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Abstract

This paper puts forward a practical method for detecting multiple cracks on beams by utilizing transient vibration data.

To explicitly address the uncertainty that is induced by measurement noise and modeling error, the Bayesian statistical

framework is followed in the proposed crack detection method, which consists of two stages. In the first stage the number

of cracks is identified by a computationally efficient algorithm that utilizes the Bayesian model class selection method. In

the second stage, the posterior probability density function (PDF) of crack characteristics (i.e., the crack locations and

crack depths) are determined by the Bayesian model updating method. The feasibility of the proposed methodology is

experimentally demonstrated using a cantilever beam with one and two artificial cracks with depths between 0% and 50%

of the beam height. The experimental data consists of transient vibration time histories that are collected at a single

location using a laser Doppler vibrometer measurement system and impact excitations at three locations along the beam.

The results show that the two-stage procedure enables the identification of the correct number of cracks and corresponding

locations and extents, together with the coefficient of variation (COV).

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The safety of structures, such as buildings and bridges, and their structural components, such as beams,
columns, slabs, and canopies, are of serious public concern in all developed countries. Reliable and efficient
structural damage detection methods are of primary importance in addressing such public concern.

Changes in dynamic characteristics have frequently been employed as a means of structural damage
detection. A comprehensive review of recent developments can be found in Ref. [1]. Due to advances in sensor
technologies, inspection devices such as laser Doppler vibrometers and shearographs have been developed to
enable the measurement of accurate dynamic structural responses. However, the development of
methodologies and algorithms to extract useful information from the measured data for structural damage
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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detection is still immature. The goal of this paper is to make a seminal contribution in this area by developing
a practical and reliable methodology for detecting cracks on structural members and verify it experimentally.

Many researchers have studied the use of dynamic measurement in crack detection on structural members.
For detecting the existence of cracks and the corresponding locations, a non-model based approach, which
relies on the measured responses of the undamaged (healthy) and possibly damaged structural member, is
commonly used (e.g. Ref. [2]). However, a model-based approach, which involves modeling the structural
members, has to be adopted if the crack extent (depth) is to be quantified.

To study the feasibility of the model-based approach, the majority of methods were focusing on single crack
situations [3–8]. To extend the approach to a multi-crack situation, Ostachowicz and Krawczuk [9] studied the
forward problem of a beam structure with two cracks in 1991. They expressed the changes in modal
parameters as a function of crack locations and extents. In 1993, Hu and Liang [10] combined two
different models to identify multiple cracks. One of the models involved the use of massless springs with
infinitesimal lengths to represent the local flexibility introduced by a crack; and the other model incorporated
the effective stress concept in continuum damage mechanics and Hamilton’s principle. In 2005, Law and Lu
[11] proposed to use measured time-domain responses in detecting multi-cracks on a beam structure through
optimization algorithms. All of the abovementioned crack detection methods are only applicable in single-
crack situations or when the number of cracks is known in advance, which is normally not possible in real
situations.

The proposed crack detection methodology addresses this difficulty by dividing the process into two stages.
The number of cracks is identified in the first stage, and the crack characteristics are identified in the second
stage. The proposed methodology focuses on cases in which cracks are obstructed and therefore the vibration
data at and near to the damaged region cannot be obtained. Furthermore, the proposed methodology is
applicable even when the measurement of the undamaged (reference) structure is not available.

Due to the problem of ‘‘incomplete’’ measurement and measurement noise, the results of crack detection,
such as the identified crack locations and depths, are uncertain. In the proposed methodology, these
uncertainties are explicitly treated by the Bayesian statistical framework. Consequently, the proposed
methodology not only calculates the crack locations and extents, but also the corresponding confidence level,
providing engineers with valuable information to make informed judgments on remedial work.

For a crack detection method to be practical and efficient, it must be applicable with a small number of
sensors. Otherwise, the equipment installation time and cost will seriously affect the applicability of the
method. A particular advantage of the proposed methodology is that only one sensor is required, and the
experimental verification result shows that enough information can be extracted from impacts at three
locations along the structural member in the cases considered. It must be pointed out that the single sensor
and multiple excitation technique is a practical measurement system for frame and truss structures in civil and
mechanical applications (e.g., cranes and draglines) [2].

