

with

~ob¼0	 
2
¼ c2T

A

I
¼

kGA

rI
. (22)

This characteristic frequency is identical to ~o2 derived above for an infinite Timoshenko beam on elastic
Winkler foundation. Since the solution (7) in the space-domain is related to

ffiffiffi
l
p

, a change of the sign of a real
value l2 2 R influences the character of the solution significantly. The properties of l1, l2 with respect to the
characteristic frequencies ~o1, ~o2 are summarized in the following equation:

~o1 ¼

ffiffiffiffiffi
b
rA

q
;

~o2 ¼

ffiffiffiffiffiffiffi
kGA
rI

q
;

oo ~o1 : l1;2 ¼ a� ib; a; b 2 R:

o ¼ ~o1 : l1 ¼ 0; l2 ¼ �
b

EA
:

~o1ooo ~o2 : l1; l2 2 R; l140; l2o0:

o ¼ ~o2 : l2 2 R; l1 ¼ 0; l2o0:

o4 ~o2 : l1; l2 2 R; l1o0; l2o0:

8>>>>>>><
>>>>>>>:

(23)

In order to derive dynamic stiffness relationships, the normalized deformation wF ðx; xÞ due to a unit force
F̂ ¼ 1½N�acting at the point x in an arbitrary distance r; r ¼ jx� xj, to the point of observation, and the normalized

rotation jMðx; xÞ due to a unit moment M̂ ¼ 1½Nm� at x are required. For this purpose, a short operator notation of
the governing differential equations (6) in the frequency-domain as used by Antes in Ref. [16] is beneficial.

Bs

ŵ

ĵ

" #
¼

kGA
q2

qx2
�MTb kGA

q
qx

�kGA
q
qx

EI
q2

qx2
� kGA�MR

2
6664

3
7775

ŵ

ĵ

" #
¼ �

q̂

m̂

� �
. (24)

According to Antes [16] the problem of finding the fundamental solutions can be reduced to determining a scalar
function c which fulfills Eq. (25) incorporating the determinant of the operator matrix Bs.

det ðBsÞc ¼ �d ðx� xÞ. (25)

The solution of Eq. (25) is given in Refs. [16,23] as

c ¼
1

2kGAEIðl1 � l2Þ
e�

ffiffiffiffi
l1
p

rffiffiffiffiffi
l1
p �

e�
ffiffiffiffi
l2
p

rffiffiffiffiffi
l2
p

" #
. (26)

Here, l1 and l2 are the two roots of detðBsÞ ¼ 0 derived above (Eqs. (11)–(13)). Finally, the fundamental solutions
are found using the matrix of cofactors Bco

s of Bs with Bco
s ¼ detðBsÞB

�1
s .

wF wM

jF jM

" #
¼ Bco

s c ¼
EI

q2

qx2
� kGA�MR �kGA

q
qx

kGA
q
qx

kGA
q2

qx2
�MTb

2
6664

3
7775c. (27)

In Eq. (27) the symbols wM and jF denote the vertical deformation due to a unit moment and the rotation due to a
unit force acting at the point x, respectively. Evaluating Eq. (27), the desired normalized deformation wF and rotation
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jM are obtained as:

wF ¼
1

2kGAðl1 � l2Þ
e�

ffiffiffiffi
l1
p

rffiffiffiffiffi
l1
p l1 �

kGAþMR

EI

� �
�

e�
ffiffiffiffi
l2
p

rffiffiffiffiffi
l2
p l2 �

kGAþMR

EI

� �" #
, (28)

jM ¼
1

2EIðl1 � l2Þ
e�

ffiffiffiffi
l1
p

rffiffiffiffiffi
l1
p l1 �

MTb

kGA

� �
�

e�
ffiffiffiffi
l2
p

rffiffiffiffiffi
l2
p l2 �

MTb

kGA

� �" #
. (29)

For a more detailed description of the underlying operator theory the reader is referred to Ref. [24, Part II,
Chapter 3].

