
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 305 (2007) 401–431

www.elsevier.com/locate/jsvi
A numerical model for calculating vibration from a railway
tunnel embedded in a full-space

M.F.M. Husseina,�, H.E.M. Huntb

aSchool of Civil Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
bEngineering Department, Cambridge University, Trumpington Street, Cambridge, CB2 1PZ, UK

Received 30 October 2006; received in revised form 12 March 2007; accepted 28 March 2007

Available online 15 June 2007
Abstract

Vibration generated by underground railways transmits to nearby buildings causing annoyance to inhabitants and

malfunctioning to sensitive equipment. Vibration can be isolated through countermeasures by reducing the stiffness of

railpads, using floating-slab tracks and/or supporting buildings on springs. Modelling of vibration from underground

railways has recently gained more importance on account of the need to evaluate accurately the performance of vibration

countermeasures before these are implemented.

This paper develops an existing model, reported by Forrest and Hunt, for calculating vibration from underground

railways. The model, known as the Pipe-in-Pipe model, has been developed in this paper to account for anti-symmetrical

inputs and therefore to model tangential forces at the tunnel wall. Moreover, three different arrangements of supports are

considered for floating-slab tracks, one which can be used to model directly-fixed slabs. The paper also investigates the

wave-guided solution of the track, the tunnel, the surrounding soil and the coupled system. It is shown that the dynamics

of the track have significant effect on the results calculated in the wavenumber–frequency domain and therefore an

important role on controlling vibration from underground railways.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Researches on vibration from underground railways have gained a special interest in the last few decades.
The general trend towards lighter constructions with longer spans along with the introduction of new
underground railway lines in urban areas, have led to more vibration in buildings. This in turn has led to more
complaints from occupants of buildings. There are many methods to decrease ground-borne vibration in
buildings. They generally fall into three categories. Vibration isolation can be achieved by isolating the source,
interrupting the vibration path and/or isolating the receiver, i.e. the building. Floating-slab tracks, open and
in-filled trenches and base isolation of buildings are typical examples of the three categories, respectively. The
right choice of vibration countermeasure and its specification is crucial because of the high financial cost and
the difficulty of retrospective replacement. Modelling of vibration from underground railways has become
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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more important with more concerns about the expected performance of vibration countermeasures. In this
section, some of the relevant literature on modelling of vibration from underground railways is reviewed.

Lai et al. [1] develops a technique to predict vibration in buildings from an underground tunnel in the city of
Rome. The technique is based on a combination of numerical modelling and field measurements. The railway
track was not constructed at the time of the study which was conducted to compare the expected perceived
vibration with the permissible vibration levels in buildings according to the ISO standards. The technique is
divided into three different parts to account for the source, i.e. the train and the track system; the transmission
path, i.e. the tunnel, medium and building; and the receiver, i.e. a human individual.

Sheng et al. [2] present a numerical method based on the discrete wavenumber fictitious force method to
model an underground tunnel embedded in a half-space. The method depends on writing the boundary
integral equations of only the displacement Green’s function. This is an advantage over the Boundary Element
(BE) method as the traction Green’s function is not required.

The coupled Finite Element–Boundary Element (FE–BE) technique is frequently used to model vibration
from underground railways. The FE method is used to model a tunnel wall while the BE method is used to
model the surrounding single or multi-layered ground.

Sheng et al. [3] describe a numerical model based on the coupled FE–BE technique. The computational
efficiency is improved by incorporating the discrete wavenumber method. The method takes advantage of that
the track and its surrounding ground are invariant in the track direction and therefore reduces the modelling
effort to a single vertical transverse problem, also known as a two-and-half-dimensional problem.

Clouteau et al. [4] present an efficient numerical model based on the coupled FE–BE method for calculating
vibration from underground railways. The technique incorporates the Floquet transformation that accounts
for periodicity in the tunnel direction, which significantly improves the computational efficiency. The
technique has an advantage over the two-and-a-half-dimensional approaches as the periodic Green’s kernel
incorporated has the same singularities as the three-dimensional (3D) Green’s kernel. The model is used to
calculate vibration from a shallow cut-and-cover masonry tunnel in Paris [4,5] and from a deep bored tunnel
of London Underground [5].

Andersen and Jones [6,7] use a coupled FE and BE analysis to compare between 2D and 3D modelling. An
important finding of their work is that 2D modelling can give only qualitative results. However, it provides a
quick tool to assess vibration isolation measures.

The Finite Difference (FD) method [8] can also be used to model vibration from underground railways. The
advantage of this method is that less effort is needed to write the code compared with other conventional
methods, however on the expense of reducing the computational efficiency.

A computationally efficient model for calculating vibration from underground railways is presented by
Forrest and Hunt [9,10]. The model is known as the Pipe-in-Pipe (PiP) where a tunnel wall and its surrounding
infinite soil are modelled as two concentric pipes. The inner pipe represents the tunnel wall and is modelled
using the thin shell theory. The outer pipe, with its outer radius being set to infinity, represents an infinite soil
with a cylindrical cavity and is modelled using the elastic continuum theory. The PiP model is computationally
efficient on account of the uniformity along and around the tunnel.

The PiP model has been recently validated against the coupled FE–BE model for the case of a tunnel
embedded within a full-space [11]. A good agreement is achieved between results of the two models.

Hussein and Hunt [12] have developed the PiP model into a software with a user-friendly interface. The
software is available on the internet as a freeware [13] that accounts for a train running on a floating-slab track
in the tunnel. The software calculates the power spectral density (PSD) of the vertical displacement at
any selected point in the soil for a roughness excitation of a unit value (i.e. white noise). The software
also calculates the insertion gain (IG), which is the ratio between the PSD displacement before and after
changing parameters of the track, tunnel or soil. The latest version of the software plots the displace-
ment contours around the tunnel and accounts for a bedrock layer below the tunnel using the mirror-image
method [12,13].

The study presented in this paper is used in Ref. [14], where a new method is presented for evaluating
vibration countermeasures in underground tunnels. It should be noted that the PiP model as reported by
Forrest and Hunt does not account for a free surface. A computationally efficient model that is based on the
PiP model and accounts for a free surface is presented in Ref. [15].



ARTICLE IN PRESS
M.F.M. Hussein, H.E.M. Hunt / Journal of Sound and Vibration 305 (2007) 401–431 403
Another model for calculating vibration from underground railways is presented by Grundmann and
Muller [16]. The model accounts for circular and non-circular tunnels in a full-space and a half-space. To
account for a circular tunnel in a full-space, the shell theory or the FE method is used for the tunnel and the
elastic continuum theory is used for the soil. To account for a non-circular tunnel in a full-space, the model is
divided into two parts by a virtual cylindrical surface that encloses the tunnel wall. The first is the internal part
and it consists of the tunnel wall and soil that lies within the virtual cylinder. This part is modelled using the
FE method. The second part is the homogeneous infinite space with an internal cylindrical boundary and this
is modelled using the elastic continuum theory. A half-space is modelled by using superposition of two
boundary value problems [17,18]. These are: (1) a tunnel embedded in a full-space and (2) an elastic half-space.

The current paper builds on the work of Forrest and Hunt [9,10]. There are three main features of the new
work. The first is that the displacements of the PiP model are calculated for anti-symmetrical inputs on the
tunnel wall. This allows calculation of the response of the PiP model for tangential forces applied on the tunnel
wall. Note that in the work of Forrest and Hunt, the displacements of the PiP model are calculated for
symmetrical loads (about one of the tunnel axis-of-symmetry in the cross-sectional plane) and therefore
tangential inputs to the tunnel are not modelled. The second feature is that three different arrangements of
slab bearings are considered. The track is coupled to the PiP model via two lines, three lines and uniform
support. This is done to identify a way of controlling vibration from underground railways by changing the
slab connectivity. The uniform support is used to model the direct fixation case by setting the stiffness of slab
bearings to infinity. In reality, a floating slab is mounted on a thick layer of concrete in the base of the tunnel.
Such a layer can be modelled as an extra directly-fixed slab as demonstrated below. The inclusion of this layer
is currently under development by the authors. The third feature is that dispersion curves of the PiP model and
the track model are investigated. This provides a better understanding of the vibration results for harmonic
loads applied on the rails.

This paper falls into five sections. Section 2 presents the model and provides the necessary equations to
calculate displacements of the track for different types of support distribution, i.e. slab-bearings distribution.
Section 3 shows the calculation of Frequency Response Functions (FRFs), including those for the PiP model.
Section 4 demonstrates the method used to express the stiffness of slab bearings. Section 5 investigates the
dispersion characteristics of the model and discusses the displacement results of the soil due to any input loads
on the rails.

2. Formulation of the model

Three distribution of supports, i.e. slab bearings are considered in this section. Floating slabs are coupled to
the tunnel via two lines, three lines or uniform support resulting in three different models. These models are
shown in Fig. 1(a–c) and are analysed in the following three sections, respectively. Note that the soil is
considered in the formulation but not shown in the figure. The slab is modelled in both bending and torsion.
The purpose of the analysis is to calculate the displacements of the rails, slab and PiP model in the
wavenumber–frequency domain. The reader with little knowledge about coupling in the wavenumber–
frequency domain is referred to Appendix A in Ref. [19] where the method is illustrated.
at  

bt

bb  

 

rt  

�

Fig. 1. Floating-slab tracks attached to the tunnel wall via: (a) two lines of support, (b) three lines of support and (c) uniform layer.

Railpads and slab bearings are continuous along the tunnel.
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2.1. Track with two lines of support

Fig. 2a shows the model, where all forces are in the form F ¼ ~FeiðotþxxÞ and all displacements are in the form
y ¼ ~yeiðotþxxÞ. Two forces are applied on the left and the right rails denoted F1 and F2, respectively. The rails
are assumed to vibrate only in the vertical direction as described by y1 and y2. The vertical, horizontal and
rotational displacements of the slab are described by y3, y4 and y5, respectively.