This paper consists of two main parts: the theoretical development of the methodology and the experimental
case studies. In the first part (Section 2), the analytical beam model, the method for detecting the number of
cracks (stage one of the proposed methodology), and the method for identifying the crack characteristics
(stage two) are described. The second part (Section 3) presents the results of a series of comprehensive
experimental case studies in demonstrating the proposed crack detection methodology. Conclusions are drawn
in Section 4.
2. Methodology and background theories

In the first sub-section, details of the modeling of the cracked beam with semi-rigid connection and its
parameterization are addressed. In the second sub-section, the main problem of identifying the number of
cracks following a model-based approach is discussed. That is followed by the first stage of the proposed crack
detection methodology, namely the determination of the number of cracks, which relies on a computationally
efficient algorithm and the Bayesian model class selection method. In the last sub-section, the second stage of
the proposed methodology, which aims in identifying the crack locations and extents following the Bayesian
model updating method, is briefly reviewed.
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2.1. Modeling of semi-rigidly connected cantilever beam with multiple cracks

Fig. 1 shows a model of a cantilever beam with NC cracks. The beam is divided into NC+1 segments, each
with length li, for i ¼ 1, y, NC+1, where

PNCþ1
i¼1 li ¼ L. Each segment is modeled as an Euler–Bernoulli beam

with the equation of motion for vibration under an arbitrary force P(t) as

EI
q4yðx; tÞ
qx4

þ m̄
q2yðx; tÞ

qt2
¼ PðtÞ, (1)

where EI is the flexural rigidity, m̄ is the mass per unit length, and y is the transverse deflection of the
beam, which is a function of the position x along the beam and time t. By using separation of variables y(x,
t) ¼ f(x)z(t), the displacement y(x, t) is described as the product of the modal function z(t) and the mode shape
function f(x). The general solution of the mode shape functions fi(xi) for the ith segment can be expressed as

fiðxiÞ ¼ Cisin ðbxiÞ þDisinh ðbxiÞ þ Eicos ðbxiÞ þ F icosh ðbxiÞ for i ¼ 1; . . . ;NC þ 1, (2)

where b4 ¼ o2m̄=EI ; o is the angular natural frequency of the system in radians per second, and Ci, Di, Ei, and
Fi are unknown coefficients to be calculated from the boundary and continuity conditions. The boundary
conditions at the fixed and free ends, respectively, are:

f1 0ð Þ ¼ 0,

K
df1 0ð Þ

dx
¼ EI

d2f1 0ð Þ

dx2
,

d2fNCþ1
lNCþ1

� �
dx2

¼ 0,

d3fNCþ1
lNCþ1

� �
dx3

¼ 0, ð3Þ

where K is the stiffness coefficient of the rotational spring at the left end of the cantilever beam. The rotational
spring models the semi-rigid behavior of the beam end connection [12]. At the general ith crack of the beam, the
following four continuity conditions must be satisfied:

fi lið Þ ¼ fiþ1 0ð Þ,

dfiþ1 0ð Þ

dx
�

dfi lið Þ

dx
¼ DiL

d2fiþ1 0ð Þ

dx2
,

d2fi lið Þ

dx2
¼

d2fiþ1 0ð Þ

dx2
; for i ¼ 1; . . . ;NC

d3fi lið Þ

dx3
¼

d3fiþ1 0ð Þ

dx3
, ð4Þ
ΔNC
Δ1

…… ……

x1 xi xNC

K
li…… l1 …… lNC

Δi

L

h

�i

Fig. 1. The model of a cracked cantilever beam with semi-rigid connection.



ARTICLE IN PRESS
H.F. Lam et al. / Journal of Sound and Vibration 305 (2007) 34–49 37
where Di is the non-dimensional flexibility parameter to characterize the extent of the ith crack. The relationship
between the crack extent Di and the crack depth ratio di ¼ gi/h can be found in Ref. [9] as

Di ¼ 6pd2i
h

L

� �
f dið Þ, (5)

where h is the beam depth, gi is the depth of the ith crack, and the function f(di) is given by [9]

f dið Þ ¼ 0:6384� 1:035di þ 3:7201d2i � 5:1773d3i þ 7:553d4i � 7:332d5i þ 2:4909d6i . (6)

A characteristic equation of the cracked beam can be obtained by substituting the conditions in Eqs. (3) and
(4) into Eq. (2). An infinite number of natural frequencies ok and mode shapes fk(x) for k ¼ 1,y, N of the
system can then be calculated. In the under-damped vibration case, the modal function of the kth mode zk(t) is in
the following form:

zkðtÞ ¼ e�zkokt AksinoD;ktþ BkcosoD;kt
� �

, (7)

where Ak and Bk depend on the initial conditions of the kth system and oD;k ¼ ok

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2k

q
and zk are the

damped frequency and the critical damping ratio of the kth mode. The overall response of the beam can be
calculated by the method of modal superposition [13]. In general, only a small number of lower modes
contribute to the dynamic response of the system, and this number depends on many factors, such as the support
conditions and the types of excitations.

