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Abstract

Uncertainty estimation is an important part of any measurement but is often neglected for complex valued or
multivariate data (e.g., vectors). This paper presents a methodology for estimating the uncertainty in multivariate
experimental data and applies it to the measurement of the frequency response function obtained when using a periodic
random input signal. This multivariate uncertainty method is an extension of classical uncertainty methods used for scalar
variables and tracks the correlation between all variates along with the sample variance instead of just tracking the
standard uncertainty. The method is used in this paper to propagate the sample covariance matrix from spectral density
estimates to the uncertainty in the frequency response function estimate for two different system models. In the first model
the case when only the output signal is corrupted by noise is considered, while in the second model both the input and
output signals are corrupted by uncorrelated noise sources. The results for the single-noise model are verified by comparing
them to published expressions in the literature, while the results for the two-noise model are verified by using a direct
computation of the statistics. Finally, the method is applied to experimental data from two microphone measurements
within an acoustic waveguide. The random uncertainty estimates in the frequency response function from the multivariate
method agree well with the results from a direct computation of the statistics.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Linear, time-invariant systems occur in many engineering applications and are completely characterized by
a frequency response function. Examples applications include digital and analog filters, and acoustic
impedance measurements. Measurements of the frequency response function are commonly performed to test
unknown systems and verify analytical models, but knowledge of the uncertainty in the estimated frequency
response function is also desirable, if not essential. The advent of inexpensive and powerful microprocessors
has made estimation of frequency response functions utilizing the fast Fourier transform algorithm routine.
Use of Gaussian random noise as input prompted research on the associated measurement uncertainty in the
frequency response function [1], spectral leakage [1,2], the development of specialized window functions [3],
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and the use of periodic input signals to eliminate leakage [4—7]. Where possible, the use of a periodic random
(or pseudo-random) noise input is acknowledged as the preferred approach to eliminate bias errors in the
frequency response function associated with spectral leakage, but the random errors associated with such an
input differ from those in the corresponding white noise input case. Indeed, modern spectrum analyzers now
incorporate these features but do not provide an estimate of the measurement uncertainty. The contribution of
this paper is to demonstrate a multivariate statistical methodology for estimating the random uncertainty in
the frequency response function estimate when using a periodic random noise input. Two different system
models are considered, one with noise only on the output signal and the other with uncorrelated noise on both
the input and output signals.

The multivariate uncertainty method is by no means the only method to estimate uncertainty in a complex
quantity. An alternative method is the complex statistics approach outlined in Refs. [4,5,8], which represents
the sample standard deviation of a complex number with a single real-valued number via the circular complex
random variable assumption. A circular complex random variable is a random variable of a complex quantity
with symmetrical normal distributions for the real and imaginary parts with the same variance [8]. Thus, the
confidence region is a circle in the complex plane [5]. The basis for this approach is that when the discrete
Fourier transform is used to transform data from the time to the frequency domain, the spectral lines have
asymptotic circular normal distributions. Hence, the single variance may be used because the correlation
between the real and imaginary part is zero.

In contrast, a multivariate uncertainty analysis treats the complex random variable as a bivariate normal
random variable that allows different values of variance for each variate and a covariance. The elimination of
the complex random variable assumption can result in an elliptical confidence region, but this flexibility comes
at the cost of increased mathematical complexity. The main advantages of the multivariate uncertainty
analysis are as follows. First, it is applicable to other higher-dimensional data, such as velocity vectors and
multiple-input, multiple-output systems. Second, it estimates the frequency response function uncertainty
within a framework based on linear perturbations similar to that given in the Guide to the Expression of
Uncertainty in Measurements published by the International Organization for Standardization [9]. Third, the
method is easily adapted to different frequency response function estimators and can be used to propagate the
frequency response function uncertainty through a subsequent data reduction equation without the circular
complex random variable assumption [§].

The outline of the paper is as follows. Section 2 contains a brief review of classical uncertainty analysis,
which sets the stage for a discussion of multivariate methods. The section also includes a simple demonstration
of the multivariate method by converting the uncertainty in real and imaginary parts of a complex variable to
magnitude and phase. In Section 3, expressions for the random uncertainty in the frequency response function
estimate when using a periodic random input for the two system models mentioned above are given to
differentiate between the effects of input and output noise on the uncertainty. The results for the single-noise
model are verified by comparing them to published expressions in the literature [1], while the results for the
two-noise model are verified by using a direct computation of the statistics. The multivariate uncertainty
method is then applied to data from an acoustic application that requires the measurement of the frequency
response function between two microphones.

2. Uncertainty analysis

Experimental data analysis consists of two parts: estimating the measured quantity and the corresponding
uncertainty. The estimate of the measured quantity, called the measurand, is an estimate of the true value of
the quantity. The uncertainty quantifies the estimated accuracy in terms of a confidence interval [10].

Many articles and books have been published outlining methods to estimate uncertainty in experimental
data. One of the first publications, by Kline and McClintock in 1953 [10], was revisited in 1983 by the ASME
Symposium on Uncertainty Analysis and published in the Transactions of the ASME in 1985 [11]. Currently,
the many texts available on the subject include the ISO Guide [8], the NIST Technical Note 1297 by Taylor and
Kuyatt [12], and Experimentation and Uncertainty Analysis for Engineers by Coleman and Steele [13]. All these
publications prescribe essentially the same procedure, which is summarized in the next section, but they vary
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slightly in the philosophy of the uncertainty source classification. In this paper, uncertainty sources are
classified as random and bias [10,11,13] as opposed to Type A and Type B [8,12].