Fig. 2b shows the forces and displacements on the free body diagrams of the rails and the slab. Fig. 2c shows
the forces on the left railpads and the left support. The tunnel displacements at the contact points with the slab
bearings are shown in Fig. 2d. The model has nine degrees of freedom and the input forces are only allowed at
two degrees of freedom, i.e. on the rails. For given values of ~F 1 and ~F2, the displacements and induced forces
are calculated by writing the equilibrium and compatibility equations in the wavenumber–frequency domain.
Equations of equilibrium of the left and right rails read

~y1 ¼
~Hrð ~F 1 � ~Gr1Þ (1)

and

~y2 ¼
~Hrð ~F2 � ~Gr2Þ, (2)

where ~Hr is the FRF of one of the rails in the vertical direction, as the two rails are identical, ~Gr1 and ~Gr2 are
the forces transmitted to the slab from the left and the right rails, respectively. The equations of equilibrium of
the slab in the vertical, horizontal and rotational directions are:

~y3 ¼
~Hvð� ~P1 cos c� ~P2 cos cþ ~Q1 sin c� ~Q2 sin cþ ~Gr1 þ ~Gr2Þ, (3)

~y4 ¼
~Hhð� ~P1 sin cþ ~P2 sin c� ~Q1 cos c� ~Q2 cos cÞ (4)

and

~y5 ¼
~Hgfð ~Gr1 � ~Gr2Þat � ð ~Q1 þ

~Q2Þ½rt � ðrt � bbÞ cos c� þ ð ~P1 � ~P2Þðrt � bbÞ sin cg, (5)

where ~Hv, ~Hh and ~Hg are the FRFs of the slab in the vertical, horizontal and rotational directions,
respectively, and their calculations will be shown later, c is the central angle of the bearings (see Fig. 1a), rt the
inner radius of the tunnel, at the horizontal distance between the slab centre and either the left or the right rail
and bb the vertical distance between the slab centre and the bottom of the slab. Note that this is equivalent to
the distance between the slab centre and the tunnel invert as the bearing’s height is relatively small.

The equilibrium equations of the railpads are given by

~Gr1 ¼ kr ~y1 � kr ~y3 � krat ~y5 (6)

and

~Gr2 ¼ kr ~y2 � kr ~y3 þ krat ~y5, (7)

where kr is the normal stiffness of the railpads.
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Fig. 2. Modelling a track on two lines of support: (a) external forces on the rails and degrees of freedom of the track, (b) free-body

diagrams of the rails and the slab, (c) forces on the left railpad and left slab bearings and (d) the tunnel wall displacements at the interface.
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The equilibrium equations of the slab bearings are given by

~P1 ¼ kn½ ~y3 cos cþ ~y4 sin c� ~y5ðrt � bbÞ sin c� ~y6�, (8)

~P2 ¼ kn½ ~y3 cos c� ~y4 sin cþ ~y5ðrt � bbÞ sin c� ~y7�, (9)

~Q1 ¼ ksf� ~y3 sin cþ ~y4 cos cþ ~y5½rt � ðrt � bbÞ cos c� � ~y8g (10)

and

~Q2 ¼ ksf ~y3 sin cþ ~y4 cos cþ ~y5½rt � ðrt � bbÞ cos c� � ~y9g, (11)

where kn and ks are the normal and shear stiffness, respectively, of the slab bearings.
The equilibrium equations at the inner surface of the tunnel for the PiP model are:

~y6 ¼
~H6�6

~P1 þ ~H6�7
~P2 þ ~H6�8

~Q1 þ
~H6�9

~Q2, (12)

~y7 ¼
~H7�6

~P1 þ ~H7�7
~P2 þ ~H7�8

~Q1 þ
~H7�9

~Q2, (13)

~y8 ¼
~H8�6

~P1 þ ~H8�7
~P2 þ ~H8�8

~Q1 þ
~H8�9

~Q2 (14)

and

~y9 ¼
~H9�6

~P1 þ ~H9�7
~P2 þ ~H9�8

~Q1 þ
~H9�9

~Q2, (15)

where ~Hj�k is the FRF of the PiP model, which expresses the displacement of the jth degree of freedom for a
unit input applied on the kth degree of freedom in the wavenumber–frequency domain. Calculations of these
values will be shown in Section 3.

To solve Eqs. (1)–(15), they are rewritten in matrix form as follows:

~yR ¼ ~H11
~GR þ ~H12

~FR, (16)

~yS ¼ ~H21
~Pþ ~H22

~GR, (17)

~GR ¼ ~H31 ~yR þ ~H32 ~yS, (18)

~P ¼ ~H41 ~yS þ ~H42 ~yT (19)

and

~yT ¼ ~H51
~P, (20)

where

~yR ¼ ½ ~y1; ~y2�
T; ~GR ¼ ½ ~Gr1; ~Gr2�

T; ~FR ¼ ½ ~F1; ~F2�
T; ~yS ¼ ½ ~y3; ~y4; ~y5�

T,

~P ¼ ½ ~P1; ~P2; ~Q1; ~Q2�
T; ~yT ¼ ½ ~y6; ~y7; ~y8; ~y9�

T; ~H11 ¼
� ~Hr 0

0 � ~Hr

" #
,

~H21 ¼

~Hr 0

0 ~Hr

" #
,

~H21 ¼

� ~Hv cos c � ~Hv cos c ~Hv sin c � ~Hv sin c

� ~Hh sin c ~Hh sin c � ~Hh cos c � ~Hh cos c
~Hgðrt � bbÞ sin c � ~Hgðrt � bbÞ sin c � ~Hg½rt � ðrt � bbÞ cos c� � ~Hg½rt � ðrt � bbÞ cos c�

2
64

3
75,
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~H22 ¼

~Hv
~Hv

0 0

~Hgat � ~Hgat

2
64

3
75; ~H31 ¼

kr 0

0 kr

" #
; ~H32 ¼

�kr 0 �krat

�kr 0 krat

" #
,

~H41 ¼

kn cos c kn sin c �knðrt � bbÞ sin c

kn cos c �kn sin c knðrt � bbÞ sin c

�ks sin c ks cos c ks½rt � ðrt � bbÞ cos c�

ks sin c ks cos c ks½rt � ðrt � bbÞ cos c�

2
66664

3
77775,

~H42 ¼

�kn 0 0 0

0 �kn 0 0

0 0 �ks 0

0 0 0 �ks

2
6664

3
7775

and

~H51 ¼

~H6�6
~H6�7

~H6�8
~H6�9

~H7�6
~H7�7

~H7�8
~H7�9

~H8�6
~H8�7

~H8�8
~H8�9

~H9�6
~H9�7

~H9�8
~H9�9

2
66664

3
77775.

Solving Eqs. (19) and (20) for ~P:

~P ¼ ðI4 � ~H42
~H51Þ

�1 ~H41 ~ys, (21)

where In is the identity matrix of size n� n. Solving Eqs. (16) and (18) for ~GR:

~GR ¼ ðI2 � ~H31
~H11Þ

�1
ð ~H31

~H12
~FR þ ~H32 ~ysÞ. (22)

Solving Eqs. (22) and (17) for ~ys and substituting ~P from Eq. (21):

~ys ¼ ½I3 � ~H22ðI2 � ~H31
~H11Þ

�1 ~H32 � ~H21ðI4 � ~H42
~H51Þ

�1 ~H41�
�1 ~H22ðI2 � ~H31

~H11Þ
�1 ~H31

~H12
~FR. (23)

Eqs. (23), (21) and (20) form the necessary equations to calculate ~ys, ~P and ~yT, respectively.

2.2. Track with three lines of support

This model has two more degrees of freedom compared with the previous one. These are the radial and
shear displacement of the PiP model at the tunnel invert. The model is shown in Fig. 3, with three lines of
support. The side slab bearings lie at a central angle c with the tunnel invert. The procedure followed in
Section 2.1 is applied here to calculate the displacements for this model. The equivalent set of equations
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Fig. 3. Modelling a track on three lines of support: (a) external forces on the rails and degrees of freedom of the track, (b) free-body

diagrams of the rails and the slab and (c) the tunnel wall displacements at the interface.
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corresponding to Eqs. (23), (21) and (20) are:

~ys ¼ ½I3 � ~H22ðI2 � ~H31
~H11Þ

�1 ~H32 � ~H21ðI6 � ~H42
~H51Þ

�1 ~H41�
�1 ~H22ðI2 � ~H31

~H11Þ
�1 ~H31

~H12
~FR, (24)

~P ¼ ðI6 � ~H42
~H51Þ

�1 ~H41 ~ys (25)

and

~yT ¼ ~H51
~P, (26)

where

~H21 ¼

� ~Hv cos c � ~Hv � ~Hv cos c ~Hv sin c 0 � ~Hv sin c

� ~Hh sin c 0 ~Hh sin c � ~Hh cos c � ~Hh � ~Hh cos c
~Hgðrt � bbÞ sin c 0 � ~Hgðrt � bbÞ sin c � ~Hg½rt � ðrt � bbÞ cos c� � ~Hgbb � ~Hg½rt � ðrt � bbÞ cos c�

2
64

3
75,

~H41 ¼

kn cos c kn sin c �knðrt � bbÞ sin c

kn 0 0

kn cos c �kn sin c knðrt � bbÞ sin c

�ks sinc ks cos c ks½rt � ðrt � bbÞ cos c�

0 ks ksbb

ks sin c ks cos c kn½rt � ðrt � bbÞ cos c�

2
6666666664

3
7777777775
,

~H42 ¼

�kn 0 0 0 0 0

0 �kn 0 0 0 0

0 0 �kn 0 0 0

0 0 0 �ks 0 0

0 0 0 0 �ks 0

0 0 0 0 0 �ks

2
6666666664

3
7777777775

and

~H51 ¼

~H6�6
~H6�7

~H6�8
~H6�9

~H6�10
~H6�11

~H7�6
~H7�7

~H7�8
~H7�9

~H7�10
~H7�11

~H8�6
~H8�7

~H8�8
~H8�9

~H8�10
~H8�11

~H9�6
~H9�7

~H9�8
~H9�9

~H9�10
~H9�11

~H10�6
~H10�7

~H10�8
~H10�9

~H10�10
~H10�11

~H11�6
~H11�7

~H11�8
~H11�9

~H11�10
~H11�11

2
6666666664

3
7777777775
.