According to Katafygiotis et al. [14], the uncertainty that is associated with the stiffness K of the rotational
spring, which is employed to model the semi-rigid connection, is much larger than those associated with other
model parameters, such as the modulus of elasticity and the mass density of the structural member. Therefore,
the rotational stiffness will be included as one of the uncertain parameters in the proposed methodology. To
prevent numerical problems, a normalized rotational stiffness ~K ¼ K=EI is used. Furthermore, damping is
usually more difficult to identify when compared to other model parameters. Thus, the damping ratios are also
included as uncertain parameters in the proposed methodology. It must be pointed out that increasing the
number of uncertain parameters by including these system characteristics will increase the uncertainties
associated with the identified damage parameter results, i.e. crack locations and extents. The effects of
including these additional uncertain parameters in the proposed methodology have been comprehensively
studied in Ref. [15] and will not be repeated in this paper.

In the proposed methodology, the uncertain parameter vector for a beam with j cracks is

aj ¼ ~K ; z1; :::zq; l1; l2; . . . lj ;D1;D2; . . . ;Dj

� �T
, (8)

where q is the number of modes required to describe with sufficient accuracy the dynamic response of the
cantilever beam for a particular excitation. In the experimental case study, the first four modes are used. The
total number of uncertain parameters is 2j+q+1.

2.2. Identification of the number of cracks (stage one)

If the model-based approach is followed for crack detection and the number of cracks is not known, beams
with different numbers of cracks have to be modeled by different classes of models, as shown in Fig. 2. In the
figure, the model class Mj is employed in modeling a beam with j cracks, and the parameters lj and Dj are used
to describe the location and extent of the jth crack.

The problem is how to identify the ‘‘optimal’’ model class using a set of measurements D. By following the
concept of model updating, one may consider carrying out a minimization for each model class to minimize
the discrepancy between the measured and modeled responses, and ‘‘pick up’’ the ‘‘optimal’’ model class as
that which can give the best fit to the measurement. It must be pointed out that the selection of the ‘‘optimal’’
model class based on a given set of data is not trivial. It is clear that the model class of a beam with more
cracks consists of more model parameters (see Fig. 2), which will always provide a better fit to the
measurement when compared to a model class with fewer parameters. Hence, the selection of model class
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Fig. 2. Schematic diagram illustrating the basic strategy for the first stage of the proposed methodology.
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based solely on the fitting between the modeled and the measured dynamic responses can be very misleading,
as the most complex model class will always be selected.

In addressing this problem, the first stage of the proposed methodology relies on the Bayesian model class
selection method [16] in selecting the ‘‘optimal’’ model class to identify the number of cracks on the beam. Due
to space limitations here, the Bayesian model class selection method will only be briefly reviewed. Interested
readers should consult Ref. [16]. The original goal of the method is to select the ‘‘optimal’’ class of models
from a given list of NM model classes. The selection is based on the probability of the model class conditional
on the set of measurements D [16]:

P MjjD;U
� �

¼
p DjMj ;U
� �

P MjjU
� �

p DjUð Þ
for j ¼ 1; . . . ;NM , (9)

where U expresses the user’s judgment about the initial plausibility of the classes of models, expressed as a
prior probability p(MjjU) on the model class Mj, such that

