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Abstract

This paper presents a neural-based filtered-X least-mean-square algorithm (NFXLMS) to cancel the nonlinear

broadband noise in an active noise control (ANC) system. The ways to avoid the premature saturation of backpropagation

algorithm and to design the optimal learning rate are also included in the paper to improve the noise reduction

performance. Besides, the proposed neural filter can be easily implemented and versatile to the other applications. Several

simulation results show that the proposed method can effectively cancel the narrowband and nonlinear broadband noise in

an ANC system.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Noise is annoying to most people in many occasions. Fans, engines, machine tools, and automated
manufacturing equipments may generate acoustic levels up to 120 dB. These industrial noises often have the
significant power in the low-frequency range (e.g. under 500Hz). However, the conventional passive control
methods, suppressing acoustic noise using sound-absorbing materials, generally do not work well at low
frequency. This is because the thicknesses of the absorbers are not large enough, when compared to the
acoustic wavelength at low frequency. Besides, it is also difficult to reduce low-frequency sound being
transmitted from one space to another space unless the intervening barrier is very heavy. For these reasons,
passive schemes cannot control low-frequency noise well. Besides, the back pressure, arousing by using
absorber, will also deteriorate the system performance. Hence, the active noise control (ANC) systems, which
do not use any sound-absorbing material, have received a lot of attention in recent years.

The ANC system uses the principle of acoustic superposition to achieve the attenuation of the unwanted
sound. It involves an electro-acoustic system that cancels the primary (unwanted) noise; specifically, an anti-
noise of equal amplitude and opposite phase is generated and combined with the primary noise, thus resulting
in the cancellation of both noises. The ANC has to be adaptive because of changes in environment,
degradation of system components, and alteration of the noise source [1]. Methods of actively controlling
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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noise include both feedback and feedforward controls [2,3]. Feedback control uses a feedback signal as a
reference input to an active noise controller, which is obtained from an error microphone, e.g., at the open end
of a duct. Feedforward control uses anti-noise, which is correlated with the original noise, to cancel the noise.
The primary advantage of feedback control is that no additional reference input is required, so the acoustic
feedback problem is prevented. However, feedback control suffers from the ‘‘waterbed’’ effect because of time
delays and non-minimum phase zeros; only narrowband noise reduction can thus be achieved. For a high-
order model, such as a duct, feedforward control appears to be a viable method for reducing noise at the
expense of robustness of performance against plant uncertainty [4].

Most of the conventional ANCs, employing the standard filtered-X least-mean-square (FXLMS) algorithm,
are linear in nature [5,6]. However, the FXLMS algorithm is not capable of training a nonlinear controller,
since this algorithm exploits the linearity of the controller. So, active control of nonlinear noise is hard to
achieve. Some papers have investigated this problem. A normalized Gaussian radial basis function neural
network is proposed to compensate the non-minimum phase secondary path transfer function and control the
nonlinear noise process in Ref. [1]. In Ref. [7], the authors introduced the adaptive Volterra filters for
feedforward ANC based on multichannels structure. In Refs. [8–11] fuzzy-neural and recurrent neural
networks have also been used to control the nonlinear noises in the ANC system. Observing the various
methods presented in past years, it reveals that the ANC structures for nonlinear control are complex or hard
to realize [12]. Keeping these in view, the authors propose the neural-based filtered-X least-mean-square
(NFXLMS) algorithm to control the nonlinear noise. This method can also avoid the premature saturation of
backpropagation; meanwhile, achieve minimum error by using the proposed optimum learning rate. The
paper is organized as follows. Section 2 describes the neural-based filtered-X algorithm. The designing
procedures of the adaptive algorithm and learning rate are also presented. Section 3 presents several results to
illustrate the improvement of the NFXLMS ANC system relative to the FXLMS method. Section 4 is a
concluding summary.
2. The NFXLMS algorithm

In general, the ANC system is designed on the basis of a mathematical description and its linearized model.
It can be suitably tuned to its desired response using the well-known FXLMS algorithm. However, this
method is only effective in canceling narrowband noise but cannot provide adequate performance in
broadband noise cancellation. The authors propose the neural-based ANC system, shown in Fig. 1 to be an
alternative.

