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Abstract

This paper studies a robust synchronization of non-autonomous chaotic systems with parameter mismatch. In the

synchronization scheme, a linear state error feedback control is used to couple the master and slave horizontal platform

systems excited by harmonic external forces, between which there exists a phase mismatch. A new definition of global

synchronization with error bound is introduced. Using Lyapunov’s stability theory, the sufficient synchronization criteria

for the scheme are proven and the corresponding synchronization error bound is estimated. The synchronization

criteria are further optimized by optimally designing a quadratic Lyapunov function to more precisely estimate the

synchronization error bound. The illustrative simulations verify the effectiveness of these criteria. The estimated

synchronization error bound is compared with numerical one in the examples.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decade, the research on synchronization has intensively focused on the autonomous chaotic
systems, e.g. Chua’s circuit, Lorenz oscillator, and Chen system, etc. [1–6]. Lately, more and more non-
autonomous chaotic systems have been found in engineering and physics [7–12]. This has motivated the
researchers to make efforts in studying the sufficient synchronization criteria for the various non-autonomous
synchronization schemes [13–17].

However, these non-autonomous synchronization schemes assume that two non-autonomous chaotic
systems to be synchronized are identical except for their initial states. In practice, when two identical systems
are placed in a synchronization scheme, parameter mismatch between the systems often occurs because of the
inevitable perturbation in operations, which may destroy the synchronization [2]. From the theoretical point
of view, research on synchronization of two chaotic systems with parameter mismatch is more challenging.

For a class of autonomous chaotic system, Lur’e system, robust synchronization for parameter mismatch
has been investigated in the synchronization schemes with feedback control [3,4] or replacing variables control
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.04.034

ing author. Center for Control and Optimization, South China University of Technology, Guangzhou 510640, China.

esses: wuxiaof@21cn.com, mathwxf@sina.com (X. Wu).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.04.034
mailto:wuxiaof@21cn.com,
mailto:mathwxf@sina.com


ARTICLE IN PRESS
X. Wu et al. / Journal of Sound and Vibration 305 (2007) 481–491482
[5]. Nevertheless, to our best knowledge, research on chaos synchronization of two non-autonomous systems
with parameter mismatch has received little attention up to now.

In 2003, Ge et al. [10] studied a chaos synchronization scheme composed of two non-autonomous
horizontal platform systems unidirectionally coupled by linear state error feedback control. They numerically
verified that the scheme can achieve chaos synchronization whether there is a phase mismatch between two
coupled systems or not, provided that the coupling strength is large enough. The so-called phase mismatch
here implies that there exists a phase difference between the external harmonic excitations of two coupled
systems. It should be pointed out that the phase mismatch also appears in other non-autonomous systems and
may affect chaos synchronization [18]. Ge et al. [10] detected the coupling strengths resulting in chaos
synchronization according to the criterion that the largest Lyapunov exponent of the slave system is negative.
However, this kind of synchronization criterion has been confirmed to be only necessary but not sufficient for
chaos synchronization [1].

Very recently, the sufficient synchronization criteria for two identical (without phase mismatch) non-
autonomous horizontal platform systems unidirectionally coupled by linear state error feedback control have
been obtained [17]. In this paper, we intend to prove the sufficient synchronization criteria for the
synchronization scheme with phase mismatch. A new definition of global synchronization with error bound is
first introduced because the complete (zero error) synchronization of two non-identical systems cannot be
achieved by linear state error feedback control [2], which is different from Ref. [17]. Based on the definition,
the sufficient synchronization criteria are investigated with help of Lyapunov’s stability theory and the
corresponding synchronization error bound is theoretically estimated. The synchronization criteria are further
optimized by optimally designing a quadratic Lyapunov function to improve the precision of the estimated
synchronization error bound. Finally some examples are simulated to verify the obtained criteria and illustrate
the difference between the estimated and numerical synchronization error bounds.