PNM

j¼1P MjjU
� �

¼ 1. Unless there is prior
information about the number of cracks on the beam, the prior probability p(MjjU) is taken as 1/NM;
1/p(DjU) is treated as a normalizing constant. The most important term in Eq. (9) is p(DjMj, U), which is
known as the ‘‘evidence’’ for the model class Mj provided by the data D. The class of models to be used is
obviously the one that maximizes the probability P(MjjD, U) and this is generally equivalent to the one that
maximizes the evidence p(DjMj, U) with respect to Mj. In the application of the Bayesian model class selection
method in the detection of the number of cracks, subjective judgment from engineers is not preferred. As a
result, U is dropped in p(DjMj U) because it is assumed that Mj alone specifies the probability density function
(PDF) for the data. Hence, the evidence p(DjMj, U) ¼ p(DjMj) hereafter.
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For a globally identifiable case [17,18], the evidence can be calculated based on an asymptotic
approximation [19]:

pðDjMjÞ � p ðDjâj ;MjÞð2pÞ
Nj=2p ðâjjMjÞ HjðâjÞ

		 		�1=2; for j ¼ 1; . . . ;NM , (10)

where âj denotes the optimal model in the model class Mj (the set of optimal model parameters of aj). Nj is the
number of uncertain model parameters in âj, and HjðâjÞ is the Hessian of the function gðajÞ ¼

�ln pðajjMjÞpðDjaj ;MjÞ

 �

evaluated at the optimal model âj.
The evidence p(DjMj) in Eq. (10) consists of two factors. The first factor pðDjâj ;MjÞ is the likelihood factor.

This will be larger for those model classes that give a better ‘‘fit’’ to the data D. This favors model classes with

more parameters (model classes with higher complexity). The second factor ð2pÞNj=2pðâjjMjÞjHjðâjÞj
�1=2 is

called the Ockham factor [20]. Beck and Yuen [16] showed that the value of the Ockham factor decreases as
the number of uncertain parameters in the model class increases and therefore provides a mathematically
rigorous and robust penalty against parameterization. The combination of these two factors enables the
selection of the ‘‘simplest’’ model class that can provide a ‘‘good fit’’ to the measurement.

With the help of the Bayesian model class selection method, the computationally efficient algorithm is
developed for identifying the number of cracks on the beam utilizing the given set of measurement D. The
algorithm consists of a series of iteration steps, as shown in Fig. 3, and begins by testing the simplest class of
models with no crack on the beam. Value zero is assigned to the variable j, which is the number of cracks at the
current iteration step. In a general iteration step, the algorithm compares the model class that has j cracks with
the one that has j+1 cracks following the Bayesian model class selection method. If the evidence of the model
class with j cracks is larger than that of the model class with j+1 cracks, then the algorithm stops and
the number of cracks is equal to j. Otherwise, the algorithm will assign j ¼ j+1 and repeat the comparison
(see Fig. 3).
2.3. Identification of crack locations and depths (stage two)

After identifying the number of cracks, for example NC by the proposed algorithm in stage one, the goal in
the second stage is to calculate the posterior PDF p aNC

jD;MNC

� �
of the set of uncertain model parameters aNC
Initialization:
j = 0

Calculate the evidence of the model 
class with j cracks

Calculate the evidence of the model 

class with j + 1 cracks

Which of the two calculated 
evidences is larger?

Number of cracks = j

j + 1

j

j = j+ 1

Fig. 3. The proposed algorithm for identifying the number of cracks in the first stage of the proposed methodology.
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in the model class MNC
. For identifiable cases, the posterior PDF of uncertain model parameters conditional

on the measurement D and the model class MNC
can be approximated as [17,18]:

p aNC
jD;MNC

� �
�
XNa

a¼1

waN â
að Þ

NC
;A�1N ðâ

að Þ
NC
Þ

� 

, (11)

where â
að Þ

NC
for a ¼ 1,y,Na are the output-equivalent optimal models of the system, which can be obtained

using the algorithm presented in Ref. [18]; N(l, R) denotes a multivariate Gaussian distribution with mean l

and covariance matrix R. The matrix AN â
að Þ

Nc

� 

is the Hessian of the function NJ lnJ aNC

jD;MNC

� �
evaluated at

â
að Þ

NC
, where NJ ¼ ðNNo � 1Þ=2, and J aNC

jD;MNC

� �
is given by

J aNC
jD;MNC

� �
¼

1

NNO

XN

k¼1

C k; aNC
;MNC

� �
� Ĉ kð Þ

�� ��2. (12)

The weighting coefficients in Eq. (11) are given by

wa ¼
w0aPNa
a¼1w0a

; where w0a ¼ p â
að Þ

NC

� 

AN â

að Þ
NC

� 
			 			�1=2, (13)

where N is the total number of measured data points of the observed degree of freedom (DOF); NO is the

number of observed DOFs; ĉ kð Þ is the vector of measured response; ĉ k; aNC
;MNC

� �
is the vector of calculated

response (at the observed DOFs) at the kth time step for the optimal models aNC
in MNC

; p â
að Þ

NC

� 

is the prior

PDF of the set of uncertain model parameters aNC
evaluated at â

að Þ
NC

, which allows engineering judgment to be

incorporated in the analysis.
Instead of pinpointing the crack locations and extents as in the deterministic approach, the proposed crack

detection methodology focuses on calculating the posterior PDF of the model parameters aNC
. As a result, the

confidence level of the crack detection results can be quantified through the calculated probability or the
corresponding coefficient of variation (COV). This information is extremely important for engineers who are
making judgments about remedial work.