The architecture of the proposed neural filter is depicted in Fig. 2, where the parameter wij(k) is the weight
between the input layer and hidden layer (i ¼ 1,2,y,n1, j ¼ 1,2,y,n2), vj(k) is the weight between the hidden
layer and output layer. Thus, hj(k), the output of the hidden node will be

hjðkÞ ¼ f hðnetjÞ ¼ f h

Xn1
i¼1

wijðkÞxðk � i þ 1Þ

 !
, (1)
Fig. 1. Neural-based ANC system with NFXLMS algorithm.
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Fig. 2. Architecture of the neural filter.
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where fh is the activation function of the hidden node, and output of the output node yðkÞ ¼ f oðnetoÞ; with f0

being the activation function

yðkÞ ¼ f oðnetoÞ ¼ f o

Xn2
j¼1

hjðkÞvjðkÞ

 !
. (2)

The error function in ANC system to be minimized is defined as

EðkÞ ¼ 1
2
ðxðkÞHpPHeMe þ yðkÞHsHeMeÞ

2. (3)

In this paper, the backpropagation and the gradient descent methods are used to achieve the objective. The
gradients of vj(k) and wij(k) are shown in the following, respectively:

qEðkÞ

qvjðkÞ
¼

qEðkÞ

qyðkÞ

qyðkÞ

qneto

qneto
qvjðkÞ

¼ ðeðkÞHsHeMeÞf
0
oðnetoÞhjðkÞ, (4)

qEðkÞ

qwijðkÞ
¼

qEðkÞ

qhjðkÞ

qhjðkÞ

qnetj

qnetj
qwijðkÞ

¼ eðkÞHsHeMef
0
oðnetoÞvjðkÞf

0
hðnetjÞxðk � i þ 1Þ, (5)

hence, with Z being the learning rate, we have

vjðk þ 1Þ ¼ vjðkÞ � ZeðkÞHsHeMef 0oðnetoÞhjðkÞ, (6)

wijðk þ 1Þ ¼ wijðkÞ � ZeðkÞHsHeMef
0
oðnetoÞvjðkÞf

0
hðnetjÞxðk � i þ 1Þ. (7)

In our discussions, f hðnethÞ ¼ neth and f oðnetoÞ ¼ neto are used to prevent the processing units’ saturation
which might be induced by sigmoid or hyperbolic tangent functions. Those functions act as implicit
constraints for the hidden node activations may get driven to their limits, making the resultant derivatives of
saturated nodes very small due to f 0ðnetÞ. Hence, even with a sophisticated unconstrained optimization
method, neural network learning might fail due to saturation. Therefore, Eqs. (6) and (7) can be expressed as
follows respectively:

vjðk þ 1Þ ¼ vjðkÞ � ZeðkÞHsHeMehjðkÞ, (8)

wijðk þ 1Þ ¼ wijðkÞ � ZeðkÞHsHeMevjðkÞxðk � i þ 1Þ. (9)

One can find hj(k) is also the function of x(k), shown in Eq. (1). So, the correction terms in Eqs. (8) and (9)
look like the output of error path with input x(k). It is the so-called neural-based filtered-X LMS (NFXLMS)
algorithm, which is different from the conventional FXLMS at the correction factors [13].
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In order to achieve the optimal learning rate, one uses the Taylor series of the error functions:

eðk þ 1Þ ¼ eðkÞ þ
Xn2
j¼1

qeðkÞ

qvjðkÞ
DvjðkÞ þ

Xn1
i¼1

qeðkÞ

qwijðkÞ
DwijðkÞ þ h:o:t: (10)