The approaches to uncertainty analysis described in Refs. [8,10—13] are limited to scalar or real-valued data.
These methods do not apply to data that are multidimensional or multivariate. Multivariate data have
multiple, possibly correlated, components. Examples of multivariate data include measurements of vector
quantities and complex-valued data such as frequency response functions. Relevant examples using
multivariate uncertainty analysis that parallels classical work are presented in Refs. [14-17].

2.1. Classical uncertainty analysis

The classical uncertainty method described in Refs. [8,10—13] estimates the uncertainty associated with a
data reduction equation by using a first-order Taylor-series expansion. Thus, the uncertainties of the input
variables must be small enough such that they do not violate the local linear approximation. The uncertainty
propagation equation for the standard uncertainty or sample standard deviation, u,, is

=3 0 250 Y 0o, 0

i=1 i=1 j=itl

where u,, is the standard uncertainty or sample standard deviation of the ith input variable, u,,,, is the sample
covariance between the ith and jth input variables, and 0; = 0r/0x; is the sensitivity coefficient. The confidence
interval is estimated by multiplying u, by a coverage factor, k, that is a function of the distribution of the
variable and the confidence level desired. Methods for computing the coverage factor based on the ¢-
distribution are given in Refs. [8,12,13]. Moffat provides an extension to the above classical method by
eliminating the requirement of computing the derivatives analytically via numerical approximations [18].
Another subtlety in the classical method is that the underlying statistical distributions of the input variables
are not propagated in the analysis. Therefore, one must assume a form of the distribution in order to complete
the uncertainty analysis and estimate the confidence interval. Monte Carlo methods offer an alternative to
assuming a distribution but are computationally expensive [13]. In spite of these issues, classical uncertainty
analysis provides a way to estimate a confidence interval for experimental data and can be used before any
measurements are taken for experimental design purposes.

2.2. Multivariate uncertainty analysis

Multivariate uncertainty analysis extends classical methods to multivariate problems via systematic use of
the correlation between variates both in the input and output variables.

2.2.1. Fundamentals

Before outlining the procedure for multivariate uncertainty analysis, some general information is needed.
First, a multivariate problem with p variates will have p* uncertainty components, but not all the components
are independent due to the symmetry of the covariance matrix [19]. Thus, the covariance matrix will have only
p(p+1)/2 independent elements. The task of the multivariate uncertainty analysis is to propagate the
covariance matrix through the data reduction equation. The result is another covariance matrix that
represents the variation in the calculated output variables.

Complex-valued data can be thought of as bivariate because each variable has two parts. The two parts of
any complex variable can be represented in either real and imaginary or magnitude and phase forms. All
complex computations of the quantity in question and its uncertainty are performed with the real and
imaginary parts. The advantage is that the real and imaginary axes extend to infinity in both directions as
compared to the magnitude and phase axes, in which the magnitude is constrained to be a positive real
number, and the phase lies between —180° and + 180°. This forces the use of modular arithmetic for the polar
form that can influence the prediction of the uncertainty [16]. The rectangular form for the complex estimate
and uncertainty can be converted to polar form for final display as is customary for frequency response
function, but only the rectangular form of the estimate and uncertainty should be propagated.
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In addition to complex-valued variables, another difference compared to the classical method is that a
confidence interval is now extended to multidimensional space. For bivariate data, the confidence interval is
extended to a confidence area. The shape of the confidence area is a function of the uncertainty in each of the
variates and the correlation between them. For a multivariate normally distributed variable, the confidence
region is defined by first considering the probability statement [19]:

VeffD

Prob( (x = %)Ts I(x - x)g —F
(oo ne i

Fp,vcn\Jrlp,ac) =1-—a, (2)
where x is a vector representing the multivariate variable, X is the sample mean vector, s is the sample
covariance matrix, F,, . +1-p i8 the statistic of the F distribution with p, ve;r + 1 — p degrees of freedom and a
probability 1—a, a<1 is the level of significance, p is the number of variates, and v is the effective number of
degrees of freedom in the measurements. For a single random variable, the effective number of degrees of
freedom is the number of measurements less one. Otherwise, Willink and Hall discuss in detail how to estimate
the effective number of degrees of freedom [17]. The method estimates the effective degrees of freedom by
matching the generalized variances for all the input variates and reduces to the Welch—Satterhwaite method
for a univariate problem. The Welch-Satterhwaite is the method recommended to estimate the effective
number of degrees of freedom in Refs. [8,12].

Application of Eq. (2) for a complex variable results in a confidence region that is an ellipse. If xz and x; are
the real and imaginary parts of a complex variable, respectively, then the confidence region is given by
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where u,, and u,, are the sample standard deviations of xz and xj, respectively, and p is the correlation
coefficient, defined as
E[(xr — Xp)(x1 — X1)]
p= , “4)

Uy p Uy,

where E[] is the expectation operator. From Eq. (3), the simultaneous uncertainty bounds on the real and
imaginary parts are given by the projections of the ellipse onto the respective axis and the correlation
determines the orientation of the ellipse. For the case of no correlation, p = 0, the axes of the ellipse are
aligned with the real and imaginary axes. For the case of perfect correlation, p— + 1, the ellipse collapses to a
line. This is intuitive because, if the two variates are perfectly correlated, then only knowledge of one of them is
required to determine the other variable.