3. Experimental verification

The proposed crack detection methodology was demonstrated and verified using the cantilever beam test
system as shown in Fig. 4. The test sample is an aluminum bar with Young’s modulus E ¼ 69GPa, density
r ¼ 2960 kg/m3, width b ¼ 12mm, height h ¼ 6mm and the length of the aluminum bar is 600mm. The
first 200mm of the beam is fixed in a rigid clamping system, and the length of the cantilever beam is
therefore 400mm. Fig. 5 shows the excitation locations, measurement location and crack locations on the
cantilever. The cantilever beam is excited at three points (e1 ¼ 5071mm, e2 ¼ 20071mm and
e3 ¼ 30071mm from the fixed end) using a 086D80 PCB Piezotronics impact hammer with a 5mm thick
steel backing mass and a nylon tip together with a 480C02 ICP sensor signal conditioner. The transient
transverse vibration response is measured at 22071mm from the fixed end using a Polytec laser vibrometer
system with an OFV-502 fiber-optic laser head and an OVD-02 velocity demodulator set at 125mm/s/V
measurement resolution.

The response signal is collected for 500ms with an approximately 50ms pre-trigger with a temporal
resolution of 0.2ms. Fig. 6 shows typical time histories measured at the sensor for the three excitation
locations. The three graphs highlight the different characteristics of the response signals depending on the
impact location.

Artificial cracks c1 and c2 are machined into the beam using a bandsaw with a blade thickness of
approximately 1mm. The locations of the cracks are l1 ¼ 8071mm and l2 ¼ 10071mm (see Fig. 5) as
measured from l1. Experimental data were collected for three depths of the second crack. The nominal crack
depths are 2.8mm for c1 and 0.8, 1.7, and 3.2mm for c2 with an estimated uncertainty of 70.15mm. Fig. 7
shows the response signals in time and frequency space for excitation at position e2 for the cases of the



ARTICLE IN PRESS

Fig. 4. Cantilever beam experiment configuration.

e1
e2 e3

c2c1

Tm

Fig. 5. Excitation location eu (u ¼ 1, 2, and 3), measurement location Tm, and crack locations c ¼ (i ¼ 1, 2).
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uncracked beam and the beam with cracks c1 and c2 extended to their maximum depths, i.e. g1 ¼ 2.870.15
and g2 ¼ 3.270.15mm respectively. It should be noted that the response signal in time space is normalized so
that the maximum amplitude is equal to unity for the uncracked and cracked beams. The signals confirm that,
as expected, the natural frequencies for the cracked beam are shifted to lower frequencies, but they also show
that these frequency shifts are small, especially for the first two vibration modes and considering that the data
of the cracked beam is for the maximum crack depths of both cracks c1 and c2. Hence, damage detection using
modal parameter identification techniques, e.g. Ref. [21], will be difficult.

The calibration constant of the instrumented impact hammer is given as 17mV/N. This parameter had to be
adjusted, since a steel backing mass was used to increase the excitation strength, especially for the higher
vibration modes. In addition, as always in impact testing using a handheld hammer, there was a slight
variation in the direction of impact relative to the axis of the beam from experiment to experiment.
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Fig. 6. Impact response signals for the three excitation locations (Top: e1, middle: e2, bottom: e3).