The rest of the paper is organized as follows. Section 2 presents a master–slave synchronization scheme and
the corresponding time-varied error system. In Section 3, the sufficient synchronization criteria for the scheme
are proven. The obtained synchronization criteria are optimized in Section 4. Some examples are simulated
and analyzed in Section 5. The concluding remarks are described in the final section.
2. Synchronization scheme and error system

The horizontal platform system with harmonic external excitation (h cos ot) is described by the following
equations [10]:

_x1 ¼ x2;

_x2 ¼ �ax2 � b sin x1 þ l cos x1 sin x1 þ h cos ot;
(1)

where a, b, h, and o are positive constants and l is a constant.
Let x ¼ ðx1;x2Þ

T
2 R2. The vector form of the system (1) is

_x ¼ Axþ f ðxÞ þmðtÞ, (2)

with

A ¼
0 1

0 �a

� �
; f ðxÞ ¼

0

�b sin x1 þ l sin x1 cos x1

 !
; mðtÞ ¼

0

h cos ot

� �
. (3)

Now we construct a synchronization scheme for the master (x) and slave (z) systems coupled by a linear
state error feedback control uðtÞ ¼ Kðx� zÞ as follows:

M : _x ¼ Axþ f ðxÞ þmðtÞ;

S : _z ¼ Azþ f ðzÞ þm0ðtÞ þ uðtÞ;

C : uðtÞ ¼ Kðx� zÞ;

(4)
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where z ¼ ðz1; z2Þ
T
2 R2, K ¼ ðkijÞ2�2 is the constant feedback gain matrix, and

m0ðtÞ ¼
0

h cos ðotþ jÞ

 !
(5)

is the external excitation to slave system.
Hence, there exists a phase difference j between the external excitation of the master system and that of the

slave systems. Assume j is a constant and 0pjp2p [10].
Define the error variable e ¼ x� z. From the scheme (4) we can obtain a dynamical error system:

_e ¼ ðA� KÞ eþ f ðxÞ � f ðzÞ þmðtÞ �m0ðtÞ ¼ ðA� K þQðtÞÞ eþmðtÞ �m0ðtÞ, (6)

where

QðtÞ ¼
0 0

qðtÞ 0

 !
; qðtÞ ¼

�bðsin x1 � sin z1Þ þ lðsin x1 cos x1 � sin z1 cos z1Þ

x1 � z1
, (7)

and

mðtÞ �m0ðtÞ ¼ Dm ¼ h
0

cos ot� cos ðotþ jÞ

 !
. (8)

Let || � || denote the Euclidean norm of the vector. For the synchronization scheme (4), our ideal object is to
choose the feedback matrix K such that ||e||-0 as t-N. However, the error variable e cannot tend
asymptotically to zero for the non-identical master–slave systems. Therefore, a concept of synchronization
with error bound must be introduced here.

Definition. The synchronization scheme (4) achieves the synchronization with error bound d if for any finite
initial conditions (x(0), z(0)), there exists a real constant d40 and a TX0 such that jjxðtÞ � zðtÞjj ¼ jjejjpd for
all t4T.

This definition suggests a synchronization for which the trajectory of error system will globally uniformly
converge into a small circle Cd ¼ fe : jjejj ¼ dg.
3. Sufficient synchronization criteria

Two lemmas are first given, where Lemma 1 is obvious and Lemma 2 is quoted from Ref. [18].

Lemma 1. jjmðtÞ �m0ðtÞjjphj for j 2 ½0; 2p�.

Lemma 2. For q(t) defined by Eq. (7), certainly,

jqðtÞjpbþ jlj. (9)

Let I2 2 R2�2 be the unit matrix. The following theorem gives the sufficient criterion for synchronization with

error bound in the form of linear matrix inequality.

Theorem 1. If there exists the positive definite symmetric matrix P 2 R2�2, feedback gain matrix K 2 R2�2 and a

constant a40 such that for any time t40,

A� K þQ tð Þ½ �
TPþ P A� K þQ tð Þ½ � þ 2haI2o0, (10)

then the synchronization scheme (4) achieves synchronization with error bound js(P, a), where

sðP; aÞ ¼
bðPÞ
a

with bðPÞ ¼ lmaxðPÞ
lmaxðPÞ

lminðPÞ

� �1=2

, (11)

lmax(P) and lmin(P) are the maximal and minimal eigenvalues of the matrix P, respectively.
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Proof. Take the quadratic Lyapunov function

V ðeÞ ¼ eTPe; 0oP ¼ PT 2 R2�2,

which is positive definite, derescent and radially unbounded.
The derivative of V(e) for the time along the trajectory of the error system (6) equals:

_V ðeÞ ¼ _eTPeþ eTP_e;

¼ ðA� K þQÞeþ Dm½ �
TPeþ eTP ðA� K þQÞeþ Dm½ �,

¼ eT ðA� K þQÞTPþ PðA� K þQÞ
� �

eþ 2DmTPe;

¼ eT ðA� K þQÞTPþ PðA� K þQÞ þ 2haI2
� �

e� 2haeTeþ 2DmTPe;

o� 2h aeTeþ 2DmTPe:

Since DmTPe 2 R, it follows from Lemma 1 that

2DmTPep 2DmTPe
�� �� p2k kDmTkkPkkekp2hr ek k,

where r ¼ jlmaxðPÞ. Hence, _V ðeÞo2hjjejj r� ajjejj½ �.