All the other matrices and vectors in Eqs. (24)–(26), are same as defined in Section 2.1.

2.3. Track with uniform support

The floating slab in this case is connected to the PiP model via a uniform support as shown in Fig. 4 with a
central angle c between the tunnel invert and the bearings end. The normal and shear stiffness of the bearings
have units of N/m/m2 rather than N/m/m as in the previous sections. Displacements of the track and the PiP
model are calculated by writing the equilibrium equations in the wavenumber–frequency domain.

The equilibrium equations of the rails are identical to Eqs. (1) and (2). The equilibrium equations of the slab
are written as

~y3 ¼
~Hv

~Gr1 þ ~Gr2 �

Z c

�c

~Py cos y rt dy�
Z c

�c

~Qy sin y rt dy
� �

, (27)
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Fig. 4. Modelling a track on a uniform support: (a) external forces on the rails and degrees of freedom of the track, (b) free-body diagrams

of the rails and the slab and (c) the tunnel wall displacement at angle y at the interface.
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~y4 ¼
~Hh

Z c

�c

~Py sin y rt dy�
Z c

�c

~Qy cos y rt dy
� �

(28)

and

~y5 ¼
~Hg ½ ~Gr1 � ~Gr2� at �

Z c

�c

~Pyðrt � bbÞ sin y rt dy�
Z c

�c

~Qy½rt � ðrt � bbÞ cos y�rt dy
� �

, (29)

where ~Py and ~Qy are the induced forces for the PiP model on the tunnel wall at a central angle y as shown in
Fig. 4b. The equilibrium equations for the railpads are identical to Eqs. (6) and (7). The equilibrium equations
for slab bearings at angle y are written as

~Py ¼ kn½ ~y3 cos y� ~y4 sin yþ ~y5ðrt � bbÞ sin y� ~yyN � (30)

and

~Qy ¼ ksf ~y3 sin yþ ~y4 cos yþ ~y5½rt � ðrt � bbÞ cos y� � ~yyT �, (31)

where ~yyN and ~yyT are the displacements of the tunnel wall at a central angle y as shown in Fig. 4c. The
equilibrium equations of the PiP model are written as follows:

~yyN ¼

Z c

�c

~Pt ~H
NN

yt rt dtþ
Z c

�c

~Qt
~H

NT

yt rt dt
� �

(32)

and

~yyT ¼

Z c

�c

~Pt ~H
TN

yt rt dtþ
Z c

�c

~Qt
~H

TT

yt rt dt
� �

, (33)

where ~H
NN

yt , ~H
NT

yt , ~H
TN

yt , ~H
TT

yt are the FRFs of the PiP model and express the displacement at angle y for a unit
load applied at angle t. The left superscript determines the direction, where the load at angle y is applied. N is
normal to the tunnel wall and T is tangential. The right superscript determines the direction of the calculated
displacement at angle t.

The integrations in the previous equations can be performed numerically. The trapezium rule [20] is used,
where the collocation points are evenly distributed along the integration path. Eqs. (27)–(29) can be written as

~y3 ¼
~Hv

~Gr1 þ ~Gr2 �
XM
j¼1

cj
~Pj cos yj rtDy�

XM
j¼1

cj
~Qj sin yj rtDy

 !
, (34)

~y4 ¼
~Hh

XM
j¼1

cj
~Pj sin yj rtDy�

XM
j¼1

cj
~Qj cos yj rtDy

 !
(35)
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and

~y5 ¼
~Hg ½ ~Gr1 � ~Gr2�at �

XM
j¼1

cj
~Pjðrt � bbÞ sin yj rtDy�

XM
j¼1

cj
~Qj ½rt � ðrt � bbÞ cos yj�rtDy

( )
, (36)

where M is the number of collocation points, cj ¼ 0.5 for j ¼ 1, M and cj ¼ 1 for all other j, Dy ¼ 2c/(M�1)
and yj ¼ �cþ ðj � 1ÞDy.

Using the same collocation points as in Eqs. (34)–(36), Eqs. (32) and (33) can be written as

~yiN ¼
XM
j¼1

cj
~Pj
~H

NN

ij rtDyþ
XM
j¼1

cj
~Qj
~H

NT

ij rtDy

 !
(37)

and

~yiT ¼
XM
j¼1

cj
~Pj
~H

TN

ij rtDyþ
XM
j¼1

cj
~Qj
~H

TT

ij rtDy

 !
. (38)

Note that Dt is replaced by Dy in the previous equations as the same collocation points are used for all
numerical integrations, i.e. Dt ¼ Dy.

To calculate the displacements of the track and the PiP model, equations of equilibrium are written in
matrix form as done in the previous two sections. Eqs. (16)–(20) can be written again here to calculate the
model displacements. Some notation of these equations is different and is defined as

~P ¼ ½ ~P1; ~P2; . . . ; ~PM ; ~Q1; ~Q2; . . . ; ~QM �
T,

~H21 is 3� 2M matrix and can be written as

~H21 ¼ ~H
11

21;
~H
12

21

h i
,

where

~H
11

21 ¼ rtDy

�c1Hv cos y1 �c2Hv cos y2 . . . �cMHv cos yM

c1Hh sin y1 c2Hh sin y2 . . . cMHh sin yM

�c1 ~Hgðrt � bbÞ sin y1 �c2 ~Hgðrt � bbÞ sin y2 . . . �cM
~Hgðrt � bbÞ sin yM

2
64

3
75,

~H
12

21 ¼ rtDy

�c1Hv sin y1 �c2Hv sin y2 . . . �cMHv sin yM

�c1Hh cos y1 �c2Hh cos y2 . . . �cMHh cos yM

�c1 ~Hg½rt � ðrt � bbÞ cos y1� �c2 ~Hg½rt � ðrt � bbÞ cos y2� . . . �cM
~Hg½rt � ðrt � bbÞ cos yM �

2
64

3
75.

~H41 is 2M� 3 matrix and can be written as

~H41 ¼

~H
11

41

~H
21

41

2
4

3
5,

where

~H
11

41 ¼ kn

cos y1 � sin y1 ðrt � bbÞ sin y1
cos y2 � sin y2 ðrt � bbÞ sin y2

..

. ..
. ..

.

cos yM � sin yM ðrt � bbÞ sin yM

2
666664

3
777775,
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~H
21

41 ¼ ks

sin y1 cos y1 rt � ðrt � bbÞ cos y1
sin y2 cos y2 rt � ðrt � bbÞ cos y2

..

. ..
. ..

.

sin yM cos yM rt � ðrt � bbÞ cos yM

2
666664

3
777775,

~H42 is 2M� 2M matrix and can be written as

~H42 ¼

~H
11

42
~H
12

42

~H
21

42
~H
22

42

2
4

3
5,

where ~H
11

42 ¼ �knI2M , ~H
12

42 ¼ ZðM ;MÞ, ~H
21

42 ¼ ZðM ;MÞ and ~H
22

42 ¼ �ksI2M . Z(M,M) is M�M matrix with
zero elements.
~H51 is 2M� 2M matrix and can be written as

~H51 ¼

~H
11

51
~H
12

51

~H
21

51
~H
22

51

2
4

3
5,

where

~H
11

51 ¼ rtDy

c1H
NN
11 c2H

NN
12 . . . cMHNN

1M

c1H
NN
21 c2H

NN
22 . . . cMHNN

2M

..

. ..
. ..

. ..
.

c1H
NN
M1 c2H

NN
M2 . . . cMMHNN

MM

2
666664

3
777775,

~H
12

51 ¼ rtDy

c1H
NT
11 c2H

NT
12 . . . cMHNT

1M

c1H
NT
21 c2H

NT
22 . . . cMHNT

2M

..

. ..
. ..

. ..
.

c1HNT
M1 c2H

NT
M2 . . . cMMHNT

MM

2
666664

3
777775,

~H
21

51 ¼ rtDy

c1HTN
11 c2H

TN
12 . . . cMHTN

1M

c1HTN
21 c2H

TN
22 . . . cMHTN

2M

..

. ..
. ..

. ..
.

c1HTN
M1 c2H

TN
M2 . . . cMMHTN

MM

2
666664

3
777775,

~H
22

51 ¼ rtDy

c1H
TT
11 c2H

TT
12 ::: cMHTT

1M

c1H
TT
21 c2H

TT
22 ::: cMHTT

2M

..

.

c1HTT
M1

..

.

c2HTT
M2

..

.

� � �

..

.

cMMHTT
MM

2
666664

3
777775.

The model displacements can now be calculated from the following equations, compare with Eqs. (24)–(26):

~ys ¼ ½I3 � ~H22ðI2 � ~H31
~H11Þ

�1 ~H32 � ~H21ðI2M � ~H42
~H51Þ

�1 ~H41�
�1 ~H22ðI2 � ~H31

~H11Þ
�1 ~H31

~H12
~FR, (39)

~P ¼ ðI2M � ~H42
~H51Þ

�1 ~H41 ~ys (40)
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and

~yT ¼ ~H51
~P. (41)

3. Evaluation of FRFs

To calculate the displacements at a given wavenumber and angular frequency (x,o) for any of the models
described in the previous sections, values of FRFs are to be calculated firstly at the same wavenumber and
angular frequency. FRF of the rails is calculated in bending only while FRFs of the slab are calculated in both
bending and torsion. FRFs of the coupled tunnel and the surrounding soil are calculated using the PiP model.