Table 1

Summary of all cases in the experimental study

Case NC Crack location (mm) Crack extent Crack depth (mm)

A 0 N/A N/A N/A

B 1 l1 ¼ 8071 D1 ¼ 0.0407 2.870.15

C 2 l1 ¼ 8071, D1 ¼ 0.0407 2.870.15

l2 ¼ 10071 D2 ¼ 0.0028 0.870.15

D 2 l1 ¼ 8071, D1 ¼ 0.0407 2.870.15

l2 ¼ 10071 D2 ¼ 0.0128 1.770.15

E 2 l1 ¼ 8071, D1 ¼ 0.0407 2.870.15

l2 ¼ 10071 D2 ¼ 0.0572 3.270.15

H.F. Lam et al. / Journal of Sound and Vibration 305 (2007) 34–4942
Consequently, the effective excitation force perpendicular to the beam was calculated by matching the signal
amplitudes of the first few cycles of the simulated and measured response signals. Considering these two
effects, the effective calibration constants for the excitation forces used in the simulation varied between 30.9
and 40.7mV/N.
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e2, cracks c1 and c2 are in full depths).

Table 2

Vector of uncertain parameters of the identification model in each case

Case Uncertain parameters of the identification model

A a0 ¼ ~K ; z1; z2; z3; z4
� �T

B a1 ¼ ~K ; z1; z2; z3; z4; l1;D1

� �T
C, D, and E a2 ¼ ~K ; z1; z2; z3; z4; l1;D1; l2;D2

� �T

H.F. Lam et al. / Journal of Sound and Vibration 305 (2007) 34–49 43
Table 1 gives a list of the particular experimental configurations analyzed for this paper. Case A is the beam
without cracks. Case B has crack c1 at location l1 ¼ 8071mm from the semi-rigid end with depth
g1 ¼ 2.870.15mm (i.e. the nominal value d1 ¼ 0.4667 and D1 ¼ 0.0407). The robustness and sensitivity of the
proposed methodology is investigated in Cases C, D, and E with two cracks, c1 at l1 ¼ 8071mm and c2 at
l2 ¼ 10071mm measured from c1. In all three cases, c1 has a depth of g1 ¼ 2.870.15mm whereas the depth of
the second crack c2 varies from a shallow crack to an approximately half-thickness crack. The nominal values
of the crack parameters for crack c2 are g2 ¼ [0.8mm, 1.7mm, 3.2mm], d2 ¼ [0.1333, 0.2833, 0.5333], and
D2 ¼ [0.0028, 0.0128, 0.0572], respectively.

As shown in Fig. 7, it is clear from the spectrum that only the first four modes significantly con-
tribute to the measured responses. Hence, only the first four modes are considered in the dynamic
analysis. Furthermore, the system is assumed to be classically damped with different critical
damping ratios for different modes. The uncertain parameter vector for different cases can then be
obtained using Eq. (8), and the identification models that are adopted in different cases are summarized in
Table 2.
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Table 3

The results of Bayesian model class selection in all cases

Case Class of models Logarithm of the

evidence

Logarithm of the

likelihood factor

Logarithm of the

Ockham factor

A M0 25095 25117 �22

M1 25091 25122 �31

B M0 21525 21532 �7

M1 31789 31828 �39

M2 31778 31830 �52

C M0 16706 16710 �4

M1 25000 25040 �40

M2 27668 27728 �60

M3 27658 27729 �71

D M0 15776 15788 �12

M1 21628 21656 �28

M2 28914 28974 �60

M3 28906 28975 �69

E M0 15243 15248 �5

M1 23020 23058 �38

M2 31018 31083 �65

M3 30993 31084 �91
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3.1. Identified number of cracks (stage one)

Table 3 shows the results of the first stage of the proposed crack detection methodology for all five cases.
The larger the value of the evidence, the higher the probability of the model class conditional on the data D.
The logarithm is used because the numerical values of the evidence are usually very large, which may cause
computational problems. The number of cracks can then be identified based on the value of the logarithm of
the evidence. From Table 3, it is clear that M0 (no crack) and M1 (single crack) are selected for Case A and
Case B, respectively, while M2 is selected for Cases C, D, and E. The proposed methodology successfully
identifies the true number of cracks in all cases.

Table 3 also shows the likelihood and Ockham factors of the evidence for all cases. The logarithm of the
likelihood factor, which shows the ability of the model class in fitting the measurement, will increase when the
complexity of the model class increases (beams with more cracks). Hence, it is not possible to only use
the likelihood factor in selecting the ‘‘optimal’’ model class to identify the number of cracks. The value of the
logarithm of the Ockham factor for all cases will be smaller (i.e., the logarithm will become more negative)
when the complexity of the model class increases. Hence, the Ockham factor penalizes the complexity of the
model class in the evidence.