It should be noted that the square roots
ffiffiffiffiffi
l1
p

,
ffiffiffiffiffi
l2
p

are ambiguous. For physical reasons, these values have to
be chosen as follows:

~o1 ¼

ffiffiffiffiffiffiffi
b
rA

r
;

~o2 ¼

ffiffiffiffiffiffiffiffiffiffi
kGA

rI

r
;

oo ~o1 : R
ffiffiffiffiffi
l1
p� �

40; R
ffiffiffiffiffi
l2
p� �

40;

~o1poo ~o2 : R
ffiffiffiffiffi
l1
p� �

40; I
ffiffiffiffiffi
l2
p� �

40;

oX ~o2 : I
ffiffiffiffiffi
l1
p� �

40; I
ffiffiffiffiffi
l2
p� �

40:

8>><
>>: (30)

Due to KF ¼ F̂=ŵ and KM ¼ M̂=ĵ at the point r ¼ 0 where F̂ and M̂ act onto the beam, the stiffnesses
KF ; KM follow directly from solutions (28) and (29), respectively.

wF ðr ¼ 0; tÞ ¼ ŵ0e
iot; jM ðr ¼ 0; tÞ ¼ ĵ0e

iot, (31)

KF ¼
1

ŵ0
¼

2kGAðl1 � l2Þ
ffiffiffiffiffiffiffiffiffi
l1l2
p

ffiffiffiffiffi
l2
p

l1 �
kGAþMR

EI

� �
�

ffiffiffiffiffi
l1
p

l2 �
kGAþMR

EI

� � , (32)

KM ¼
1

ĵ0

¼
2EIðl1 � l2Þ

ffiffiffiffiffiffiffiffiffi
l1l2
p

ffiffiffiffiffi
l2
p

l1 �
MTb

kGA

� �
�

ffiffiffiffiffi
l1
p

l2 �
MTb

kGA

� � . (33)

Below the first critical frequency ~o1 both stiffnesses KF and KM are purely real-valued and indicate properties
of a corresponding frequency-dependent spring. Thus, ~o1 is a cutoff frequency, where wave propagation starts
to exist. Above the second critical frequency ~o2 the stiffnesses KF and KM are purely imaginary and indicate
radiation damping which can be described by a constant damping coefficient d when o tends towards infinity:

lim
o!1

KF ¼ K1F ¼
2kGA

cT

io ¼ 2A
ffiffiffiffiffiffiffiffiffi
kGr

p
io, (34)

lim
o!1

KM ¼ K1M ¼
2EI

cR

io ¼ 2I
ffiffiffiffiffiffiffi
Er

p
io. (35)

For the vertical degree of freedom, the relationship to viscous damping with the corresponding force,

F ðtÞ ¼ d _wðtÞ, (36)

in the time-domain follows directly from the assumption of a time-harmonic behaviour of both quantities, wðtÞ

as well as F ðtÞ:

F ðtÞ ¼ F̂eiot; wðtÞ ¼ ŵeiot. (37)

Thus, Eq. (36) in the time-domain corresponds to

F̂ ¼ iodŵ (38)

in the frequency domain. Comparing Eqs. (34) and (38) yields a constant damping coefficient d ¼ 2A
ffiffiffiffiffiffiffiffiffi
kGr
p

in
case of the translational stiffness for o tending towards infinity.
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2.2. Infinite Euler– Bernoulli beam

The governing differential equation of an infinite Euler–Bernoulli beam on elastic Winkler foundation of
stiffness b ½N=m2�,

EI
q4

qx4
wðx; tÞ þ bwðx; tÞ þ rA €wðx; tÞ ¼ 0 (39)

is solved by exponential functions wðx; tÞ ¼ ŵelxeiot. The dynamic stiffnesses KF and KM are derived in
Ref. [18]:

KF ¼ 8EIW 3, (40)