3.1. FRFs of the rails and slab in bending

The rails and the slab are modelled as Euler–Bernoulli beams in bending. The governing differential
equation for an infinite Euler–Bernoulli beam subjected to external force F(x,t) is given by

EI
q4y
qx4
þm

q2y
qt2
¼ F ðx; tÞ, (42)

where EI is the bending stiffness of the beam and m is the mass of beam per unit length. Transforming this
equation to the wavenumber–frequency domain results in

EIx4 ~y�mo2 ~y ¼ ~F . (43)

The FRF for the beam bending is defined as the beam displacement due to a unit force in the
wavenumber–frequency domain. Applying this definition results in

~Hy ¼
~y
~F
¼

1

EIx4 �mo2
. (44)

3.2. FRFs of the slab in torsion

The classical theory of torsion is applied using St. Venant hypothesis. This assumes warping free cross-
sections. The governing differential equation for an infinite beam subjected to external torque T(x,t) is given
by

J
q2g
qt2
� GK

q2g
qx2
¼ Tðx; tÞ, (45)

where GK is the torsional rigidity of the beam (G is the shear modulus, K the torsion constant of the beam
section), and J the polar moment of inertia. Transforming this equation to the wavenumber–frequency
domain results in

�Jo2 ~gþ GKx2~g ¼ ~T . (46)

The FRF for the beam torsion is defined as the beam rotation for a unit torque in the
wavenumber–frequency domain. Applying this definition results in

~Hg ¼
~g
~T
¼

1

GKx2 � Jo2
. (47)

3.3. FRFs of the PiP model

Unlike FRFs of beams, calculating FRFs of the PiP model are not straightforward. This is because another
coordinate is involved in the calculations. This coordinate is y and it describes the variation around the tunnel.
There are two types of FRFs according to the input load. In the first type, the input load is applied radially to
the tunnel wall, for instance to calculate ~H6�6, ~H7�6, ~H8�6 and ~H9�6 in Section 2.1 (see Fig. 2d). In the
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second type, the input load is applied tangentially to the tunnel wall, for instance to calculate ~H6�8, ~H7�8,
~H8�8 and ~H9�8 in Section 2.1 (see Fig. 2d). The difference between the two types is that the load and
displacements in the first type decompose into symmetrical-sinusoidal Fourier-series components, while the
second results in anti-symmetrical–sinusoidal Fourier-series components about the axis-of-symmetry of the
PiP model at the load position. To explain this point, consider calculations of ~H7�8. This FRF can be
evaluated by the following:
�
 apply a unit force in the position and the direction of y8 (see Fig. 2d) in the form F ðx; tÞ ¼ 1eðixxþotÞ;

�
 calculate the displacement in the position and the direction of y7 (see Fig. 2d). The displacement takes the

form y7ðx; tÞ ¼ ~H7�8e
ðixxþotÞ.

As discussed in Ref. [19], a unit load in the wavenumber–frequency domain at [x ¼ x̄ and o ¼ ō]
corresponds to a load with space and time variation eðix̄xþōtÞ in the space–time domain. Transforming the
quantity ½1dðx� x̄Þdðo� ōÞ� to the space–time domain confirms this result.

To include the variation around the tunnel wall, the load F ðx; tÞ ¼ 1eðixxþotÞ can be written in a vector form
to express the longitudinal, the tangential and the radial load distribution in terms of y as

Fðx; y; tÞ ¼

0

dðyÞ=rt

0

2
64

3
75eðixxþotÞ, (48)

where y is measured in a clockwise direction and is equal to zero at the position of the applied load. The
distribution with respect to y can be written as a summation of Fourier series, see Ref. [20] for example, with
periodicity 2p. This is because the load does not change by moving from y to y+2p around the tunnel.
Therefore, Eq. (48) can be written as

Fðx; y; tÞ ¼
X1
n¼0

cxn sin ny

cyn cos ny

crn sin ny

2
64

3
75eiðxxþotÞ, (49)

where cy0 ¼ 1=2prt and cyn ¼ 1=prt for n ¼ 1,2,y,N, cxn ¼ 0 and crn ¼ 0 for all n.
It should be noted that the load components in Eq. (49) for a given cross-sectional wavenumber n, is anti-

symmetrical about y ¼ 0 and is identified in this context as the second loading combination. The first loading
combination, i.e. a symmetrical input load, is calculated by replacing any cos ny in Eq. (49) by sin ny and vice
versa. For general anti-symmetrical stresses applied on the PiP model in the form:

qðx; y; tÞ ¼

qx

qy

qr

2
64

3
75 ¼

~qx sin ny

~qy cos ny

~qr sin ny

2
64

3
75 eiðxxþotÞ. (50)

The displacement of the PiP model at the inner surface of the tunnel wall can be written in the form:

uðx; y; tÞ ¼

ux

uy

ur

2
64

3
75 ¼

~ux sin ny

~uy cos ny

~ur sin ny

2
64

3
75eiðxxþotÞ. (51)

Fig. 5 shows the sign convention for the stresses and displacements in Eqs. (50) and (51). It also shows the
composition of a tangential load applied at the tunnel invert into its Fourier components. The PiP model
displacements due to the load in Eq. (49) can be calculated using Eqs. (50) and (51) for each n, in which ~ux, ~uy

and ~uz are significant. The total displacement is calculated by summing the displacements for all values of n.



ARTICLE IN PRESS

Fig. 5. Schematic showing the decomposition of a load eiðotþxxÞ applied tangentially at the tunnel invert: (a, b) show the spatial distribution

of the load, (c) shows the steady state and the first three Fourier components of the load. (d, e) Show the sign convention of the

displacements and stresses respectively. The cross sign means perpendicular to the page, into it.
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The PiP model displacement given by Eq. (51) decreases by increasing the value of n and hence a limited
number of n should be included in the calculations to get a converged solution. More details about the PiP
model and the FRF for symmetrical and anti-symmetrical inputs are given in Section 5.
4. Stiffness of slab bearings

The stiffness of slab bearings is expressed in terms of the vertical natural frequency of the slab modelled
as a beam on Winkler foundation, where the foundation stiffness is equal to the stiffness of the slab
bearings. This is a widely accepted way in the industry to describe floating-slab tracks. A fnHz floating
slab is a slab that has a cut-on frequency at fnHz for a rigid tunnel wall. It should be noted that in re-
ality the vertical cut-on frequency of the slab is shifted due to the influence of the rails, tunnel and
ground, which are not considered when calculating the cut-on frequency. However, this shift is typically
small for soft slab bearings and much lighter rails compared with the slab. For a floating slab with a
mass ms and vertical stiffness of slab bearings kv, the cut-on frequency is calculated from the following
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� � �

Fig. 6. 2D models of floating slabs connected to the tunnel wall via: (a) two lines of support, (b) three lines of support and (c) uniform

support.
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relationship:

f n ¼
1

2p

ffiffiffiffiffiffi
kv

ms

s
. (52a)

Using Eq. (52a) for the models shown in Fig. 6, the calculated natural frequency of the floating slabs are: for
two lines of support:

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knð2 cos2 cþ 2< sin2 cÞ

ms

s
, (52b)

for three lines of support:

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knð2 cos2 cþ 1þ 2< sin2 cÞ

ms

s
, (52c)

for uniform support:

f n ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtkn½cð1þ<Þ þ 0:5ð1�<Þ sin 2c�

ms

s
, (52d)

where < is the ratio of the shear stiffness to the normal stiffness of the slab bearings, i.e. < ¼ ks=kn.
A directly-fixed slab can be modelled by using the uniform support and setting the natural frequency to a

number much greater than the highest frequency of interest in the analysis.

5. Dispersion characteristics of the model

In this section, FRFs of the model are investigated by studying the dispersion characteristics of the PiP
model and the track on rigid foundation model. It is useful before that to study the dispersion behaviour of the
separate components of the PiP model, i.e. the free tunnel modelled as a thin shell and the free soil modelled as
a full-space with a cylindrical cavity. The reader is referred to Refs. [19,21,22] which provide a good
introduction about wave propagation and dispersion equations.

As will be seen in this section, damping is set to zero when studying the dispersion characteristic of models.
This is done when solving the dispersion equation and also when plotting FRFs in the wavenumber–frequency
domain. Introducing damping attenuates the peaks at the dispersion curves (as propagating waves gain an
attenuation factor) and makes propagating solutions less easy to identify in FRF plots. Note that damping
should be introduced when transforming results to the space domain to transform infinite peaks at dispersion
curves to finite ones.

Table 1 shows the parameters of the tunnel, soil and track, which are used for the analysis in the following
sections. The parameters used in the table are defined as follows: E is the elastic modulus; n the Poisson’s ratio;
r is the density; rc is the cavity radius; l and m are Lame’s constants; cp and cs are the compression and shear
wave velocities; a is the tunnel mean radius and h is the tunnel thickness. The track parameters are defined in
Section 2.



ARTICLE IN PRESS

Table 1

Parameter values used to model a railway track in a tunnel

Soil Tunnel Track

E ¼ 550� 106 Pa E ¼ 50� 109 Pa EIr ¼ 5� 106 Pam4

n ¼ 0:44 n ¼ 0:3 mr ¼ 50kg=m

r ¼ 2000kg=m3 r ¼ 2500kg=m3 kr ¼ 20� 106 N=m=m
rc ¼ 3:00m rt ¼ 2:75m EIv ¼ 1430� 106Pam4

l ¼ 1:4� 109 Pa h ¼ 0:25m EIh ¼ 41699� 106 Pam4

m ¼ 191� 106 Pa l ¼ 28:8� 109 Pa ms ¼ 3500kg=m

cp ¼ 944m=s m ¼ 19:2� 109 Pa GK ¼ 1:875� 109 Pam4

cs ¼ 309m=s cp ¼ 5189m=s J ¼ 1310kgm2=m
cs ¼ 2774m=s at ¼ 0:75m

bt ¼ 0:2m
bb ¼ 0:3m
< ¼ 1:0 for f n !1 and < ¼ 0:5 otherwise
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5.1. Dispersion characteristics of the PiP model

This section is divided into three parts discussing the solution of the dispersion equations for: the tunnel wall
modelled as a thin shell, the surrounding soil modelled using the elastic continuum theory and the coupled
tunnel wall and soil.