If the entire confidence region is not desired, the simultaneous confidence interval estimates of the
uncertainty for each variate can be computed from

U, = ku,, W)

where u, is the estimate of the sample standard deviation for the nth variate, and k is the coverage factor given
by

VeftP
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The F-distribution is necessary to accommodate the correlated multiple dimensions since the population
distribution is assumed to be a multivariate normal distribution [16,19]. For the remainder of this paper, the
coverage factor will be computed using two variates for complex data and the number of spectral records
minus one. Thus, the uncertainty reported for one of the variates would be x,+ U,, and a corresponding
expression can be written for each variate.

2.2.2. Multivariate uncertainty propagation
The task of the multivariate method for uncertainty analysis is to propagate the uncertainty estimates
through a data reduction equation. The difference between this and the classical method is that the
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multivariate method simultaneously computes the uncertainty estimates for each variate along with the
correlation between them, while the univariate approach only estimates the uncertainty for a single variable.
Consider a generalized data reduction equation of the form

T = r(;) (7)

where 7 is the real-valued vector of output variates, and x is the real-valued vector containing all input
variates. Note that any data reduction equation that has multiple input variables can be recast in the form of a
single input variable with multiple variates. The first step is to create a separate expression for each output
variate ry,...,r, and then form the Jacobian matrix

i arl 6r1 arl ]
6x1 axz pr
arz 672 6r2
or, or, or,
Ox; 0xp 0x,

where the subscript denotes the variate. The uncertainty propagation equation now takes the form [14-17]
S, = JstT, ©)

where s, is the sample covariance matrix for the output variable, and s, the sample covariance matrix for the
input variable. If Eq. (9) is used for a univariate output, the result identically matches the expression given in
Eq. (1) for the classical uncertainty analysis method. The limitations and remedies of the multivariate
uncertainty analysis are the same as those for the classical uncertainty analysis discussed above and include
linearization and numerical approximations.

2.3. Application: converting uncertainty from real and imaginary parts to magnitude and phase

The multivariate uncertainty method is now demonstrated for converting complex-valued data from real
and imaginary parts to magnitude and phase. For this example, the true mean value is Xy = 4 + j3 = 5el0-644,
and the population covariance matrix is

0.01  0.0021
: (10)

COoVv (Xtrue,R: xtrue,l) = |: 0.0021 0.0049

The population distribution is a bivariate normal distribution. The sample covariance matrix is estimated
from ten random data samples, and the uncertainty is propagated to the magnitude and phase by using
Eq. (9). Also, each of the ten data points are converted to a polar representation, and the output sample
covariance matrix of the magnitude and phase are calculated directly. The estimates of the output sample
covariance matrix are then compared to illustrate the effectiveness of both methods. To conclude the example,
the coverage factor is computed and the confidence region is plotted by using Eq. (3), along with a scatter plot
of the data.

The sample mean of the real and imaginary parts of the data are 4.01 and 3.04, respectively. The raw data
are plotted in Fig. 1 along with the sample mean value, the population mean value and the estimate of the 95%
confidence region around the sample mean value. The computed coverage factor from Eq. (6) is 3.08. Note
that the major and minor ellipse axes are not parallel to the respective coordinate axes due to the correlation
between the two variates. The figure shows that the estimated confidence region contains the true value of the
population mean.
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Fig. 1. A plot of the raw data and estimates for a randomly generated complex variable. +, Data points, [, estimated mean value,
O, true value, , 95% confidence region.

Now that the sample covariance matrix and the uncertainty region are computed and verified for the real
and imaginary parts, the uncertainty can also be propagated to the magnitude and phase. The Jacobian matrix
becomes

g Oxg  ox; | | Var+xT VXR+ g an
T lo(Lx) o(Lx)| T X7 XR :
Oxg Ox; Xp+X] xR+

The Jacobian matrix, evaluated at the sample mean values, and Eq. (9) is used to propagate the standard
uncertainty. The sample covariance matrix computed from Eq. (9) is

0783  —0.0322 B
} 0 (12)

S. P o =
polar.propagated [—0.0322 0.0130
and the sample covariance matrix computed directly from the 10 sample data points in polar form is

0.782 —0.0335] 3
0

13
—0.0335 0.0130 (13

Spolar,direct = |:

The element (1,1) in Egs. (12) and (13) represents the variance in the magnitude, and element (2,2)
represents the variance in the phase. The off-diagonal element gives the covariance between the magnitude and
phase. The difference between any two corresponding elements in the two estimates for the sample covariance
matrix is less than 5%. The data, the mean values, and the uncertainty estimates are shown in Fig. 2, where
again the true value is contained within the confidence region. The computed coverage factor from Eq. (6) that
was applied to the estimates of the standard uncertainty to compute the 95% confidence estimates is 3.08. The
estimated values for the magnitude and phase with uncertainties are |¥| = 5.03 +0.09 and /X = 0.648+
0.011 [rad]. This simple example demonstrates the usefulness of the multivariate uncertainty analysis and
provides some insight concerning the terms and concepts described above.

This example demonstrated how the correlation between the uncertainty in the real and imaginary
components propagated to yield correlated uncertainties in the magnitude and phase. In many applications,
including the estimation of spectral density functions, the uncertainty in the magnitude and phase are assumed
to be uncorrelated. However, this is not always the case, particularly at low signal-to-noise ratios. In any case,
care should be taken when propagating the uncertainty. The uncertainty should only be propagated in
rectangular form, and the uncertainties in the magnitude and phase should only be used for final display
purposes.
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Fig. 2. A plot of the raw data and estimates in polar form for a randomly generated complex variable. +, Data points, [, estimated mean
value, O, true value, ——, 95% confidence region.