KM ¼ 4EIW , (41)

W ¼
1

2

ffiffiffiffiffiffi
b

EI

4

r
�

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Z24
p

for Z2p1

ð1þ iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 14

p
for Z241:

(
; Z2 ¼ o2 rA

b
. (42)

The dimensionless frequency used in Eq. (42) is identical to that defined for the Timoshenko beam in Eq. (10).
As for the Timoshenko beam, Z ¼ 1:0 corresponds to the cutoff frequency ~o1, where wave propagation occurs
for the first time. Thus, KF and KM given in Eqs. (40) and (41), respectively, are purely real-valued for oo ~o1.
However, there is no equivalent to the second characteristic frequency ~o2 of the Timoshenko beam.
Evaluating the limit of Eqs. (40) and (41) for Z!1, the following asymptotic dynamic stiffness coefficients
for high frequency can be derived [18,19]:

lim
o!1

KF ¼ K1F ¼ 2
ffiffiffi
2
p

EIC3=4ðioÞ3=2, (43)

lim
o!1

KM ¼ K1M ¼ 2
ffiffiffi
2
p

EIC1=4ðioÞ1=2; C ¼
rA

EI
. (44)

It is important to note that Eqs. (43) and (44) contain rational powers of the frequency. This is in contrast to
the linear frequency dependence obtained for the Timoshenko beam in Eqs. (34) and (35). In the special case
of vanishing Winkler foundation, b ¼ 0, the dynamic stiffness coefficients are identical to the asymptotic
values given in Eqs. (43), (44) [19] throughout the complete frequency range:

b ¼ 0 : K
b¼0
F ¼ lim

o!1
K

ba0
F ; K

b¼0
M ¼ lim

o!1
K

ba0
M . (45)

3. Time-domain models of infinite beams

The dynamic stiffnesses given in Eqs. (32), (33) and (40), (41) completely describe the relationship between
the amplitudes F̂ 0, M̂0 of a point load or moment, respectively and the resulting deformations ŵ0, ĵ0 at x ¼ 0
in the frequency-domain. Based on these equations, the response of the Timoshenko or Euler–Bernoulli beam
to transient excitations could be obtained using inverse Fourier transformation and the convolution theorem.
However, the numerical evaluation of the associated convolution integrals is computationally expensive.
Therefore, direct time-domain models are more desirable for the analysis of transient dynamic problems. In
this paper, the latter are obtained using the so-called mixed-variables technique [20]. This technique is based
on a rational approximation of the low-frequency dynamic stiffness K � K1,

F̂ 0 ¼ KF ðioÞŵ0 ¼ K1F ŵ0 þ ðKF � K1F Þŵ0, (46)

M̂0 ¼ KMðioÞĵ0 ¼ K1Mĵ0 þ ðKM � K1M Þĵ0, (47)

using a least-squares approach. The resulting rational function can be transformed into a system of linear
equations in the frequency-domain by means of an algebraic splitting process using internal variables. The
resulting system of linear equations with respect to io corresponds to a system of first-order differential
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equations in the time-domain. The mixed-variables technique is described in detail in Ref. [26]. The essential
steps of the frequency-to-time transformation of Eqs. (46)–(47) are summarized briefly in the following:

Step 1: Strictly proper rational approximation of low-frequency dynamic stiffness K � K1:

KF � K1F �
P0 þ ðioÞP1 þ � � � þ ðioÞ

M�1PM�1

1þ ðioÞQ1 þ � � � þ ðioÞ
MQM

¼
PðioÞ
QðioÞ

, (48)

KM � K1M �
p0 þ ðioÞp1 þ � � � þ ðioÞ

M�1pM�1

1þ ðioÞq1 þ � � � þ ðioÞ
MqM

¼
pðioÞ
qðioÞ

. (49)

The rational approximation is equivalent to an alternative Pad�e series expansion as has been used for example
by Song [28].