6. The tunnel wall modelled as a thin shell

The equilibrium equation of a thin cylindrical shell in the wavenumber–frequency domain is given by

½A�

~uxn

~uyn

~urn

2
64

3
75 ¼ �að1� n2Þ

Eh

~qxn

~qyn

~qrn

2
64

3
75, (53)

where A ¼ A1 for the first loading combination, i.e. symmetrical input (see Eq. (6) of Ref. [9]) and A ¼ A2 for
the second loading combination, i.e. anti-symmetrical input. The elements of A2 are calculated by the authors
as shown in Appendix A, while the elements of A1 are calculated by Forrest and Hunt [9] and can be written in
terms of A2 elements as follows:

A1 ¼

1 �1 1

�1 1 �1

1 �1 1

2
64

3
75nA2, (54)

where (�) means an element to element multiplication. The unforced vibration (free vibration) solution of Eq.
(53) is calculated by setting the stress vector to zero, this results in two possible solutions:

a trivial solution; i:e: ~uxn ¼ 0; ~uyn ¼ 0; ~urn ¼ 0,

a non�trivial solution; i:e: Dðx;oÞ ¼ jAj ¼ 0: ð55Þ

It can be shown that the determinants of A1 and A2 are identical by calculating the determinants of both the
matrices. It can be alternatively shown by using the following determinants property. For two square matrices
B and G of the same size, if B results from multiplying one of G’s rows or columns by a constant c, then the
relationship between the determinants of the two matrices is, see Ref. [23], for example

jBj ¼ cjGj. (56)

Note that A1 is calculated by multiplying the second row and then the second column of A2 by �1 and hence
the two matrices have the same determinant. Eq. (55) is known as the dispersion equation. This equation can
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be written as a polynomial of the eighth degree as

Dðx;oÞ ¼ a1x
8
þ a2x

6
þ a3x

4
þ a4x

2
þ a5, (57)

where a1, a2, a3, a4 and a5 are real quantities (for no damping) and are functions of the angular frequency o,
the cross-sectional wavenumber n and the shell parameters.

For given n and o, there are eight roots for Eq. (57). If x is a root, �x is also a root due to absence of odd
powers in Eq. (57). Also x* is another root because the coefficients a1, a2,y, a5 are real quantities. This means
for each root x, there are three other roots [�x, x*, �x*]. Note that for real values of o, if the value of x is real
then it is represents a propagating wave due to the factor eiðotþxxÞ. An imaginary and a complex value of x
represent an evanescent wave and a leaky wave, respectively, see Appendix A of Ref. [19] for example.

Fig. 7 shows the solutions of the dispersion equation calculated by Matlab [24] built-in function ‘‘roots’’ for
the tunnel parameters given in Table 1. For n ¼ 0, there are no evanescent waves at the frequency range of
interest. Two non-dispersive waves can propagate freely at all frequencies: the compression wave and the shear
wave (torsional wave). The compression wave propagates with phase velocity equal to

ffiffiffiffiffiffiffiffiffi
E=r

p
¼ 4472m=s and

this is equal to the pressure wave velocity of cylinders [25] and is slower than the velocity of compression wave
in a full-space (5189m/s) with the same material properties as the shell (see Table 1). This is because Poisson’s
effect is restraint in a full-space while it is not in the shell case. Unlike the compression wave, the torsional
wave propagates with velocity equal to the shear wave velocity in a full-space, which is equal to 2774m/s.

For n ¼ 1, there are propagating waves at all frequencies while evanescent waves exist below 153.5Hz with
wavenumbers smaller than 0.16 rad/m. Leaky waves exist at all frequencies. The real parts of wavenumbers
associated with the leaky waves are greater than the wavenumbers of the propagating waves and hence leaky
waves have smaller wavelengths compared with the propagating waves. The imaginary parts of wavenumbers
associated with the leaky waves are greater than wavenumbers for evanescent waves and hence they are much
attenuated. At 153.6Hz, there is a cut-on frequency, above which two waves with different wavelengths
propagate. The case for n ¼ 2 is important, because it is the minimum cross-sectional wavenumber in which
waves do not propagate below a certain frequency (17.5Hz in this case).

Fig. 8a shows the dispersion curves for all values of n. For values of n greater than 5, waves cannot
propagate freely within the frequency range of interest. The curves in Fig. 8a are assembled using the real
solutions for the range n ¼ 0–5. Dispersion curves are of particular interest, as FRFs in the
wavenumber–frequency domain exhibit peaks (or infinite response in absence of damping) at wavenumbers
and angular frequencies along these curves. Also the velocity lines can be constructed to identify the peaks in
the space–time domain [19].

The cut-on frequencies of the thin shell are associated with zero wavenumbers, i.e. a plane-strain problem.
Hence, the shell behaves as a 2D ring and cut-on frequencies can be calculated from the corresponding natural
frequencies of a ring as verified by Forrest and Hunt [9].

Fig. 8b shows the dispersion curves of the tunnel modelled as a thick cylindrical shell using the elastic
continuum theory. The work of Gazis [26–28] is employed to calculate these results. Gazis uses the elastic
continuum theory to calculate dispersion curves for cylindrical shells. The formulation is the same as presented
by Forrest and Hunt [9]. However, Gazis uses both the Bessel and the modified Bessel functions to solve the
differential equations and this leads to dispersion equation with pure-real values but Forrest and Hunt use
only the modified Bessel functions to solve differential equations of the shell and this leads to dispersion
equation with complex values at some wavenumbers and angular frequencies. Both formulations are used in
this work; Gazis’ formulation and Forrest and Hunt’s formulation. Identical results are obtained (see Fig. 8b).
For Forrest and Hunt’s formulation, the dispersion equation is calculated by solving the following equation
(see Eq. (31) in Ref. [9]):

½Tr�r¼a�h=2

½Tr�r¼aþh=2

�����
����� ¼ 0. (58)

It can be proven, in the same way as done for Eq. (55), that Eq. (58) results in the same expression whether
the first or the second loading combination is used. The dispersion equation is solved by using
Newton–Raphson method. Details of this method are found in the next section. By comparing Fig. 8a and
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Fig. 7. Solutions of the dispersion equation of a thin shell, where only roots in the first quarter of the complex wavenumbers for

n ¼ [0,1,2,3] are plotted. The left column of subfigures shows the real part of the roots, where the right column shows the imaginary part of

the roots. Each root is plotted with different line style, i.e. (-), (- -), (-.) and (..).
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Fig. 8. Dispersion curves of a free tunnel wall modelled as (a) thin shell and (b) thick shell using the elastic continuum theory.

Fig. 9. Radial displacement FRF of the free tunnel wall at y ¼ 0 under a radial load.
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b, it can be seen that the dispersion curves are calculated with good accuracy using the thin shell formulation
in the range of frequency of interest.

Fig. 9 shows the radial FRF of a thin shell calculated for a radial load eiðotþxxÞ applied at y ¼ 0, where the
response is calculated at the excitation line. It can be seen that peaks occur at the dispersion curves as shown in
Fig. 8a with no torsional waves propagating for n ¼ 0 as shown in Fig. 8a. This is because torsional waves are
not excited by radial loads.

Fig. 10a shows the displacement at x ¼ 0, y ¼ 0, for a radial harmonic load applied at x ¼ 0 with
circumferential distribution cos(2y). Damping is introduced to the shell by using a complex modulus of
elasticity. This is done by replacing E by E2 in Eq. (53), where E2 ¼ E(1+iZE), ZE is the hysteretic loss factor
and is taken equal to 5%. The discrete Fourier transform DFT [29] is used to transform results from the
wavenumber domain to the space domain with spatial interval dx ¼ 0.25m and number of points N ¼ 214. A
peak occurs at 17.5Hz corresponding to the cut-on frequency for n ¼ 2 in Fig. 7.

To examine the existence of propagating waves, the response is calculated away from the excitation point
with a distance sufficient to allow decaying of evanescent and leaky waves. In Fig. 11a, the displacement is
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Fig. 10. The response at the excitation point of a free tunnel wall modelled as a thin shell for radial input at x ¼ 0 with n ¼ 2;

(a) displacement and (b) phase.

0 20 40 60 80 100 120 140 160 180 200
-100

-80

-60

-40

-20
n=2, x=100, θ=0 n=2, x=100, θ=0 

frequency [Hz]

W
. m

ag
. [

dB
re

f m
m

/k
N

]

0 20 40 60 80 100 120 140 160 180 200

 -100

0

100

frequency [Hz]

W
. p

ha
se

 [
de

g]

(a) (b)

Fig. 11. The response at 100m away from the excitation point of an isolated tunnel wall modelled as a thin shell for radial input with

n ¼ 2; (a) displacement and (b) phase.
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Fig. 12. The isolated thin shell response along the shell with y ¼ 0 for a radial harmonic load applied at x ¼ 0 with n ¼ 2 and excitation

frequency: (a) 10Hz and (b) 100Hz.
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calculated at 100m away from the excitation point. It is clear that the response is small below the cut-on
frequency. Fig. 11b shows the phase calculated at this point. The phase fluctuates around the zero value and
less fluctuation is expected for results calculated at further distance from the excitation point. This can be
explained by calculating the rate of change of phase with respect to frequency, which can be expressed as

dj
df
¼ �

dð2pL=lÞ
df

¼
�2pL

cg

, (59)

where j is the phase of the measuring point, cg is the group velocity, l is the wavenumber and L is the distance
between the excitation point and the measuring point. Eq. (59) is true providing that at the excitation point the
rate of change of the phase is small and the propagating wave is dominating the response. Applying this
equation for instance for n ¼ 2, L ¼ 100m, f ¼ 102Hz and cg ¼ 1300.15m/s from Fig. 7, results in a rate of
change of the phase equal to �0.483 rad/Hz which matches with the results calculated from Fig. 11b.