3. Frequency response function estimates

The frequency response function is ubiquitous in engineering systems, yet the measurement and estimation
of its uncertainty is nontrivial. There are many factors to consider when measuring and estimating a
nonparametric frequency response function, such as the analog-to-digital sampling settings, the fast Fourier
transform settings, the assumption of a system model describing the way noise enters the signals, etc. Previous
researchers have studied techniques for reducing the error in the frequency response function but few have
studied the uncertainty in the final estimate. Bendat and Piersol [1], Schmidt [2] and Pintelon et al. [6] have
derived expressions for the uncertainty in the frequency response function for some cases. This paper,
however, provides a systematic framework involving periodic deterministic inputs and propagation of the
resulting uncertainty to derived quantities. The random uncertainty for two system models and the data
reduction equations for estimating the frequency response function are analyzed by using a multivariate
uncertainty analysis framework. The first model is a single-input/single-output system with Gaussian noise
added only to the output signal, which is relevant for system identification applications involving a noise-free
input signal and a (perhaps) noisy output sensor signal. The expressions derived by the multivariate method
are compared to the results given in Bendat and Piersol [1]. The second model is another single-input/single-
output system, but uncorrelated Gaussian noise signals are added to both the input and output signals. This
system model is representative of the case in which the frequency response function is estimated between two
microphones such as in the two microphone method used to measure acoustic impedance in an acoustic plane
wave tube. The measured “noise” signals without any excitation are typically uncorrelated in this scenario.
The results of this case are compared to numerical simulations designed to verify the derived uncertainty
expressions.

The systems studied in this paper are assumed to be excited by a periodic random input signal. This type of
signal, which is standard in most modern spectrum analyzers, is tailored to the parameters chosen for the
spectral analysis and designed to prevent spectral leakage. An example of this type is called pseudo-random
noise [20]. This signal is actually deterministic and consists of a finite summation of discrete sine waves at the
frequencies in the spectral analysis, but each component has a random, uniformly distributed phase angle. The
probability density function for the pseudo-random signal approaches a Gaussian distribution as the number
of components is increased. In practice, the distribution can be approximated as Gaussian if 400 or more
discrete sine waves are used. The periodicity of the input signal prevents any bias error in the estimated
spectrum due to spectral leakage when a uniform or boxcar window is used of duration equal to one period of
the excitation signal; thus the remainder of this paper assumes that there is no bias uncertainty due to leakage
in the spectral estimates.
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3.1. Output noise only system model

The first system model is illustrated in Fig. 3, where x is the pseudo-random input signal, v is the noise-free
output of the system, n is a zero-mean, Gaussian noise signal, y is the measured output, H(f) is the frequency
response function of the linear system, and f is the frequency. For this case, the noise signal models all
measurement noise and also includes the response to unmodeled system inputs. This model is appropriate for
linear systems where noise in the input signal is negligible, such as when an input signal is from a function
generator in, for example, system identification and open-loop control system applications. This is because
many function generators have a dynamic range approximately 40 dB higher than a typical signal analyzer.

The time-domain output signal is the sum of the noise-free output signal, v(¢), which is periodic because the
system is at steady state, and a stationary noise signal, n(?),

¥(1) = v(t) + n(t) = h(t)*x(£) + n(z), (14)
where ¢ is time, A(#) is the impulse response function, and “*”” denotes the convolution. Let N(f;, T) denote the
discrete Fourier transform of 7" seconds of the noise signal sampled at f; samples per second, where f, = k/T
denotes the discrete frequencies. Also, note that X(fy, T), V(fx, T), and Y(fs, T) are defined similarly, although
V(fr, T) cannot be computed since v(z) is not available. Because of the periodic nature of the noise-free output
at steady state, the discrete Fourier transform of exactly one period (7 seconds) gives

Y(fT) = V(I T) + N[ T) = HE)X (0 T) + N (10 T) (1s)

if there was no aliasing in the sampling process. Here, H(f}) is the system frequency response function, i.e. the
Fourier transform of the system impulse response, /(f), evaluated at f;. Each period in the response time
history yields a sample record of the ensemble used to estimate the auto- and cross-spectral density functions
[1]. Note that Bendat and Piersol in Ref. [1] use N(f) to denote the Fourier transform of 7 seconds of n().

Eq. (15) and the Fourier transform of the input signal, X(f;, T), are substituted into the definitions of the
auto- and cross-spectrum density functions [1]. In the analysis, the following well known statistical results are
used. Consider two random variables 4 and B, then

var[d] = E[ 4| - E[4)" = E[ 4] - & (16)

and

cov[4, B] = E[AB] — AB. (17)

Note that the noise signal, n(¢), is the only random variable and is uncorrelated with the input, x(¢), and the
noise-free output, v(¢). Also, the real and imaginary parts of the scaled discrete Fourier transforms of 7T
seconds of n(¢), Ng and Ny, respectively, are uncorrelated:

E[NgN;]1=0 (18)
and from Ref. [1, Section 9.1]
E[N%] = E[N}] = G) G, (19)

where G,, is the one-sided power spectral density of the noise signal. Using the same notation as

X

Bendat and Piersol [1], the smoothed estimate, G,,, of G,, is generated from an ensemble average

X ———» H(f) y

Fig. 3. System model with output noise only.
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of n. independent sample records. The resulting sample covariance matrix between the spectral compo-

nents is

Er0) =

anC

0 0 0
- ()¢ 2\G ¢ 2\ G0
o (yx}f) yy (1 - ny) ny ny (1 - yxy) nyQxy
Nrec Nrec Mrec
2 \A A
( Vg ) Gy Cy (1 - ny) GuxGyy 0
Rrec 2rec
( yg}) nychy 0 ( yxy) GYXGH