PðioÞ
QðioÞ

¼
ðioÞ�1PM�1 þ � � � þ ðioÞ

�ðM�1ÞP1 þ ðioÞ
�MP0

QM þ � � � þ ðioÞ
�ðM�1ÞQ1 þ ðioÞ

�M
. (50)

The degree of rational approximation M can be chosen arbitrarily. In previous publications [18,19,26],
accurate results have been obtained with M ¼ 5 already. The coefficients Pj ;Qj and pj ; qj are calculated
minimizing the error-norms EF ; EM :

EF ¼
Xs

j¼1

kQðiojÞ½KF ðojÞ � K1F ðojÞ� � PðiojÞk,

EM ¼
Xs

j¼1

kqðiojÞ½KM ðojÞ � K1MðojÞ� � pðiojÞk, ð51Þ

using an amount of sþ 1 distinct values oj ¼ jDo, j ¼ 1; . . . ; s with a frequency increment Do.
Step 2: Replacement of the fraction PðioÞ=QðioÞ by a new state variable v̂1 and changing from the proper

fraction PðioÞ=QðioÞ to the improper fraction QðioÞ=PðioÞ (here and in the following only the vertical degree
of freedom is addressed for conciseness):

F̂0 ¼
PðioÞ
QðioÞ

ŵ0 þ K1F ŵ0 ¼ v̂1 þ K1F ŵ0,

v̂1 ¼
PðioÞ
QðioÞ

ŵ0 ! ŵ0 ¼
QðioÞ
PðioÞ

v̂1,

v̂1 : first internal variable. ð52Þ

Step 3: Splitting of QðioÞ=PðioÞ into a linear function with respect to io and a strictly proper remainder
Rð0ÞðioÞ=PðioÞ by means of a comparison of coefficients; introduction of a second internal variable v̂2 to
replace the remainder Rð0ÞðioÞ=PðioÞ:

QðioÞ
PðioÞ

¼ S
ð0Þ
0 þ ioS

ð0Þ
1 þ

Rð0ÞðioÞ
PðioÞ

;
Rð0ÞðioÞ
PðioÞ

: proper fraction ð53Þ

Rð0ÞðioÞ ¼ R
ð0Þ
0 þ ioR

ð0Þ
1 þ ðioÞ

2R
ð0Þ
2 þ � � � ðioÞ

M�2R
ð0Þ
M�2, ð54Þ

ŵ0 ¼ ðS
ð0Þ
0 þ ioS

ð0Þ
1 Þv̂1 þ v̂2, ð55Þ

v̂2 ¼
Rð0ÞðioÞ
PðioÞ

v̂1 ð56Þ

! v̂1 ¼
PðioÞ

Rð0ÞðioÞ
v̂2;

PðioÞ
Rð0ÞðioÞ

: improper fraction, ð57Þ

v̂2 : second internal variable. (58)

Further steps: Continuation of step 3 until the rational function has been completely replaced by linear
equations. A total of M internal variables is introduced during this process, where M is the degree of rational
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approximation. The following representation of the force–displacement relationship is obtained:

0 1 0 � � � 0

1 �S
ð0Þ
0 �1 � � � 0

0 �1 S
ð1Þ
0 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 � � � �1 �S
ðM�1Þ
0

2
66666666664

3
77777777775

ŵ0

v̂1

v̂2

..

.

v̂M

2
6666666664

3
7777777775

þ io

0 0 0 � � � 0

0 �S
ð0Þ
1 0 � � � 0

0 0 S
ð1Þ
1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � �S
ðM�1Þ
1

2
66666666664

3
77777777775

ŵ0

v̂1

v̂2

..

.

v̂M

2
6666666664

3
7777777775
þ

K1ŵ0

0

0

..

.

0

2
666666664

3
777777775
¼

F̂ 0

0

0

..

.