The partial differential terms in Eq. (10) can be represented by

qeðkÞ

qvjðkÞ
¼

qeðkÞ

qyðkÞ

qyðkÞ

qneto

qneto
qvjðkÞ

¼ HsHeMef
0
oðnetoÞhjðkÞ ¼ HsHeMehjðkÞ (11)

and

qeðkÞ

qwijðkÞ
¼

qeðkÞ

qhjðkÞ

qhjðkÞ

qnetj

qnetj
qwijðkÞ

¼ HsHeMef 0oðnetoÞvjðkÞf
0
hðnetjÞxðk � i þ 1Þ

¼ HsHeMevjðkÞxðk � i þ 1Þ. ð12Þ

Thus,

eðk þ 1Þ ¼ eðkÞ þ
Xn2
j¼1

HsHeMehjðkÞð�ZeðkÞHsHeMehjðkÞÞ

þ
Xn1
i¼1

HsHeMevjðkÞxðk � i þ 1Þð�ZeðkÞHsHeMevjðkÞxðk � i þ 1ÞÞ

¼ eðkÞ 1� Z
Xn2
j¼1

ðHsHeMehjðkÞÞ
2
þ
Xn1
i¼1

ðHsHeMevjðkÞxðk � i þ 1ÞÞ2

" #( )
ð13Þ

by excluding the h:o:t: of Eq. (10). In order to obtain an optimal learning rate of ZðkÞ to minimize e(k+1); one
can let

ZoptðkÞ ¼
Xn2
j¼1

ðHsHeMehjðkÞÞ
2
þ
Xn1
j¼1

ðHsHeMe � vjðkÞ � xðk � i þ 1ÞÞ2

" #�1
. (14)

So, by choosing the Zopt in Eq. (14), one can minimize the residual noise e(k).
3. Simulation results

The active control system and input signal are chosen to be representative of a simple ANC system for a
duct. The duct model [14,15] is depicted as follows. The acoustic plant of duct P(z) and He(z) are modelled by
pure time delays of 25 and 5 samples, respectively. Both the speakers, Hp(z) and Hs(z), and error microphone
Me(z) are represented by the second-order Butterworth high-pass filters with a cutoff frequency of 80Hz. The
sampling frequency is chosen to be 2 kHz.

Thus, the duct plants are P(z) ¼ z�25 and He(z) ¼ z�5. They have no pole but only have zeros, z ¼ 0.
Besides, the characteristic of the second-order Butterworth high-pass filters with a cutoff frequency 80Hz is
ð0:8371� 1:6742z�1 þ 0:8371z�2Þ=ð1� 1:6475z�1 þ 0:7009z�2Þ, whose poles are 0.823770.15j and zeros are 1.
So, all the poles and zeros of ANC plant are inside the unit circle, which implies the characteristics of the
plants are minimum phase, causal, and stable.

Several different noise signals are used to verify the virtue of the proposed NFXLMS ANC system. All the
initial weights, wij(0) and vj(0), are randomly initialized between the range [�0.5, 0.5]. The proposed neural
ANC filter is based on 4 input nodes, 6 hidden nodes and 1 output node neural network. The neural weighting
parameters are all randomly chosen between [0, 1] at first and then the proposed NFXLMS algorithm will
tune the free parameters adaptively to control the undesired noise. A 32nd-order adaptive FIR filter with zero
initial weighting parameters and constant learning rate Z ¼ 0.2 is used to perform the FXLMS algorithm to be
a contrast.
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The first experiment uses a 200Hz periodic signal as the undesired noise to illustrate the effectiveness of the
proposed algorithm. Fig. 3 shows the result, solid line is the original periodic noise, the result of FXLMS
algorithm is shown by dashed lines, and the proposed NFXLMS approach is shown by dotted line. One can
find that both the conventional FXLMS and the proposed NFXLMS scheme cancel the unwanted noise well.