2anC

, (20)

where f;i}, = |CAr’xy|2 / (Gxx ny) is the estimate of the ordinary coherence function, Gxx and ny are the smoothed

estimates of the power spectral densities of the input and output signals, respectively, and CA'X}, and Qxy are the

estimates of the co- and quad-spectral densities. The cross-spectral density, éxy, is given by ny = C'xy + jQxy.
A convenient feature of this model is that the sample covariance matrix can be estimated from just the
measurement of the input signal and the output signal. Note that because the excitation signal is deterministic
and periodic, there is no variation in the power spectral density of either the input or the noise-free output.
This is reflected by the row and column of zeros in Eq. (20). The other two zeros in the sample covariance
matrix show that the co- and quad- spectral densities are also uncorrelated to each other. The remaining
nonzero elements quantify the variance, if on the diagonal, and the covariance, if off the diagonal.

The uncertainty in the frequency response function is found by using a multivariate method to propagate
the uncertainty from the spectral estimates given in Eq. (20) to the frequency response function estimator. The
unbiased estimator of the frequency response function for this system model is [1,21]

NS
H =22 21
GXX
or using real and imaginary forms that are more convenient for the multivariate method
H Cy/G,
S N (22)
Hy; 0./ Gy
With the data reduction equation defined, the Jacobian matrix becomes
aHlR aHlR aHlR aHlR _ny 0 1 0
~D ~
0Gxx 0G,, 0Cy, 00, G.. Gx
Ju, = O0H,; 0OH,, 0H; OJH |~ Qx}, 1 @)
0Gxxy 0G,, 0Cy, 00, _Gz G

Thus, the sample covariance matrix for the estimate of the frequency response function is given by Eq. (9):

~2 ~
(1 m) Gy 0
A A 2Nrec éxx
S(Hl,RsHl,I) = 2 R (24)
0 (1 _ ny) Gyy
2Mrec éxx

Eq. (24) gives the standard uncertainty that is used to propagate the uncertainty in the frequency response
function through any subsequent data reduction equation. Using Egs. (9) and (11) and simplifying gives the
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polar form of the uncertainty

(=) 40
~——%|H 0
" R 2nrec y?x}x | :
s(|Hi|, 2H,) = (1 2 ) (25)
0 ~
2Mrec Viy

The square root of the diagonal terms in Eq. (25) exactly match those given in Table 9.6 in Bendat and Piersol
[1], thus validating the multivariate technique used to derive those expressions. This approach is extended in
the next section to a more complex system model where expressions for the uncertainty are not available in the
literature.

Eq. (25) shows that the uncertainty in the frequency response function is related to the number of spectral
averages, the ordinary coherence function, and the magnitude of the frequency response function itself.
Increasing the value of the ordinary coherence function will lower the standard uncertainty in the frequency
response function. This can be accomplished by designing the measurement to reduce any nonlinearities and
noise sources. Increasing the number of averages will also decrease the sample covariance matrix but only
reduces the standard uncertainties as o< 1/ /7iec.

3.2. Uncorrelated input/output noise system model

The second model, with uncorrelated noise added to the input and output signals, is shown in Fig. 4. An
example of such a system is the measurement of the mechanical impedance or admittance of a structure. Here,
where u is the pseudo-random input signal, v is the noise-free output of the system, m and n are uncorrelated,
zero-mean, Gaussian noise signals, x is the measured input signal, y is the measured output signal, and H(f) is
the frequency response function of the system. Again, the noise signals account for measurement noise and
unmodeled dynamics. This model is appropriate for systems in which an input signal is supplied to an actuator
that excites the system, and the outputs of the actuator (instead of the function generator) and the system are
both measured.

The measured noise corrupted input signal is

x(1) = u(t) + m(1), (26)

where u(t) is a periodic-random excitation signal with period 7. Using the notation described earlier, Eq. (26)
can be transformed to the frequency domain yielding

X(fo.T) = U(f. T) + M(f,. T). 27)
As in the first case,
(&) = v(0) + n(t) = h(t)*u(?) + (1) (28)
and, due to the periodic nature of the excitation
Y(f.T) = V([ T) + N(fi T) = H(f,. T)U(f. T) + N(f,.. 7). (29)
n
u Hf) y
m x

Fig. 4. System model of a system with uncorrelated input/output noise.
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Denote the real and imaginary parts of M(f;, T) and N(fi, T) as My and M;and N and Ny, respectively. The
expressions for the random uncertainty and the variance are derived in a similar manner as before. One
important note for this case is the assumption of uncorrelated noise sources. Since m and n are assumed to be
uncorrelated, the cross-spectral density function between them is identically zero. This fact is used to simplify
the variance and covariance expressions along with the expressions for the expectations of two zero-mean,
Gaussian signals given in Eqgs. (18) and (19), with corresponding version for m, and with

EIM&Nx] = EIM/N] = (f) Com = 0 (30)

and
EUM RN =~ EUM N8 = () O = 61

all provided in Section 9.1 of [1], where Cypm and an are the co- and quad-spectral density of the two noise
signals. The simplified result for the estimate of the sample covariance matrix is