0

2
6666666664

3
7777777775
. ð59Þ

Assuming a harmonic behaviour of the state variables,

zðtÞ ¼ ẑeiot; rðtÞ ¼ r̂eiot, (60)

the factor io in Eq. (59) can be interpreted as a first-order time derivative. However, in order to derive a time-
domain equivalent of Eq. (59), an interpretation of the asymptotic part K1ŵ is necessary. Here differences
occur for the Timoshenko and Euler–Bernoulli beam, respectively, as is shown in the following.
3.1. Timoshenko beam: interpretation of asymptotic dynamic stiffness

Here, both the vertical and rotational asymptotic dynamic stiffness given in Eqs (34) and (35), respectively,
follow linear functions of io and can thus be interpreted as viscous dashpots in the time domain. Including the
corresponding coefficients K1F and K1M at the position (1,1) of the second matrix in Eq. (59), the latter
corresponds to a first-order differential equation with respect to time:

AzðtÞ þ B_zðtÞ ¼ rðtÞ, (61)

with

B ¼ diag
2kGA

cT

�S
ð0Þ
1 S

ð1Þ
1 � � � �S

ðM�1Þ
1


 �
, (62)

zTðtÞ ¼ w0ðtÞ v1ðtÞ � � � vM ðtÞ
� �

; rTðtÞ ¼ F 0ðtÞ 0 � � � 0
� �

(63)

for the vertical degree of freedom and

B ¼ diag
2EI

cR

�S
ð0Þ
1 S

ð1Þ
1 � � � �S

ðM�1Þ
1


 �
, (64)

zTðtÞ ¼ j0ðtÞ v1ðtÞ � � � vMðtÞ
h i

; rTðtÞ ¼ M0ðtÞ 0 � � � 0
� �

(65)

for the rotational degree of freedom. The matrix A is the first matrix of Eq. (59). The ordinary differential
equation (61) can be coupled to finite element models of additional structural members (even with nonlinear
behaviour) and solved in the time-domain using standard numerical time-stepping schemes.
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3.2. Euler– Bernoulli beam: interpretation of asymptotic dynamic stiffness

In contrast to the Timoshenko beam, the high-frequency asymptotic dynamic stiffness coefficients of the
Euler–Bernoulli beam given in Eqs. (43) and (44) contain rational powers of io. Nevertheless, the harmonic
behaviour

zðx; tÞ ¼
wðx; tÞ

jðx; tÞ

" #
¼

wðxÞ

jðxÞ

" #
eiot;

qm

qtm
zðx; tÞ ¼ ðioÞmzðx; tÞ, (66)

can be used to transform the asymptotic frequency-domain descriptions (43), (44) for the infinite
Euler–Bernoulli beam into the time domain. F10 and M1

0 are those parts of the interaction force and
moment, respectively, which correspond to the high-frequency asymptotic behaviour.

F̂ 0 ¼
PðioÞ
QðioÞ

ŵ0 þ F̂
1

0 ; M̂0 ¼
pðioÞ
qðioÞ

ĵ0 þ M̂
1

0 ,

F̂
1

0 ¼ K1F ŵ0; M̂
1

0 ¼ K1Mĵ0,

F10 ðtÞ ¼ 2
ffiffiffi
2
p

EIC3=4½�1D
3=2
t w0ðtÞ�; C ¼

rA

EI
, (67)

M1
0 ðtÞ ¼ 2

ffiffiffi
2
p

EIC1=4½�1D
1=2
t j0ðtÞ�. (68)

Here, noninteger powers of ðioÞ are interpreted as fractional derivatives of the unknown displacement w0ðtÞ

and rotation j0ðtÞ, respectively. This is based on the so-called Riemann–Liouville definition (69) of fractional
differentiation which can be found in the textbook [25], for example.

aDn
tz ¼

1

Gðm� nÞ
dm

dtm

Z t

a

zðtÞ

ðt� tÞnþ1�m
dt; m� 1pnpm. (69)

In Eq. (69), m is an integer number. Application of definition (69) using the lower terminal a ¼ �1 to a
harmonic function returns the latter together with a factor ðioÞn.