Fig. 12(a and b) shows the tunnel radial displacement along its length. At frequency below the cut-on
frequency where the response is dominated by the leaky waves, see also Fig. 7 (for n ¼ 2), the curve has
minima at 20.4, 48.25, 76 and 103.6m, and hence with approximately 27.7m periodicity. These are due to
interference between leaky waves. For a displacement described by two leaky waves with complex
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wavenumbers x1 ¼ g1+iZ1 and x2 ¼ g2+iZ2, the response y can be written as

y ¼ c1e
iðg1þiZ1Þx þ c2e

iðg2þiZ2Þx, (60)

where c1 and c2 are the coefficients associated with each wave and can be complex quantities. Eq. (60) can be
written in different form as

y ¼ jc1je
iðg1þiZ1Þxþif1 þ jc2je

iðg2þiZ2Þxþif2 , (61)

where f1 and f2 are the phase of c1 and c2, respectively. Eq. (61) can be written as

y ¼ jc1je
�Z1x½cosðg1xþ f1Þ þ i sinðg1xþ f1Þ� þ jc2je

�Z2x½cosðg2xþ f2Þ þ i sinðg2xþ f2Þ�. (62)

Multiplying by the conjugate and simplifying results in

y yn ¼ jyj2 ¼ jA1j
2e�2Z1x þ jA2j

2e�2Z2x þ 2jA1j jA2je
�ðZ2þZ2Þx cos½ðg1 � g2Þxþ f1 � f2�. (63)

The oscillation in the previous equation arises from the cosine term with a period equal to 2p/(g1�g2). From
Fig. 7 and for n ¼ 2, there are four leaky waves at f ¼ 10Hz with wavenumbers 70.113+0.133i,
71.375+1.678i. Leaky waves with wavenumbers 70.113+0.133i are dominating the response away from the
load as those with wavenumbers 71.375+1.678i have higher decaying factors (due to the higher imaginary
parts). Substituting g1 ¼ 0.113 and g2 ¼ �0.113, the oscillation period is 27.8m, which agrees with the results
in Fig. 12a.

The response at a frequency below the cut-on frequency decays rapidly compared with a frequency above
the cut-on frequency. This can be confirmed by comparing Figs. 12a and 13b, and also by comparing Fig. 13a
and b, which show the real part of the response at frequencies of 10 and 100Hz, i.e. below and above the cut-
on frequency. The wavelength in Fig. 13b is 10.58m; equal to wavenumber 0.59 rad/m which matches with the
propagating wavenumber for f ¼ 100Hz, n ¼ 2 in Fig. 7.
7. The surrounding soil modelled as an elastic continuum

The free-vibration equation of a full-space with a cylindrical cavity is calculated by the following equation
(see Eq. (40) of Ref. [9])

TmB ¼ ½T1�r¼aB ¼ Zð3; 1Þ, (64)

where Z(3,1) is a 3� 1 vector with zero elements, Tm ¼ [T1N]r ¼ a for the first loading combination and
Tm ¼ [T2N]r ¼ a for the second loading combination. The elements of [T2N]r ¼ a can be calculated from the
following relationship (see Eq. (A.2)):

½T12� ¼

1 �1 �1

�1 1 1

1 �1 �1

2
64

3
75n½T11�. (65)
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Using the same argument which leads to Eq. (56), one can prove that j[T1N]r ¼ aj ¼ �j[T2N]r ¼ aj. Equating
these determinants to zero, both matrices lead to the same dispersion equation. Two main characteristics are
associated with the current problem:
�
 the dispersion equation is not in polynomial form but it comprises of the modified Bessel function of the
second kind and hence a different numerical method should be used to calculate the roots;

�
 unlike thin cylindrical shells in the previous section, the forced vibration solution does not consists only of

the normal wave solutions (propagating, evanescent and leaky waves), but additional solutions arise due to

the integration along the branch cuts. Note that due to the terms a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � o2=c21

q
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � o2=c22

q
that come in the elements of Tm, branch points occur at x ¼7xc and x ¼7xs, where xc ¼ o/c1 is the
wavenumber of the compression wave and xs ¼ o/c2 is the wavenumber of the shear wave.

In this section, only the real solutions of the dispersion equation are searched. Newton–Raphson method in
Ref. [30] is used to find the roots of the dispersion equation. At a given frequency and cross-sectional
wavenumber n, the iterative formula for Newton–Raphson reads

xjþ1 ¼ xj þ D with D ¼ �DðxjÞ=D0ðxjÞ, (66)

where D(xj) is the dispersion equation calculated at xj and D0(xj) is the derivative of the dispersion equation
evaluated at xj. The iteration in Eq. (66) converges if the starting guess x1 lies near a root. The derivative is
calculated using the following relationship [31]:

d

dx
TmðxÞ
�� �� ¼ d

dx
Tmð1Þ;Tmð2Þ;Tmð3Þ
�� ��

¼ _Tmð1Þ;Tmð2Þ;Tmð3Þ
�� ��þ Tmð1Þ; _Tmð2Þ;Tmð3Þ

�� ��þ Tmð1Þ;Tmð2Þ; _Tmð3Þ
�� ��, ð67Þ

where Tm(1),Tm(2),Tm(3) are the columns of matrix Tm and _TmðjÞ is a column vector which contains the first
derivative of the elements of Tm(j). The advantage of Eq. (67) is that only closed-form expressions are required
for derivatives of individual elements rather than calculating a closed-form expression of the determinant and
then differentiating term by term.

It is found that at a given frequency, the dispersion equation satisfies jTmð�xÞj ¼ jTmðxÞj and
jTmðx

n
Þj ¼ jTmðxÞjn. Hence, if x is a root, then �x and xn are also roots. Thus, for real roots, only positive

values are searched.
A Matlab [24] code is written to calculate the real positive roots of the dispersion equation. To decrease the

running time, the use of ‘‘for loops’’ is minimised. At a given frequency, a vector of M values of x is used; each
element represents a starting point. Two Matlab functions are coded to calculate the dispersion equation and
its derivative, which result into two vectors with M elements. Instead of calculating a 3� 3 matrix for each
point of the vector and then calculating the determinant, the vector is processed at once. The dispersion-
equation function calculates nine vectors (each with M elements) corresponding to the elements of Tm, and the
determinant is calculated at once using a closed-form expression for the determinant of a 3� 3 matrix.
Similarly, the dispersion-equation-derivative function calculates additional nine vectors corresponding to the
elements of the matrix derivative in Eq. (67). After some iterations, the elements of the vector from the last
iteration are compared with those from the iteration before. Those elements which have converged are taken
as solutions of the dispersion equation.

Fig. 14a shows the dispersion curves of the soil with a cylindrical cavity for the parameters given in Table 1.
In the frequency range of interest, waves with cross-sectional wavenumbers n from 0 to 5 can propagate freely
with phase velocities in the range between the shear wave velocity and the Rayleigh wave velocity. For each
cross-sectional wavenumber n, waves have cut-on frequencies at velocity equal to the shear wave velocity. By
increasing the frequencies, the phase velocity of the propagating waves decreases and approaches the Rayleigh
wave velocity. This is expected because the wavelength of the propagating wave at high frequency is small
compared to the cavity diameter. Hence, the cavity behaves as a free-surface equivalent to the free surface of a
half-space. Fig. 14b shows the phase velocities of the propagating waves. The Rayleigh wave velocity is
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Fig. 14. (a) Dispersion curves of the given soil modelled as a full-space with cylindrical cavity. (b) The phase velocity of the dispersion

curves.

Table 2

Cut-on frequencies of the soil model

n f n ðHzÞ

0 37.5

1 9.93

2 55.52

3 108.57

4 159.89

Fig. 15. FRF of the soil model for n ¼ 4 calculated at the cavity surface.
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calculated by Ref. [25] as

c3 ¼ c2ð0:87þ 1:12nÞ=ð1þ nÞ. (68)

It can be seen from Fig. 14b that there is a cut-on frequency for each cross-sectional wavenumber. The cut-
on frequencies are given in Table 2. The results given in this section are compared with the results of Bostrom
and Burden [32]. They present a study on propagation of surface waves along a cylindrical cavity. They
calculate the displacement in terms of the transverse (SH and SV) and compression components. The
dispersion equation is derived in a closed form. Using the limiting forms of the modified Bessel functions, two
simplified equations are presented to calculate the cut-on frequencies; an equation for n ¼ 0 and another
equation for nX2. These equations are used by the authors to recalculate the cut-on frequencies using the soil
parameters in Table 1. Identical results are obtained for n ¼ 0,2,3,4. However, Bostrom and Burden claim that
there is no cut-on frequency for n ¼ 1, which does not agree with the result of this work. To check this, the
dispersion equation derived by Bostrom and Burden is investigated for n ¼ 1 and it is found that it has a cut-
on frequency at the same value given in Table 2.