Gmm (2Gxx - Gmm) 0 Gmm ny Gmm Q\}
n n n
. G (260 = Gu) Gl GO
s(GW, Gy, Cyy, QU) = o o n n , (32)
Gmm C\cy Gnn ny K 0
n n 2n
Gmm Qxy Gnn Qxy 0 £
L n n 2n

where y = Cfinnéxx + (A?mméyy — Gmm@nn, Gmm is an estimate of the power spectral density of the input noise
signal, and G, is an estimate of the power spectral density of the output noise signal. The zero elements
(1,2) and (2,1) in Eq. (32) show that the estimates of the power spectral density for the input signal and
output signal are uncorrelated, a consequence of the deterministic nature of x(¢). Similarly, the zero elements
(3,4) and (4, 3) in Eq. (32) show that the co- and quad-spectral densities are again uncorrelated. Note that
this system is not completely characterized by measurements of just the input and output signals, because
estimates of Gmm and G,m are also required to calculate the sample covariance matrix. In practice, these can be
estimated by either measuring the input and output signals when the source is turned off, thus setting u = 0, or
by using application-specific noise models. With no input signal, the measured quantities arise solely due to
the noise. Inherent to this approach is the assumption that the addition of the input signal does not change the
estimates of the noise power spectra. The covariance matrix due to the random uncertainty can also be
accurately estimated from computing the statistics directly from repeated measurements of the spectral density
functions. This approach will account for any changes in the amplitudes of the noise signals due to the
presence of the excitation signal. The drawback to this approach is the requirement to obtain and store each
spectral quantity needed to compute the covariance matrix; these are not normally supplied by signal
analyzers.

To propagate the uncertainty to the frequency response function, a form of the frequency response function
must be chosen. The estimator for the frequency response function used in the remainder of this paper is H3,
defined as [21]

(33)
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This definition of the frequency response function estimator is one of the popular choices in the ISO standard
for the two-microphone method for acoustic impedance testing [22]. Substituting in the definitions for the

spectral densities, Eq. (33) becomes
2 1 Gnn va
Ay = H, | 1+ G/ G (34)
1 + Gmm/Guu

Eq. (34) shows that H; is biased, but if the input and output noise-to-signal ratios are either both small or
non-negligible but the same order of magnitude, these biases tend to cancel each other, providing a better
estimate of the frequency response function in the case with two uncorrelated noise sources [21]. Other
estimators for the frequency response function are available as described in Refs. [5,21,23], each with its own
advantages and disadvantages. The specific choice will depend on the requirements of the measurement and
the ultimate final use of the data.

The resulting form of Hj for the multivariate uncertainty analysis is

G,y )
TCW
] | \NG(Cu+0y)
= A (35)
Hj; G, .
N ~2 ~ Qxy
Gur(C+04)
The Jacobian matrix for Hj is
_ _ . _ "2 ..
e &, Gy 0y _ [6,C00,
G 26, |Gy, Guc|G, : Gox |G, :
Ju, = . . — . , (36)
_ Gy Oy yy WQ‘C} G_ ny
= T A & A 3 -
Grx 2G| Gy Gex |G, VGulg,,

where |ny| =4/ C‘iy + in From Eq. (36) it can be seen that the uncertainty in Hs scales with \/(A?y, / G
Thus, the uncertainty increases at resonance where the output is large for a small input. The opposite may
appear to be true at an anti-resonance, in this case the output signal is low, and this measurement condition is
often dominated by noise.

The Jacobian matrix in Eq. (36) and the sample covariance matrix in Eq. (32) are cumbersome and do not
result in a compact analytical expression. A suitable option is to evaluate each term numerically and then use
matrix multiplication as required by Eq. (9). The 95% simultaneous confidence intervals for each variate are
then estimated by taking the square root of the diagonal element and multiplying by the coverage factor
computed from Eq. (6), with two variates and the correct effective number of degrees of freedom.

A numerical simulation is performed to verify the expressions derived in this section. A normalized two
degree of freedom system model is chosen for the numerical simulations to represent a system with a known
frequency response function. The model of the frequency response function is

L= (f/1) +i20(f /1)
(1= (i) + 20162 ) (1= (F11:) +26(7113))

where fis the frequency, f> and f; are the undamped natural frequencies with corresponding damping ratios, {5,
and (3, respectively. Similarly, a trough in the magnitude of the frequency response function is modeled via an
undamped anti-resonance f; with a damping ratio {;. The values of the parameters chosen for the simulations
are f{ = 20Hz, f5> = 10Hz, f3 = 30Hz, {; = 0.05, {, = 0.2, and {3 = 0.05, as a matter of convenience. The
spectral analysis is performed with 1000 sample records of data with 1024 samples each, and the Nyquist

H =

(37)
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frequency is set to 128 Hz. The pseudo-random noise signal is constructed as the summation of 512 sine wave
components with frequencies at multiplies of 0.25 Hz. The DC component was set to zero. Each sine wave
component has unit amplitude and the power in the input noise signal is 2.56 x 10~ units squared and the
power in the output noise signals is 2.5 x 107> units squared. The overall signal-to-noise ratio is thus 40 dB for
the input signal, x, and is 45dB for the output signal, y. A uniform window with no overlap is used for the
spectral analysis.

The procedure of the simulation is as follows. First, one block (period) of the noise-free pseudo-random
noise signal is generated. One period of the steady-state (periodic) response is generated by scaling the Fourier
series coefficients of the input signal by the frequency response function’s value at the frequency of the Fourier
series component. Independent, zero-mean, Gaussian noise signals were added to both noise-free signals in the
time domain. The spectral quantities are then computed and Hj is estimated by using Eq. (35). This procedure
is repeated for each of the 1000 sample records. Finally, the uncertainties are computed by using the results of
this section via the multivariate method, as well as directly from the statistics of the 1000 sample records.