Obviously, _V ðeÞo0 on condition that jjejj4r=a, i.e. _V ðeÞo0 for any e outside of ball B1 (see Fig. 1). Thus, if
a1 is selected such that the ellipsoid

Eða1Þ ¼ fe : eTPepa1g � B1 ¼ e : eTep
r2

a2

� �
,

and is the smallest, then for any e outside of the ellipsoid E(a1) it is confirmed that _V ðeÞo0 and the trajectory
of the error system will uniformly enter the ellipsoid E(a1) for any finite e(0).

If a2 is determined such that the ball:

B2ða2Þ ¼ e : eTepa2

	 

� Eða1Þ,

and is the smallest, then the radius
ffiffiffiffiffi
a2
p

of ball B2(a2) is synchronization error bound which we are able to
find out.

Again the matrix P is positive definite, so there exists an orthogonal transformation F 2 R2�2 such that for a
new vector y ¼ ðy1; y2Þ

T
2 R2 and e ¼ Fy,

eTPe ¼ l1y2
1 þ l2y2

2 ¼
y2
1

1=
ffiffiffiffiffi
l1
p� 
2 þ y2

2

1=
ffiffiffiffiffi
l2
p� 
2 ,

where li40 (i ¼ 1, 2) are the eigenvalues of the matrix P.
It has been known that:

lmaxðPÞ ¼ max li; i ¼ 1; 2f g; lminðPÞ ¼ min li; i ¼ 1; 2f g.
a2

E(a1)

B1

r/d

B2(a2)

Fig. 1. Illustration of ball B1, B2(a2) and ellipsoid E(a1).
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Hence, the maximal (Rmax) and minimal (Rmin) radius of the ellipsoid E(a1) equals:

Rmax ¼

ffiffiffiffiffi
a1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðPÞ

p ¼
ffiffiffiffiffi
a2

p
; Rmin ¼

ffiffiffiffiffi
a1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ

p ¼
r

a
,

respectively.
Thus,

ffiffiffiffiffi
a2
p
¼

g
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðPÞ

lminðPÞ

s
¼ jsðP; aÞ: &

The following theorem gives an algebraic sufficient criterion for the synchronization with error bound and is
derived from Theorem 1.

Theorem 2. If the symmetric positive definite matrix P ¼
p11 p12

p12 p22

 !
, feedback gain matrix K ¼

k11 k12

k21 k22

 !
and the constant a40 are selected such that

O1 ¼ �k11p11 � k21p12 þ haþ jp12jðbþ jljÞo0,

O2 ¼ p12ð1� k12Þ � p22ðaþ k22Þ þ hao0,

4O1O24 p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ � p22k21

�� ��þ p22ðbþ jljÞ
� �2

. ð12Þ

then the synchronization scheme (4) achieves synchronization with error bound js(P, a), where s is defined

by (11).

Proof. From Eqs. (3) and (7) we have

ðA� K þQÞTPþ PðA� K þQÞ þ 2haI2

¼
�2k11p11 þ 2p12ðq� k21Þ þ 2ha p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ

p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ 2p12ð1� k12Þ � 2p22ðaþ k22Þ þ 2ha

 !
.

The above symmetric matrix is negative definite if and only if

� 2k11p11 þ 2p12ðq� k21Þ þ 2hao0,

2p12ð1� k12Þ � 2p22ðaþ k22Þ þ 2hao0,

�2k11p11 þ 2p12ðq� k21Þ þ 2ha
� �

2p12ð1� k12Þ � 2p22ðaþ k22Þ þ 2ha
� �

� p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ
� �240. ð13Þ

Since p2240, it follows from Lemma 2 that

� 2k11p11 þ 2p12ðq� k21Þ þ 2hap2O1,

p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ þ p22ðq� k21Þ
�� ��p p11ð1� k12Þ � p12ðk11 þ k22 þ aÞ � p22k21

�� ��þ p22ðbþ jljÞ.