Fig. 15 shows the displacement FRF for n ¼ 4 calculated at the cavity surface. The sharp curve follows the
dispersion curve for n ¼ 4 in Fig. 14a for frequencies from 200Hz down to the cut-on frequency. The peaks
continue below the cut-on frequency until it gets to x ¼ 0 at about f ¼ 40Hz. Above the cut-on frequency, the
sharp curve has infinite values that are attributed to zero values of the dispersion equation. However, peaks
below the cut-on frequency have finite values and are attributed to maximal values of the FRF (for the forced
vibration).
8. The PiP model

From Eq. (41) of Ref. [9], one can write the dispersion equation of the PiP model in the following form:

AEUm þ Tmj j ¼ 0, (69)

with Um ¼ ½U1�r¼a and Tm ¼ ½T1�r¼a.
As same as the dispersion equation of the thin shell model and the soil model, the dispersion equation of the

PiP model is independent of the loading combination and this has been confirmed by comparing the dispersion
equations resulting from both of the loading combinations.

Newton–Raphson method is used again for this case to calculate the solutions of the dispersion equation.
No real roots are found for the parameters given in Table 1 in the frequency range of interest. This means that
besides its importance in supporting the soil, the tunnel wall does not allow waves to propagate freely.

Figs. 16 and 17 show the PiP model response for a radial input and tangential input, respectively, for a
frequency of 30Hz and for cross-sectional wavenumbers n ¼ 0,1. The results in Fig. 16 are calculated using
~qx ¼ 0, ~qy ¼ 0 and ~qr ¼ 1, and the formulation for the first loading combination. The results in Fig. 17 are
calculated using Eqs. (50) and (51), substituting ~qx ¼ 0, ~qy ¼ 1 and ~qr ¼ 0, and the formulation for the second
loading combination. For n ¼ 0, the PiP model has no tangential response for the radial input and vice versa,
i.e. HWV ¼ HVW ¼ 0. Moreover, because of reciprocity [33], the relationship HWV ¼ HVW holds for any value
of n at the tunnel–soil interface (compare HVW for r ¼ 3m in Fig. 16c with HWV for r ¼ 3m in 17a).

Near and at the tunnel–soil interface, the response is distributed over a wide range of wavenumbers, while
away from the tunnel the response is confined to a narrow band of wavenumbers. Three regions of response
are identified according to values of wavenumber: values of wavenumber less than the compression
wavenumber; values of wavenumber greater than the compression wavenumber but less than the shear
wavenumber; and values greater than the shear wavenumber. In the first region, both compression and
shear waves propagate. In the second, only shear waves propagate and in the third both compression and
shear waves are attenuated. For the results in Figs. 16 and 17, the compression wavenumber is o=cp ¼

0:2 rad=m and the shear wavenumber is o=cs ¼ 0:61 rad=m and it can be seen than wavenumbers greater than
0.61 are greatly attenuated with distance away from the source. The problem of plane wave propagation and
attenuation in 3D elastic space is analogous to the problem of pressure wave propagation in fluid due to a
travelling wave in a plate, see Ref. [34] for example.
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Fig. 16. FRF of the PiP model for n ¼ 0 (-) and n ¼ 1 (- -) for a radial input on the inner surface of the tunnel. HWV is the radial

displacement FRF (equivalent to ~urðn; x;o ¼ 2p� 30 rad=sÞ) due to a radial input while HVV is the tangential displacement FRF

(equivalent to ~uyðn; x;o ¼ 2p� 30 rad=sÞ) due to a radial input. The tunnel–soil interface lies at r ¼ 3.
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The wave propagation study in this paper has addressed the PiP model so far. In the next section, the
dispersion equations of tracks on rigid foundations will be investigated. When the stiffness of track’s support,
i.e. the slab bearings, is much smaller that the stiffness of the PiP model, it is possible to calculate the forces
generated on the tunnel wall due to any loading on the rails from a model of a track coupled to a rigid tunnel
wall, i.e. a track on rigid foundation. These forces can then be used as input to the PiP model to calculate the
vibration levels around the tunnel. Such a procedure may be accurate but it will not be used in this paper, as
the direct formulation in Section 2 does not take long time to be performed. However, attention should be
drawn to the importance of dispersion curves of a track on a rigid foundation in which force magnification
happens. This will be discussed in the next section.

8.1. Dispersion characteristics of the track

Fig. 18 shows a floating-slab track attached to a rigid foundation via two lines of support. The track has five
degrees of freedom. The force–displacement relationship is calculated by the following equation:

~F ¼ ½ ~K�~y, (70)
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Fig. 17. FRF of the PiP model for n ¼ 0 (-) and n ¼ 1 (- -) for a tangential input on the inner surface of the tunnel. HWV is the radial

displacement FRF (equivalent to ~urðn; x;o ¼ 2p� 30 rad=sÞ) due to a tangential input while HVV is the tangential displacement FRF

(equivalent to ~uyðn; x;o ¼ 2p� 30 rad=sÞ) due to a tangential input. The tunnel–soil interface lies at r ¼ 3.

Fig. 18. Floating-slab track on rigid bed: (a) forces and (b) displacements.
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where ~F ¼ ½ ~F 1; ~F2; ~F3; ~F4; ~F 5�
T, ~y ¼ ½ ~y1; ~y2; ~y3; ~y4; ~y5�

T,

~K ¼

~Kr þ kr 0 �kr 0 �kr � at

0 ~Kr þ kr �kr 0 kr � at

�kr �kr ~Kv þ 2kr þ 2knc2 þ 2kss
2 0 0

0 0 0 ~Kh þ 2kns2 þ 2ksc
2 �2knðrt � bbÞs

2 þ 2ksc½rt � ðrt � bbÞc�

�krat krat 0 �2knðrt � bbÞs
2 þ 2ksc½rt � ðrt � bbÞc� ~Kg þ 2ks½rt � ðrt � bbÞc�

2 þ 2kra
2
t þ 2knðrt � bbÞ

2s2

2
6666664

3
7777775
,
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Fig. 19. Dispersion curves for the chosen floating-slab track on rigid bed.

Table 3

Cut-on frequencies and mode shapes for a track on rigid bed

Mode 1 2 3 4 5

Cut-on frequency (Hz) 14.50 19.71 24.20 102.14 102.92

~y1 0.02 1.00 0.80 1.00 1.00

~y2 �0.02 1.00 �0.80 1.00 �1.00

~y3 0.00 0.96 0.00 �0.03 0.00

~y4 1.00 0.00 �0.11 0.00 0.00

~y5 0.27 0.00 1.00 0.00 �0.06
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~Kr ¼ 1= ~Hr ¼ EIrx
4
�mro2, ~Kv ¼ 1= ~Hv ¼ EIvx

4
�mso2, ~Kh ¼ 1= ~Hh ¼ EIhx

4
�mso2, ~Kg ¼ 1= ~Hg ¼ GKx2�

Jo2, c ¼ cos c, s ¼ sin c, EIh is the bending stiffness of the slab in the horizontal direction and all the other
parameters are defined in Section 2.

The stiffness matrix ~K in Eq. (70) is assembled using the direct stiffness method which is usually used to
calculate stiffness matrices for structures under static loads [35]. Alternatively, the stiffness matrix can be
calculated by using the formulation in Section 2.1 and setting the FRFs of the PiP model to zero.

To calculate the dispersion equation, the determinant of ~K is set to zero. Again, only real roots are searched.
The Matlab function ‘‘roots’’ is used to calculate the solutions. Fig. 19 shows the dispersion curves of a 20Hz
floating-slab track for the frequency range 0–200Hz and using the track parameters given in Table 1 with
c ¼ 151. Table 3 shows the cut-on frequencies of this track along with the propagating modes (the
eigenvectors) at the cut-on frequencies.

The modes from the first to the fifth are called: the horizontal-slab mode, the vertical-slab mode, the
torsional-slab mode, the in-phase-rails mode and the out-of-phase-rails mode, respectively. The horizontal-
slab mode has rails’ displacements and rotational displacement of the slab, which vanish if c ¼ 0.

Two cases are of significant importance. The first is when ~F1 ¼ ~F2. In this case, only two modes can
propagate; these are the second and the fourth modes. The second case is when ~F 1 ¼ � ~F2. This time three
modes can propagate; the first, the third and the fifth. Calculating the dispersion curves for the full track
model (consisting of the track and the PiP model) is complicated. However, the dispersion curves of the track
on a rigid bed are important and help identifying the peaks of the FRFs of the full track–tunnel–soil model.

8.2. Results of the full model

Fig. 20 shows the normal force of the left slab bearing calculated by the full track model as described in
Section 2.1 (Fig. 2) and by the rigid-bed model (Fig. 18) as calculated by Eq. (70). The results are for applied
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Fig. 20. ~P2 calculated by the full track model (-) and the rigid-bed model (- -) for loading ~F1 ¼ 1, ~F 2 ¼ 0, for different excitation

frequencies and different slabs: (a) f ¼ 20Hz, fn ¼ 20Hz; (b) f ¼ 60Hz, fn ¼ 20Hz; (c) f ¼ 120Hz, fn ¼ 20Hz; and (d) f ¼ 120Hz,

fn ¼NHz.
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forces ~F1 ¼ 1 and ~F 2 ¼ 0 with c ¼ 151 and < ¼ 0:5. Fig. 20(a–c) are calculated for a 20Hz slab with
excitation frequencies 20, 60 and 120Hz, respectively, while a directly-fixed slab (NHz) with 120Hz
excitation frequency is used to produce the results in Fig. 20d.

It can be seen that the forces on the tunnel invert can be calculated approximately using the rigid-bed model.
The accuracy of this approximation decreases at frequencies and wavenumbers on the track dispersion curves
(Fig. 20a) and also decreases by increasing the stiffness of the slab bearings (Fig. 20d). Note that peaks occur
at wavenumbers defined by the dispersion curves of the track on rigid bed, this is confirmed by comparing the
wavenumbers in which peaks occur in a, b and c with the corresponding wavenumbers as plotted in Fig. 19.
These peaks appear in the displacement FRF of the soil as in Fig. 21 which shows the soil displacement FRFs
at angle y ¼ 1201 and 10m away from the tunnel centre for ~F1 ¼ 1, ~F 2 ¼ 0, c ¼ 151, < ¼ 0:5, fn ¼ 20 and
60Hz excitation frequency. The number of collocation points for the uniform support is taken as M ¼ 10
which is found to be accurate for the current parameters. Note that some modes have little contribution to the
response and hence no pronounced peaks are observed at their eigen frequencies.