The estimated frequency response function from the simulation is shown in Fig. 5. The results for this
simulation are limited to the frequency range of 0—60 Hz to avoid the bias error described in Eq. (34). The
modeled system attenuates the output signal at higher frequencies, thus the signal-to-noise ratio of the output
signal will decrease because the power in the noise signal is assumed to be constant across all frequencies. By
limiting the results to 60 Hz, the bias error in the estimated frequency response function is less than 0.15%.
The uncertainty estimates are not shown in Fig. 5 for clarity but are plotted in Fig. 6, the results from both the
multivariate method and the statistics calculated from the simulations are shown. The distribution of the 1000
raw averages is a bivariate normal distribution, thus the confidence region is assumed to be symmetric and is
computed by estimating the sample covariance matrix and applying the coverage factor to the square root of
the diagonal elements. The value of the 95% coverage factor is 2.45 and is computed from Eq. (6). The results
of using the two methods to estimate the uncertainty are essentially indistinguishable in Fig. 6. The largest
difference between the two uncertainty methods is 5% for the magnitude and 1.1 x 1072 degrees for the phase
and the average difference is 1.5% for the magnitude and 1.3 x 10~ degrees for the phase. The true value of
the frequency response function falls outside the uncertainty range at only 5 frequency bins for the magnitude
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Fig. 5. Bode plot of the true frequency response function and the experimental estimate. , Frequency response function estimate,
— —, true frequency response function. The true and estimated frequency response function are indistinguishable.
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Fig. 6. Magnitude and phase plot of the uncertainty estimates.
to estimate the uncertainty are essentially indistinguishable.

, Multivariate method, — —, direct computation. The two methods

and only 7 frequency bins for the phase. Under the assumption that for a linear system, each frequency bin is
independent, the estimated value of the frequency response function is consistent with a 95% confidence
interval.

The plot of the uncertainty estimates shows that the maximum uncertainty in the magnitude is at the
resonance frequencies, and the minimum is at the anti-resonance frequency. The maximum uncertainty in
the phase of the frequency response function is at the anti-resonance. At least one of the signals from the
transducers used to measure the input and output from the system may be noisy near a peak (system
resonance) or a trough (system anti-resonance) in the magnitude of the frequency response function. From
Fig. 6, it can also be seen the uncertainty in the phase angle continues to increase as the frequency is increased.
This reveals that at high frequencies the uncertainty in the phase angle may be dominant and may determine
the accuracy and number of spectral averages needed to obtain the desired uncertainty in the frequency
response function estimate.

4. Application: measurement of the frequency response function between two microphones in a waveguide

The multivariate uncertainty method is now demonstrated on actual experimental data in an important
acoustic application. The two-microphone method is the standard technique for measuring the specific
acoustic impedance of a material specimen [22,24]. This method uses a waveguide with a compression driver
mounted at one end, while the specimen is mounted at the other end. Two microphones are flush mounted to
the side of the waveguide at two different axial locations. The compression driver is typically excited with a
broadband signal, such as a pseudo-random noise signal, to produce plane traveling waves within the
waveguide over a limited frequency range. The incident waves reflect off the specimen mounted at the end and
create a standing wave pattern. The frequency response function is measured between the two microphones
and a data reduction equation is then used to compute the acoustic properties of the specimen from the
frequency response function and a few other measurements, such as the temperature and the locations of the
microphones. To estimate the uncertainty in the computed acoustic properties, such as the complex-valued
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reflection coefficient, the uncertainty in the frequency response function must first be known. In this section,
the uncertainty will be estimated by using the multivariate method and via direct computation of the statistics
of the results of several repeats of the experiment.

The two measured acoustic signals are assumed to be corrupted by uncorrelated Gaussian noise. One of the
microphones is assigned to be the input signal, and the other is assigned to be the output signal. Therefore,
both the input and output signals contain noise, and the appropriate system model is that shown in Fig. 4.

The measurement of the frequency response function is subject to random and bias errors, the latter of
which is primarily due to calibration errors in the two measurement channels when a periodic excitation signal
is used. To remove this bias, measurements are taken in the original and switched positions [22,23]. The

. . . ~0 . . .
original frequency response function estimate, H , and the switched frequency response function estimate,

H, are geometrically averaged to remove the calibration bias, resulting in

(38)
An appropriate form of the real and imaginary part of A for the multivariate method is
( A% + (A 2)1/4
E i;Z E :;2 N -
CRG)
" (Ao)z ~o\2\ V4 ’ %
( x) + (7)) )
(i)
Hy) +(H; >
where _ _
taanfl(l:llo/lflg) —tanfl(flf/l:l}z) | @)

2

The uncertainty in H can be estimated by calculating the uncertainty in the original and switched estimates

and then propagating the result to H using the multivariate method. The input sample covariance matrix is
formed by applying Eqgs. (32) and (36) to each of the frequency response function in the original, S0, and

switched positions, s 55> to form their respective sample covariance matrices as outlined in Section 3.2. The two
sample covariance matrices are formed into a single input covariance matrix as

S.o 0
H
Sy = N (41)
H [ 0 SI_A[S‘|
where 0 is the zero matrix. The Jacobian for Eq. (39) is
i A 0|1/2 A 0|1/2
A A H ‘ As H ‘ A4
o132 5112 o132 5112 520 520k
ZHO‘ HS‘ 2H0’ HS‘ 2| &° 2HS‘
T = o2 o | (42)
Ar Asp H ‘ Ara H ‘ Aoy
o132 A2 o132 5112 5202 520
H0’ HS’ H0’ HS’ i 2 HS‘
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where 18°) =\ (A2)"+ (7)1 = [ (#3) + (1]) . and
Ary = 0% cos(0) + A7 sin(0), Ay = —A cos(0) + A% sin(0),
Ap = I—AI,O cos(0) — I:Iz sin(0), Az = I:IIO2 cos(0) + I:IIO sin(0),
Ars = —Hy cos(0) — ; sin(0),  Ass = A cos(0) — Ay sin(0),
Ara = —H cos(0) + Hy sin(0), Ass = —H'y cos(0) — H; sin(0).