�1Dn
te

iot ¼ ðioÞneiot. (70)

However, if the quantities z between ðt!�1Þ and t ¼ 0, where the system starts to exist, are identically zero,
then the lower limit of the integral in Eq. (69) can be replaced by 0:

zðtÞ 	 0 for �1otp0. (71)

!�1Dn
tz ¼

1

Gðm� nÞ
qm

qtm

Z t

0

zðtÞ

ðt� tÞnþ1�m
dt; m� 1pnpm.

Thus, the approach presented in this paper is limited to situations with zero initial conditions for the displacements
and rotations. An initial impact I0 ¼ mv0 can be modelled by applying a constant force within a very short time
interval h: I0 ¼ Fh. Using the above interpretation given in Eqs. (67) and (68), the frequency-domain
representation (59) corresponds to the following system of fractional differential equations in the time-domain:

AzðtÞ þ BE _zðtÞ þ Cn½�1Dn
tzðtÞ� ¼ rðtÞ, (72)

with

n ¼ 3
2; C3=2 ¼ diag 2

ffiffiffi
2
p

EIC
3
4 0 � � � 0

n o
, (73)

zTðtÞ ¼ ½w0ðtÞ v1ðtÞ � � � vM ðtÞ�; rTðtÞ ¼ ½F0ðtÞ 0 � � � 0�

for the vertical degree of freedom and

n ¼ 1
2
; C1=2 ¼ diag 2

ffiffiffi
2
p

EIC
1
4 0 � � � 0

n o
, (74)
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zTðtÞ ¼ ½j0ðtÞ v1ðtÞ � � � vM ðtÞ�; rTðtÞ ¼ ½M0ðtÞ 0 � � � 0�

for the rotational degree of freedom. The matrix A is the same as for the Timoshenko beam. BE is given
in Eq. (75).

BE ¼ diag 0 � S
ð0Þ
1 S

ð1Þ
1 � � � � S

ðM�1Þ
1

n o
. (75)

The system of fractional differential equations (72) can be solved numerically using a specific time-stepping scheme
[27,26] developed for this purpose. In comparison to the first-order differential equation (61), the numerical effort
increases due to the evaluation of memory integrals.

Finally, it should be noted that in the special case of vanishing Winkler foundation, b ¼ 0, the
force–displacement relationships of the Euler–Bernoulli beam are described by rational functions of
io throughout the complete frequency range (see Eqs. (43)–(45)). In this case, there is no need to apply the
mixed-variables technique. The following scalar fractional differential equations describe the force–
displacement- and moment–rotation-relationship of an infinite Euler–Bernoulli beam with b ¼ 0 in the
time-domain:

F 0ðtÞ ¼ 2
ffiffiffi
2
p

EIC3=4½�1D
3=2
t w0ðtÞ�

M0ðtÞ ¼ 2
ffiffiffi
2
p

EIC1=4½�1D
1=2
t j0ðtÞ�

9=
; if b ¼ 0. (76)
4. Example

In order to illustrate the differences between the Timoshenko and Euler–Bernoulli beam models a specific
system with material data given in Eq. (77) has been analysed.

E ¼ 2:1� 1011 ½N=m2�; I ¼ 3055 ½cm4�,

n ¼ 0:3; b ¼ 4:375� 106 ½N=m2�,

A ¼ 7686 ½mm2�; rA ¼ 60:34 ½kg=m�; k ¼ 5
6
. ð77Þ

The vertical dynamic stiffnesses derived for the Timoshenko and Euler–Bernoulli beam on elastic foundation
in Eqs. (32) and (40), respectively are shown in Fig. 3. As described in Section 2.1, the infinite Timoshenko
beam is characterized by two frequencies,