The next experiment uses the combination of 200- and 201-Hz periodic signals to be the undesired noise
signal. Since the signal is composed of two periodic signals with close frequencies, the noise canceling result is
interesting. In order to see the amount of attenuation, the result of canceling composite periodic signal is
shown in frequency domain. Fig. 4(a) is the original composite periodic signal. Figs. 4(b) and (c) are the noise
canceling results by the FXLMS and NFXLMS algorithms, respectively. It is clear that the proposed
NFXLMS algorithm also performs excellently in canceling the composite periodic signals. Nevertheless, the
conventional FXLMS algorithm cannot cancel the noise satisfactorily. The attenuation of composite periodic
noise is about 30–50 dB by proposed neural method and is about 10 dB for the conventional FXLMS method.

Industrial broadband noise always has significant power below 800Hz. So, we use a 0–800Hz broadband
white noise signal to be the unwanted noise in the third experiment. Besides, the result is also shown in
frequency domain to see the amount of attenuation. Fig. 5(a) shows the nonlinear broadband noise. Fig. 5(b)
shows the result of the noise cancellation by conventional FXLMS algorithm, from which one can see the
ineffectiveness of the FXLMS in canceling broadband noise. However, one can see the effectiveness of
NFXLMS in canceling the broadband noise as shown in Fig. 5(c). The performance of NFXLMS is about
10–15 dB; meanwhile, the conventional FXLMS cannot control the broadband noise at all.

The last experiment shows the enhancement of the proposed optimal learning rate ZoptðkÞ. Fig. 6 shows the
performance of NFXLMS algorithm with ZoptðkÞ and constant learning rate Z ¼ 0.2 for nonlinear broadband
noise. One can find the mean square error by the proposed optimal learning rate converges faster than that of
constant learning rate.

These results illustrate that the conventional FXLMS algorithm can only control the narrowband noise yet
the proposed NFXLMS algorithm can cancel both the periodic and broadband noises well. The optimal
learning rate also helps to achieve faster convergence of the proposed NFXLMS algorithm. Besides, the way
to select the number of input node and hidden node is depicted as follows.
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Fig. 3. ANC of periodic noise, original 200Hz periodic noise: solid; ANC with FXLMS: dashed; ANC with NFXLMS: dotted.
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Fig. 4. ANC of composite periodic noise: (a) original composite periodic noise, (b) ANC with FXLMS, and (c) ANC with NFXLMS.

C.-Y. Chang, F.-B. Luoh / Journal of Sound and Vibration 305 (2007) 348–356 353
Too many input nodes and hidden nodes will raise the computing effort, which is not suitable for real-time
control case. But too less input node and hidden node may also lead to the system inaccuracy. So, some studies
suggest the number of hidden nodes should be within half to twice the number of input nodes by experience
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Fig. 5. ANC of broadband noise: (a) original broadband noise, (b) ANC with FXLMS, and (c) ANC with NFXLMS.
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[16]. The complexity of control problem should also be taken into consideration when deciding the number of
input nodes and hidden nodes. The proposed neural ANC filter is based on 4 input nodes, 6 hidden nodes, and
1 output node neural network with NFXLMS algorithm. One uses only 4 input nodes to save the computing
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effort and uses almost twice the number of input nodes to be the number of hidden nodes because the ANC
system is complex. The proposed NFXLMS also helps to enhance the system performance. Experiments show
that the proposed 4–6–1 neural ANC filter with NFXLMS algorithm can outperform the conventional 32nd-
order FXLMS ANC system.

4. Conclusions

One derives the NFXLMS algorithm from neural network with error backpropagation algorithm. The
nonlinear processing ability of the neural network improves the noise cancellation performance in an ANC
system. Choosing f hðnetjÞ ¼ netj and f oðnetoÞ ¼ neto as the activation functions of the neural filter helps to
avoid the premature saturation of backpropagation algorithm. One also designs the optimum learning rate to
accelerate the convergence. Computer simulations have been carried out to demonstrate the performance of
the NFXLMS as a useful method for nonlinear ANC system. Compared to FXLMS, it is obvious that the
NFXLMS algorithm shows the enhancement in nonlinear broadband noise cancellation. The proposed
algorithm is also versatile and can be used in other applications.
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