(43)

The waveguide used in this experiment has a cross-section of 2.54cm x 2.54cm and a usable frequency
range of 0.5-6.7kHz. The acoustic pressure signals are measured using two Briiel and Kjer Type 4138
microphones and a Briiel and Kjer Pulse Analyzer data acquisition system with a 16-bit analog-to-digital
converter and 24-bit digital-to-analog converter. The two microphone signals were sampled at a rate of 16,384
samples per second. Each record used in the spectral estimation is of duration 0.125 s (2048 points), and a total
of 100 records (204,800 data points) were used in the estimation. A periodic pseudo-random excitation signal
is generated by the Pulse system and amplified with a Techron Model 7540 power amplifier before application
to the BMS H4590P compression driver. The microphones are calibrated with a Briiel and Kjar Type 4228
Pistonphone. The microphone that is initially mounted furthest from the specimen is considered the reference
signal and is denoted the input signal, x. The excitation signal is then applied, and the amplifier gain is
adjusted such that the sound pressure level at the reference microphone is approximately 120 dB (reference
20 uPa) for each frequency bin. Then the full-scale voltage on the two measurement channels of the Pulse
system is adjusted to maximize the dynamic range of the data system. The excitation signal is turned off and
the microphone signals are used to estimate the noise spectra. The excitation signal is turned on and the two
microphone signals are recorded with the microphones in their original positions and switched positions.
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Fig. 7. The experimentally measured averaged frequency response function between the two microphones.
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Fig. 8. Comparison for the uncertainty estimated by the multivariate method and by the direct statistics. — —, Direct statistics,

, multivariate method. The two methods to estimate the uncertainty are essentially indistinguishable.

The time-series data are used to compute the power spectra and the cross-spectra between the two
microphones for the original position and switched positions. The spectra are used to compute H3 by using
Eq. (35) and the sample covariance matrices using Eq. (36). The computed frequency response function is
shown in Fig. 7. The uncertainty in the spectral estimates is propagated to the magnitude and phase of the
averaged frequency response function via the multivariate method by using Eq. (9) with Eqgs. (41) and (42).
The value of the 95% coverage factor for the averaged frequency response function is 2.50 and is computed
from Eq. (6) using n,..—1 degrees of freedom, and the confidence intervals are computed from Eq. (5). Then
the 100 sample estimates of the frequency response function are used to compute the sample covariance matrix
between the magnitude and phase. The estimates of the uncertainty in the magnitude and phase are shown in
Fig. 8. The uncertainty estimates agree well with each other except for at 1.65, 2.70, and 4.90 kHz, where one
of the microphone locations corresponds to a node in the standing wave pattern. When this occurs, one of the
microphones is measuring a small acoustic pressure, and the signal is dominated by the measurement noise.
The value of the frequency response function will theoretically tend towards zero if the output microphone is
at the node or will tend towards infinity if the input microphone is at the node. In both cases, the uncertainty
in the frequency response function becomes large. The average difference between the two estimates of the
simultaneous confidence intervals is 10% for the magnitude and 11% for the phase angle, and the maximum
difference is 0.04 for the magnitude and 0.05° for the phase angle. Given the small number of records, these
differences are deemed small enough to validate the multivariate uncertainty analysis.

5. Conclusions

An experimental measurement consists of two parts, an estimate of the measured quantity and an estimate
of the uncertainty. The uncertainty allows users to determine whether or not the estimate is accurate enough
for their needs. Classical methods for uncertainty analysis are restricted to scalar quantities and are not
applicable to complex-valued frequency response function estimates, an important quantity in linear, time-
invariant dynamic systems. The multivariate method extends the techniques of the classical method to
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problems with any number of variates or dimensions. This paper applies the multivariate method to the
nonparametric measurement of the frequency response function of a linear system. Two system models were
considered, one with only noise in the output signal and the other with uncorrelated noise sources in both the
input and output signals. The sample covariance matrices were derived for both cases for the spectral density
estimates. The results showed that, in the first model, all required information is contained in the measurement
of the input and output signals, while for the second model an extra measurement was required to estimate
the power spectra of the two noise signals. The sample covariance matrices were then propagated to the
magnitude and phase of the frequency response function. For the first model, the derived expressions for the
uncertainty in the frequency response function were identical to published expressions in Bendat and Piersol
[1, Table 9.6]. The second model was verified by numerical simulations, which showed that the multivariate
method yielded uncertainty estimates consistent with the direct computation of the statistics from the sample
records.

Finally, this paper demonstrated the multivariate method on real experimental data involving the frequency
response estimation between two microphones in an acoustic waveguide. The estimate of the uncertainty by
the multivariate method yielded consistent results with the direct computation of the statistics from the sample
records. The results demonstrate that the multivariate method can be applied to experimental data that are
multivariate in nature and provide reliable estimates of measurement uncertainty.
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