~o1 ¼

ffiffiffiffiffiffiffi
b
rA

s
¼ 269:3

1

s
; ~o2 ¼

ffiffiffiffiffiffiffiffiffiffi
kGA

rI

s
¼ 46445:3

1

s
. (78)

The low-frequency range is shown in Fig. 3a. Here, a very good agreement between the dynamic stiffness of
Timoshenko’s beam and Euler–Bernoulli’s beam can be seen. As expected, the imaginary part of the vertical
stiffness vanishes for oo ~o1 in both cases. As explained in Section 2.2, the cutoff-frequencies of Timoshenko
and Euler–Bernoulli beam are identical. However, the agreement between the stiffness curves corresponding to
the two different beam models is restricted to the low-frequency range, as can be seen in Fig. 3b. As described
in Section 2.1, the real part of the dynamic stiffness of the Timoshenko beam vanishes for excitation
frequencies bigger than ~o2. This is not the case for the Euler–Bernoulli beam. The imaginary parts
corresponding to the two different beam models agree reasonably for oo ~o2. However, the stiffness curves
differ strongly for large frequencies. Recall that the asymptotic dynamic stiffness follows a linear function of
io in case of the Timoshenko beam whereas a rational power ðioÞ3=2 is involved in case of the Euler–Bernoulli
beam (Fig. 3).

The calculation in the time-domain is demonstrated using the example system shown in Fig. 2. Here, the
Winkler foundation is replaced by a single spring of stiffness k at x ¼ 0 with

k ¼ 5:0� 108 N=m. (79)
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Fig. 2. Infinite beam supported by a single spring at x ¼ 0.
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Fig. 3. Vertical dynamic stiffness for the Timoshenko and Euler–Bernoulli beam models on elastic Winkler foundation: (a) low-frequency

range, (b) frequency-range 0–70; 000 1
s
. Timoshenko beam, Euler–Bernoulli beam.
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In order to obtain a time-domain model, the low-frequency part of the vertical dynamic stiffness of the
Timoshenko beam is approximated by the ratio of two polynomials (Eq. (48)) as described in Section 3. As an
example, the coefficients Pi;Qi of a rational approximation of degree M ¼ 5 and S

ðiÞ
0 ;S

ðiÞ
1 of the equivalent

system of linear equations are given in Table 1. The agreement between the exact low-frequency vertical
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Table 1

Rational approximation of the low-frequency part of the vertical dynamic stiffness of a Timoshenko beam

i Pi�1 Qi S
ði�1Þ
0 S

ði�1Þ
1

1 0 0:14276E� 03 þ0:96198E� 10 �0:20802E� 13

2 �2:4059Eþ 05 6:00998E� 09 �0:13731Eþ 10 �0:38614Eþ 05

3 �7:0732 1:95476E� 13 þ0:42453E� 09 þ0:38183E� 13

4 �0:1515E� 03 2:91726E� 18 þ0:18656Eþ 09 þ0:16073Eþ 05

5 �2:4293E� 09 5:05336E� 23 þ0:32199E� 09 þ0:79140E� 13

Material data according to Eq. (77). M ¼ 5, Input range: o0 ¼ 0, oend ¼ 80; 000 1=s, frequency increment Do ¼ 100 1=s.
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Fig. 4. Low-frequency part of the vertical dynamic stiffness of the Timoshenko beam: (a) real part, (b) imaginary part. exact:

KF � K1F , KF according to Eq. (32), K1F according to Eq. (34), M ¼ 5, M ¼ 7.
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dynamic stiffness coefficient and rational approximations of degree M ¼ 5 and 7 is shown in Fig. 4. Using the
rational stiffness approximation, the vertical displacement at the point of excitation of the coupled
beam–spring system shown in Fig. 2 is described by the following system of first-order differential equations:

~AzðtÞ þ B_zðtÞ ¼ rðtÞ, (80)
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with

~A ¼

k 1 0 � � � 0

1 �S
ð0Þ
0 �1 � � � 0

0 �1 S
ð1Þ
0 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 � � � �1 �S
ðM�1Þ
0

2
666666664

3
777777775
; zðtÞ ¼

w0ðtÞ

v1ðtÞ

v2ðtÞ

..