This is a very important result because it has been achieved without any subjective judgment from the user
and any prior knowledge (i.e., a prior probability P(MjjU) in Eq. (9)). Hence, the decision of how many cracks
to include in the damage characterization process relies purely on the set of measurement D.

3.2. Identified crack characteristics (stage two)

In the second stage of the proposed methodology, the set of ‘‘optimal’’ parameters is identified and the PDF
of the uncertain parameters, which consists of the crack parameters and the beam properties, is approximated
by Eq. (11). Table 4 summarizes the identified ‘‘optimal’’ crack parameters, and the normalized marginal PDF
of the crack parameters in Case B is shown in Fig. 8. As there is only one optimal model within the domain of
interest, there is only one peak in Fig. 8. The figure also shows that the PDF value drops significantly when
one moves away from the optimal model â1. This is the typical characteristic of an identifiable case [14,22,23].
The marginal cumulative distributions of the crack parameters are plotted in Figs. 9 and 10. It is clear from the
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Table 4

The results of crack evaluation in Cases B, C, D, and E

Case Location(s) (mm) Extent(s)

li (COV %) True location Di (COV %) Crack depth (mm) True crack depth (mm)

B l1 ¼ 79.6 (0.03) 8071 D1 ¼ 0.0451 (0.12) 2.92 2.870.15

C l1 ¼ 82.2 (0.21) 8071 D1 ¼ 0.0492 (0.34) 3.02 2.870.15

l2 ¼ 102.6 (1.15) 10071 D2 ¼ 0.0091 (5.48) 1.44 0.870.15

D l1 ¼ 82.4 (0.24) 8071 D1 ¼ 0.0489 (0.40) 3.01 2.870.15

l2 ¼ 102.1 (0.69) 10071 D2 ¼ 0.0171 (3.47) 1.94 1.770.15

E l1 ¼ 79.2 (0.25) 8071 D1 ¼ 0.0479 (0.30) 2.99 2.870.15

l2 ¼ 106.4 (0.20) 10071 D2 ¼ 0.0700 (0.97) 3.46 3.270.15

Fig. 8. Normalized marginal PDF of the crack location (l1) and extent (D1) in Case B.
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Fig. 9. Marginal cumulative distribution of the crack location (l1) in Case B.
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Fig. 10. Marginal cumulative distribution of the crack extent (D1) in Case B.
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figures that the uncertainties that are associated with the identified crack detection results are very low. In
other words, the identified results are of high degree of confidence. To make the discussion on the uncertainty
of the identification results more convenient, the coefficients of variation (COVs) of all uncertain parameters
are calculated and summarized in Table 4.

The identified crack location and crack depth (79.6 and 2.92mm) in the single crack case (Case B) in Table 4
are perfectly matched with the true values (8071mm and 2.870.15mm). Furthermore, the COVs of the
identified crack location and depth are very small, and the confidence level of the result of crack detection is
therefore high. It can be concluded that the proposed crack detection methodology successfully identifies the
crack location and depth in Case B.

There are two cracks in Case C: the first crack c1 at 8071mm is the same as that in Case B, and the second
crack c2 at 10071mm is very small (0.870.15mm) at only about 13% of the overall depth of the beam.
Hence, this case can be used to test the performance of the proposed methodology in detecting small cracks.
The identified crack locations for both c1 and c2 in Case C in Table 4 are very close to the true values. As the
COV value of the first crack location is smaller than that of the second crack location, the result shows that
the second crack location is relatively more uncertain when compared to the first. This can be explained by the
fact that the crack depth of the second crack is much smaller than that of the first crack (i.e., the first crack is
more outstanding than the second). When the identified crack depths are considered, the identified crack depth
of the first crack c1 (3.02mm) is closer to the true value (2.870.15mm) when compared to that of the second
crack c2. The relatively poor result for the second crack can be explained by the high uncertainty, which is
clearly shown by the relatively large COV value of the identified crack depth of c2. This case shows the
importance of estimating the uncertainties associated with the identification results.

In Case D, the crack depth of c2 is increased from 0.870.15mm to 1.770.15mm, which is about 28% of the
overall depth of the beam. The identified crack locations in Case D are very similar to those in Case C except
the COV value of the second crack location is relatively smaller when compared to that in Case C. This result
is expected as the crack depth of c2 is larger in Case D than in Case C. The identified crack depth of c1 is very
similar to that in Case C, and the identified crack depth of c1 is much more accurate than that in Case C. This
result aligns with the relatively small COV value in D2 of Case D when compared to that of Case C.