Hence, for any t40, the inequalities (13) hold provided that the conditions (12) are satisfied. &

Remark 1. The estimated synchronization error bound js(P, a) given by Theorem 1 is linearly proportional
to phase difference j. This is because the matrix P and constant a determined by Eq. (10) are irrelevant to the
phase difference j, thus s(P, a) and j are independence of each other.

4. The optimized sufficient synchronization criteria

We must say that the synchronization error bound js is only an estimation of the real synchronization
error bound. In order to improve the quality of the estimation, it is always expected that the estimated
synchronization error bound is reduced to approach the real one. Since the synchronization error bound js
depends upon the choice of the matrix P and constant a, an optimization issue is suggested as follows: select
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the matrices P ¼ PT40, K and constant a such that the synchronization conditions (12) are satisfied and the
function sðP; aÞ ¼ bðPÞ=a is as small as possible.

For P ¼
p11 p12

p12 p22

 !
40, it is easily known that the eigenvalues of the matrix P equal:

l1ðPÞ ¼
p11 þ p22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp11 � p22Þ

2
þ 4p2

12

q
2

; l2ðPÞ ¼
p11 þ p22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp11 � p22Þ

2
þ 4p2

12

q
2

,

with l14l2. Thus, it follows from Eq. (11) that p12 ¼ 0 is necessary to the minimal b(P).
Let y ¼ p22/p11 with p2240 and p1140. Then, b(P) with p12 ¼ 0 can be represented as

bðPÞ ¼

p11y3=2 as y41;

p11 as y ¼ 1;

p11y�1=2 as 0oyo1:

8><
>:

Obviously the above b(P) is continuous for y and takes the minimal value at y ¼ 1.
Hence, we have

Lemma 3. A necessary condition for the minimal b(P) is that P ¼ pI2 with p40.

According to Lemma 3, the synchronization criterion in Theorem 2 can be optimized based on the
consideration of reducing the estimated synchronization error bound, which is described in the following
theorem where s ¼ ðp=aÞ40.

Theorem 3. If the feedback gain matrix K ¼ ðkijÞ2�2 and the constant s40 are selected such that

O3 ¼ �k11 þ
h

s
o0,

O4 ¼ �ðaþ k22Þ þ
h

s
o0,

4O3O44 1� k12 � k21j j þ ðbþ jljÞ½ �
2, ð14Þ

then the synchronization scheme (4) achieves the synchronization with error bound js.

The following results are related to some simple feedback gain matrix and derived from Theorem 3.

Corollary 1. If the constant s40 is selected, then the synchronization scheme (4) achieves the synchronization

with error bound js provided that any of the following conditions is satisfied:
(i)
 K ¼ diag{k1, k2},

k14
h

s
; k24

h

s
� a; k1 �

h

s

� �
k2 þ a�

h

s

� �
4

1

4
ðbþ jljÞ2, (15)
(ii)
 K ¼ kI2,

k4
h

s
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðbþ jljÞ2

q
� a

� �
, (16)
(iii)
 K ¼ diag{k, 0},

k4
h

s
þ

1

4
ðbþ jljÞ2

s
as� h

with s4
h

a
. (17)

From Eqs. (15)–(17) we know that in the synchronization scheme, the larger feedback gains must be
chosen to reduce the synchronization error bound.
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5. Simulations and analyses
For simulation we take the parameters of the master and slave horizontal platform systems a ¼ 4=3; b ¼

3:776; l ¼ 4:6� 10�6; h ¼ 34=3; o ¼ 1:8 and j ¼ 0.1. As the initial states ðx1ð0Þ; x2ð0ÞÞ ¼ ð�3:4; 2:1Þ and
ðz1ð0Þ; z2ð0ÞÞ ¼ ð0:78; �2:9Þ, the trajectories of both master and uncontrolled slave systems are chaotic [10].
They separate randomly and remarkably in the course of time, as shown in Fig. 2.