Figs. 22 and 23 show the space–domain radial displacement at the far field at x ¼ 0, y ¼ 120 and r ¼ 30m
for two loading combinations (a) F1 ¼ 1, F2 ¼ 1; and (b) F1 ¼ 1, F2 ¼ �1. Results are transformed from the
wavenumber domain using the discrete inverse Fourier transform with spatial interval dx ¼ 0.25m and
number of points N ¼ 214. Loss factors of 2% for rails in bending, 5% for slab in bending and torsion and
10% for railpads and slab bearings, 3% for the tunnel and 6% for the soil are introduced to account for
damping. The results in Fig. 22 are for directly-fixed slab, modelled by using a high value of slab natural
frequency, fn ¼ 1000Hz. The results in Fig. 23 are for 10Hz floating slab. The results show clear undulation
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Fig. 21. The radial displacement calculated at r ¼ 10m and y ¼ 1201 for the track supported on: two lines of support (-), three lines of

support (- -) and uniform support (..). The loads are ~F 1 ¼ 1, ~F2 ¼ 0 with 120Hz excitation frequency.

Fig. 22. The radial displacement calculated at x ¼ 0, r ¼ 30m and y ¼ 1201 for a track with fn ¼N supported on: (-) two lines of support,

(- -) three lines of support and (..) uniform support. The loads are (a) F1 ¼ 1, F2 ¼ 1 and (b) F1 ¼ 1, F2 ¼ �1 applied at the rails at x ¼ 0.
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with step of about 15Hz between troughs. This is attributed to interference between shear and compression
waves in the soil. It is illustrated in Ref. [11] that undulation is expected with a step of cpcs=½rðcp � csÞ�Hz when
measuring the response at a distance r away from a point source which sends both compression wave and
shear wave with velocities cp, cs, respectively. Using the wave velocities of the soil in Table 1 with a distance
r ¼ 31.6m, results in a step of approximately 15Hz. The undulation is clearer and more regular in Fig. 22 than
in Fig. 23. This is because the slab is strongly coupled to the tunnel in the first case and therefore the energy
has no way to go but to the soil, hence it is more analogous to the case of a point source. For the 10Hz floating
slab, part of the energy propagates along the track before going into the soil. The curves in Fig. 23a resonate at
frequency slightly less than the natural frequency of the slab. This is because the tunnel wall adds some
stiffness in series to the stiffness of the slab bearings which brings the natural frequency down. The resonant
frequencies in Fig. 23b occur at the torsion natural frequency of the slab below 20Hz. Note the slab supported
via two lines has the largest torsional resonant frequency as more stiffness of the support is kept away from the
slab centre. Therefore, this slab is less efficient in isolating vibration from torsional inputs as can be seen from
its performance at high frequencies, above 100Hz.
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Fig. 23. The radial displacement calculated at x ¼ 0, r ¼ 30m and y ¼ 1201 for a track with fn ¼ 10Hz supported on: (-) two lines of

support, (- -) three lines of support and (..) uniform support. The loads are (a) F1 ¼ 1, F2 ¼ 1 and (b) F1 ¼ 1, F2 ¼ �1 applied at the rails at

x ¼ 0.
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Fig. 22a shows that modelling the directly-fixed slab using two lines of supports results in about 74 dB
difference compared to the most realistic model, i.e. the uniform support in the frequency range of interest. As
the case of two lines of supports is more computationally efficient, such a model can be preferable to calculate
the far-field vibration. Note that as the stiffness of the slab bearings decreases, all models result in the same
far-field vibration as can be seen from Fig. 23a. For the far-field calculations, the distribution of supports has
more significant effect on the slab dynamics than on the slab–tunnel interaction. The slab–tunnel interaction
refers here to the tendency of the slab to propagate more or less vibration as a result of exciting certain
circumferential modes n of the PiP model. It can be seen from Figs. 22a and 23a that the far-field vibration
from different distribution differs by a maximum of 74 dB. This is because all slabs have the same dynamics
in bending for these two figures and the applied forces are set to produce the bending effect. The noticeable
differences between the curves in Figs. 22b and 23b are due to the differences in the natural frequencies of the
torsion mode and the horizontal mode of the slab that arise from different distribution of slab bearings.
9. Conclusions

In this paper, a formulation for a full model of a track in an underground railway tunnel is presented. The
model comprises of a floating-slab track coupled via slab bearings to the PiP model which accounts for a
tunnel wall and its surrounding soil. Special attention is given to the slab support: slabs are attached to the
tunnel wall in one of three ways; via two lines, three lines or a uniform support. An important aspect of the
uniform support is that it allows modelling of a directly-fixed slab by setting the support stiffness to infinity.

Wave propagation in the PiP model and its separate components is investigated. The dispersion curves for a
tunnel wall modelled as a thin shell are compared with a tunnel modelled as a thick shell (using the elastic
continuum theory) and a good agreement is obtained in the frequency range 0–200Hz. For the soil with a
cylindrical cavity, waves propagate near the surface with velocities between the Rayleigh wave velocity and the
shear wave velocity. At high frequencies, these waves behave as surface waves in a half-space. The results
calculated for the soil are compared with published results in the context of wave propagation.

Waves can propagate in a free tunnel wall and in a full-space with a cylindrical cavity, but due to coupling
there is no free wave propagation in the PiP model for the parameters of the tunnel and soil considered here.
The soil acts as a filter that attenuates plane waves with wavenumbers larger than the shear wavenumber in a
full-space and propagates the other wavenumbers.

The dispersion curves of a floating-slab track on rigid foundation are also calculated. These curves have a
great effect on the FRFs of the full track–tunnel–soil system. The generated forces on the tunnel exhibit peaks
at wavenumbers and frequencies along these curves. It is shown that for the purpose of far-field calculations,
the distribution of supports has more effect on the track dynamics rather than the track–tunnel interaction. A
simple model of the support such as the two line support in this paper can be sufficient to calculate vibration in
the far-field without losing accuracy lost even when modelling a directly-fixed slab. However, suitable values
for the horizontal and vertical stiffness and the angle of distribution of bearings should be used that result in
the required natural frequencies of the slab track.
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Appendix A. Transfer matrices for the second loading combination

The PiP model is used in this paper to model a tunnel wall and the surrounding soil. A detailed derivation of
the response of this model to a symmetrical loading combination (called here the first loading combination) is
presented by Forrest and Hunt [9]. The first loading combination involves cosine terms with stresses and
displacements in the radial and longitudinal directions of the tunnel and sine terms in the tangential direct, see
Eqs. (4) and (5) of Ref. [9] for instance. A similar procedure is followed in this work to derive transfer matrices
of the PiP model for the second loading combination. This is done by replacing every cosine by a sine and vice
versa. In this paper, subscript 1 is used with transfer matrices of the first loading combination such as A1.
Subscript 2 is used with transfer matrices of the second loading combination such as A2. Note that Forrest and
Hunt use no subscripts at all, as they only consider the first combination.

For the thin shell, the relationship between the transfer matrix of the second loading combination and that
of the first loading combination is given by

A2 ¼

A1ð1; 1Þ �A1ð1; 2Þ A1ð1; 3Þ

�A1ð2; 1Þ A1ð2; 2Þ �A1ð2; 3Þ

A1ð3; 1Þ �A1ð3; 2Þ A1ð3; 3Þ

2
64

3
75. (A.1)

The expressions for A1(1,1), A1(1,2), etc. are given in pp. 700–701 of Ref. [9].
For the elastic continuum, the relationship between the transfer matrices of the second loading combination

and these of the first loading combination are given by

T2 ¼

T1ð1; 1Þ T1ð1; 2Þ �T1ð1; 3Þ �T1ð1; 4Þ �T1ð1; 5Þ �T1ð1; 6Þ

�T1ð2; 1Þ �T1ð2; 2Þ T1ð2; 3Þ T1ð2; 4Þ T1ð2; 5Þ T1ð2; 6Þ

T1ð3; 1Þ T1ð3; 2Þ �T1ð3; 3Þ �T1ð3; 4Þ �T1ð3; 5Þ �T1ð3; 6Þ

T1ð4; 1Þ T1ð4; 2Þ �T1ð4; 3Þ �T1ð4; 4Þ �T1ð4; 5Þ �T1ð4; 6Þ

�T1ð5; 1Þ �T1ð5; 2Þ T1ð5; 3Þ T1ð5; 4Þ T1ð5; 5Þ T1ð5; 6Þ

T1ð6; 1Þ T1ð6; 2Þ �T1ð6; 3Þ �T1ð6; 4Þ �T1ð6; 5Þ �T1ð6; 6Þ

2
6666666664

3
7777777775

(A.2)

and

U2 ¼

U1ð1; 1Þ U1ð1; 2Þ �U1ð1; 3Þ �U1ð1; 4Þ �U1ð1; 5Þ �U1ð1; 6Þ

�U1ð2; 1Þ �U1ð2; 2Þ U1ð2; 3Þ U1ð2; 4Þ U1ð2; 5Þ U1ð2; 6Þ

U1ð3; 1Þ U1ð3; 2Þ �U1ð3; 3Þ �U1ð3; 4Þ �U1ð3; 5Þ �U1ð3; 6Þ

2
64

3
75. (A.3)

The expressions for T1(1,1), T1(1,2), etc. and U1(1,1), U1(1,2), etc. are given in pp. 701–703 of Ref. [9].
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