.

vMðtÞ

2
66666664

3
77777775
. (81)

Here, the spring stiffness k has been included at the position (1,1) of the matrix ~A. The right-hand side vector r
and the matrix B are given in Eqs. (62) and (63), respectively. Using Eq. (80), the vertical displacement
wðx ¼ 0; tÞ ¼ w0ðtÞ due to a transient unit-impulse load,

ir ¼

Z h0

0

F0ðtÞdt ¼ 1:0 ½Nm�; h0 ¼ 10�6 s, (82)

acting within the time-interval 0ptph0 has been computed. The numerical results corresponding to different
degrees of rational approximation are shown in Fig. 5. Although there is no analytical solution available, it
can be seen, that the numerical solutions are approaching each other for increasing degree of approximation
M. The curves for M ¼ 7 and 8 cannot be distinguished in Fig. 5.

According to Section 3.2, Eq. (76), the coupled system consisting of Euler–Bernoulli beam with vanishing
Winkler foundation, b ¼ 0, and vertical spring k is described by the following fractional differential equation
in the time-domain:

kw0ðtÞ þ 2
ffiffiffi
2
p

EIC3=4½�1D3=2w0ðtÞ� ¼ F0ðtÞ; C ¼
rA

EI
. (83)

Eq. (83) has also been solved numerically for the unit-impulse load (82) using a specific time-stepping scheme
developed for fractional differential equations [27,26]. The resulting vertical displacement wðx ¼ 0; tÞ at the
point of excitation of the Euler–Bernoulli beam is compared to that of the Timoshenko beam in Fig. 6. It can
be seen that the Euler–Bernoulli model leads to bigger maximum and minimum displacements due to the unit-
impulse load. Moreover, a phase shift is visible in Fig. 6. However, the numerically obtained displacement
curves corresponding to the two different beam models are similar, despite the big differences with respect to
the dynamic stiffness.
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Fig. 5. Timoshenko beam supported by a single spring k ¼ 5:0� 108 ½N=m�. Vertical displacement wðx ¼ 0; tÞ due to unit-impulse load

(82). Time step: h ¼ 1:0� 10�7 s. M ¼ 5, M ¼ 7, M ¼ 8.
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5. Conclusions

Based on a derivation of the translational and rotational dynamic stiffness of both infinite Timoshenko and
Euler–Bernoulli beams on Winkler foundation in the frequency-domain, time-domain beam models have been
obtained using the mixed-variables technique in this paper. Here, special emphasis has been placed on the
high-frequency asymptotic behaviour of the respective dynamic stiffness formulations.

The use of Timoshenko’s beam model leads to an asymptotic behaviour in the frequency-domain which is
linear with respect to io. Thus, the corresponding expression in the time-domain is a first-order time-
derivative. The numerical solution in the time-domain can be obtained by classical time-solvers with local
properties. Contrary to Timoshenko’s model, Euler–Bernoulli’s beam theory generates rational powers of io
in the frequency-domain and consequently fractional derivatives in the time-domain with memory integrals
to be solved. Their evaluation asks for nonlocal time-solvers with much higher computational effort than
local solvers.

Considering the above computational benefits gained by including shear deformations in one-dimensional
dynamic elasticity problems, parallels to static one- or two-dimensional problems can be drawn. It is well-
known from mixed-methods in static finite element concepts [29] that shear deformations can be included not
only for mechanical reasons, but also in order to optimize the discretization in the space-domain.

Summarizing, the main message of this paper is that the physically more realistic Timoshenko beam model
offers additional numerical advantages when dealing with transient dynamic problems in unbounded
domains.
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