In Case E, the crack depth of c2 is further increased from 1.770.15mm to 3.270.15mm. Considering Case
E in Table 4, the identified crack location and depth of c1 are very similar as those in the previous cases.
However, the identified crack location of c2 is the worst among all cases. This result is unexpected as the crack
depth of c2 in Case E is the largest among all cases, and this crack should be the most outstanding. After
carefully inspecting the second crack c2 on the aluminum bar, the inaccuracy in the identified crack location of
c2 in Case E may be caused by the poor workmanship in increasing the crack depth of c2 from Case D
to Case E. Fig. 11 shows the crack c2 in Case E. It is clear from the figure that the crack is not straight and the
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Fig. 11. The second crack c2 in Case E.

Table 5

The results of beam property identification in all cases

Case ~K (COV %) Damping Ratio (%) of each mode (COV %)

z1 z2 z3 z4

A 378.42 (0.10) 0% 0.0021% 0.3417% 0.2001%

(—) (56.70) (3.31) (2.39)

B 428.64 (0.05) 0.0383% 0.0123% 0.0632% 0.5367%

(16.84) (4.18) (1.72) (1.51)

C 740.48 (4.90) 0% 0.0076% 0.0876% 0.0795%

(—) (11.08) (2.52) (1.25)

D 704.18 (5.43) 0% 0.0085% 0.0775% 0.0731%

(—) (8.43) (2.33) (1.09)

E 403.65 (3.00) 0% 0.0200% 0.0761% 0.0927%

(—) (3.92) (1.82) (0.96)
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crack width is large; as a result, the modeling error becomes large. Even under such non-favorable conditions,
the identified crack characteristics are still of acceptable accuracy.

3.3. Identified beam property parameters

Apart from the crack characteristics, several beam properties have to be included in the uncertain parameter
vector aj. These include the normalized stiffness ~K for modeling the semi-rigid connection of the cantilever
beam and the damping ratios of the first four vibration modes. The inclusion of ~K as uncertain parameter is
essential in this study as the clamping condition changes every time the crack state in the beam is altered from
case to case by bandsaw machining. In addition, the different thicknesses of the remaining material ligaments
and the local characteristics at the groove of the artificial notch will influence the damping characteristics for
every configuration and for every vibration mode. Hence, it is necessary to include the damping characteristics
as uncertain parameters.

Table 5 shows the calculated beam properties for the five cases. The normalized rotational spring stiffness
varies between 378 and 704. This confirms the well-known fact that it is extremely difficult to experimentally
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Fig. 12. Comparison of the simulated and measured time histories for Case B (Dash: measured, Solid: simulated) (Top: e1, middle: e2,
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realize a fixed-end condition and to use a semi-rigid end condition in the analytical model is absolutely
essential in the case of a ‘‘fixed’’ end.

For the relatively short observation period of 450ms the fundamental mode turns out to be effectively
undamped apart from Case B, which shows a small damping value (z1 ¼ 0.0383%) with large uncertainty
(COV ¼ 16.84%). Mode 2 shows also very little damping and the uncertainties in the calculated values are
relatively large. Modes 3 and 4 show higher damping values. These results agree with simple observations
made by looking at the time histories that are shown in Fig. 6.

As an example of how well the optimized system matches the experimental results, a comparison between
the simulated and measured time histories for Case B is plotted in Fig. 12. The simulated response perfectly
matches the measured response.

4. Conclusions

This paper presented a practical crack detection methodology and its verification through experimental case
studies. An aluminum bar with different crack configurations was considered in the experimental verification,
using a Polytec laser Doppler vibrometer to measure the velocity at a single point on the beam with separate
excitations at three different locations. The proposed crack detection methodology consists of two stages.
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The number of cracks is identified utilizing the Bayesian model class selection method in the first stage. The
updated PDF of the crack locations, extents, the rotational stiffness of the semi-rigid connection, and the
damping ratio of first four modes are then identified by the Bayesian model updating method in the second stage.

Very encouraging results were obtained from the experimental case studies. First, the proposed
methodology successfully identified the number of cracks in all cases. Second, all identified crack
characteristics, such as crack locations and depths, were very close to the true values. One of the outstanding
advantages of the proposed methodology is that the uncertainties associated with the identified results can be
quantified. As a result, engineers know the confidence level of the crack detection results.
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