Appling the synchronization criteria (16) and (17), we can obtain the following synchronization conditions,
(i)
 K ¼ kI2; k4
34

3s
þ 1:336 with s40, (18)
(ii)
 K ¼ diagðk; 0Þ; k4
34

3s
þ

10:696s
4s� 34

with s48:5. (19)
Take K ¼ kI2 with k ¼ 7(s ¼ 2). The simulation verifies that the trajectories of the master and slave systems
tend asymptotically to the synchronization with the small non-zero error, as shown in Fig. 3.

The similar results are shown in Fig. 4 by taking K ¼ diagðk; 0Þ with k ¼ 20 (s ¼ 9.9).
In order to illustrate the difference between the estimated synchronization error bound and the real one, we

take the feedback gain matrices:
(i)
 K ¼ kI2; k ¼
34

3s
þ 1:337; with s40, (20)
(ii)
 K ¼ diagðk; 0Þ; k ¼
34

3s
þ

10:696s
4s� 34

þ 0:001; with s48:5. (21)
Let jjejjTm ¼ max
tXT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � z1Þ

2
þ ðx2 � z2Þ

2
q

be the real synchronization error bound, where T represents a

time threshold after which the synchronization error will be converged and stabilized in a small area (in our
simulations, take T ¼ 8000 time unit).
x
1
−z
1

x
2
−z
2

t

4

3

2

1

0

-1

-2

-3

-4

-5

4

3

2

1

0

-1

-2

-3

-4

0 5000 10000 15000

Fig. 2. The trajectory of the error system for the isolated master–slave systems.
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Fig. 4. The trajectory of the error system for the synchronization scheme with K ¼ diagf20; 0g.
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Fig. 3. The trajectory of the error system for the synchronization scheme with K ¼ 7I2.
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For a given s, the feedback gains can be determined by Eqs. (20) and (21), so the real synchronization error
bound jjejjTm can numerically be solved on condition that the obtained feedback gains and compared with the
estimated one.

According to the above method, we first consider the synchronization condition (20) and choose
s 2 ½0:1; 3:5�. The numerical and estimated synchronization error bound for the various s are solved and
shown in Fig. 5. From the simulation results it can be seen that the selection of the smaller s (corresponds to
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Fig. 5. The estimated and numerical synchronization error bounds for the synchronization condition K ¼ kI2, k ¼ 34=3sþ 1:337 with

sA[0.1, 3.5]. The curves plotted by ‘‘*’’ and ‘‘ � ’’ represent the estimated and numerical synchronization error bounds, respectively.
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Fig. 6. The estimated and numerical synchronization error bounds for the synchronization condition K ¼ diagfk; 0g, k ¼ 34=3sþ
10:696s=ð4s� 34Þ þ 0:001 with sA[8.6,12]. The curves plotted by ‘‘*’’ and ‘‘ � ’’ represent the estimated and numerical synchronization

error bounds, respectively.
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the larger feedback gain k) will lower the numerical synchronization error bounds and improve the precision
of the estimated synchronization error bounds up to a tiny difference from the numerical one.

Using the synchronization condition (21), the numerical and estimated synchronization error bounds for the
various s are shown in Fig. 6, where s 2 ½8:6; 12�. Obviously the difference between the numerical and
estimated synchronization error bounds is slowly decreased following the reduction of s.

Now we analyze the influence of phase difference j on the difference between the numerical and estimated
synchronization error bound. Take j 2 ½0:05; 0:6�, s ¼ 0.5 for the synchronization condition (20), and s ¼ 8.8
for the condition (21). The simulation results are shown in Figs. 7 and 8.

It should be indicated that all of our simulations have shown that the master–slave systems with phase
difference cannot achieve the complete (zero error) synchronization, ever though the feedback gains are
chosen to be large enough. This result is different from that of Ref. [10].
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6. Conclusions

The sufficient synchronization criteria for the non-autonomous horizontal platform systems with phase
difference were obtained in the linear feedback scheme. The work was based on a new definition of chaos
synchronization with error bound, which is global and relevant to phase difference. The estimation of the
synchronization error bound for the synchronization criteria is linearly related to phase difference. Aiming at
more precisely estimating synchronization error bound, the synchronization criteria were further optimized.
These criteria are in the algebraic form, so can conveniently be applied to design and analysis of the linear
state error feedback controller. The examples showed that it is possible to synchronize the master–slave
horizontal platform systems with phase difference up to a small synchronization error, which means the
robustness of the synchronization for the phase mismatch. The real and estimated synchronization error
bounds are numerically compared in the examples.
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