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Abstract

The dynamic analysis of flexible beams with large deformations is difficult and few studies have been performed. In this

paper, the vibration analysis of several very flexible beams with large deflections using the finite element approach is

studied. The examples were a cantilever beam and rotating flexible robot arms. The results were compared with the results

available in the published literature. Several successful checks on the finite element results were performed to ensure the

accuracy of the solutions. Due to the geometrical nonlinearity, several static equilibrium shapes can exist for large

deflections of a cantilever beam for a given load. Nonlinear dynamic finite element analysis was implemented to investigate

the stability of these shapes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration problem is of considerable interest to engineers and has been much studied. When the
deflections of the structure are small, a wide range of linear analysis tools, such as modal analysis, can be used,
and some analytical results are possible. As the deflections become larger, however, geometric (as well as
possible material) nonlinearities are introduced which result in effects that are not observed in linear systems.
In such situations numerical solution methods must be used. The finite element approach is the most common
tool (see Refs. [1–4] for example), however other methods such as the finite difference methods [5–7] have also
been considered. In Ref. [7] the transient dynamic motion of a paper sheet emerging from a channel was
studied using finite differences in time and space. Within the finite element framework, there are two main
issues to consider: geometric nonlinearity and a time stepping algorithm. Numerous ideas have been put forth
to deal with the geometric nonlinearities. To date, a popular approach seems to be a co-rotational formulation
in which the large motions are considered as small (linear) deformations superimposed on large (nonlinear)
rigid body rotations. A linear elastic behavior is typically assumed for the small strains. Most researchers have
used some form of Newton’s method to deal with the time stepping issues. One approach of interest has been
put forth by Simo and Tarnow [8] in which the total energy in the system is used to guide the integration
procedure. Some of relevant literatures are quoted below:
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The dynamics of a particular elastica were considered by Snyder and Wilson [9]. The tip rotation angle
considered was only about �15�, which is not very large compared to the examples discussed in this paper.
A finite element method employing element-fixed moving reference frames was used in Ref. [10] to analyze
flexible beams undergoing large and fast rotations; the authors compared their results against those obtained
using the commercial package ABAQUS and concluded that their approach worked while those of ABAQUS
failed to converge. They also reported that the commercial FEM software NASTRAN failed to predict the
correct maximum deflection for membrane stiffness dominated problems. These statements are interesting in
lieu of the fact that in this paper the ability of ANSYS, a commercial FE software, for handling similar
problems is discussed. The dynamics of flexible beams that have undergone large overall motions (spin-up
maneuvers) with small elastic deformations using a closed form nonlinear approach was presented in Ref. [11].
A finite element analysis of a rotating flexible cantilever beam was given in Ref. [12]. This approach is very
similar to Ref. [11], but uses finite elements instead of closed form dynamics. However, in solved examples, the
deformations of the beam with respect to shadow beam were relatively small. A finite element modeling of the
dynamics of flexible multi-body systems was considered in Ref. [13]. Numerical examples for systems
undergoing large overall motion were solved using constant and energy decaying approaches in Ref. [8].
A nonlinear finite element model for the dynamic analysis of flexible linkages was presented in Ref. [14]. The
linkage modeled as a beam had large rigid body motion and elastic small deformation. An experimental
investigation into the nonlinear dynamics of a flexible cantilevered rod (elastica) was discussed in Ref. [15].
However, from numerical examples given in the paper, it is not clear how large were the deformations. In a
later paper [16], the authors derived a model for the study of the vibration of the thin elastica based on
experimental observation. A non-incremental finite element formulation for large rotation/deformation of
flexible bodies was developed in Ref. [17]. It involved a transient dynamic loading problem. A numerical
approach for the study of large deformations of nonlinear elastic rods using the theory of a Cosserat point, for
static equilibrium of elastica, was given in Ref. [18]. A finite element analysis of rotating beams (large rigid
body rotation with small deformation) was reported in Ref. [19]. A flexible multi-body dynamic formulation
was considered in Ref. [20].

The main differences of the above works and that reported in this paper is allowing much larger deflections
(large amplitude vibration) of flexible beams and the use of finite element analysis. The object of the present
work was to investigate the nonlinear free vibration problem of a uniform cantilever beam undergoing very
large deflections. Specifically, the goals of this study were as follows. The first goal was to detail the behavior
of the problem as it transforms from a linear to a nonlinear problem. The second goal arose from the fact that
while some authors (such as those mentioned above) develop finite element code to implement their particular
approach to similar problems, what seems to be missing from the literature is an evaluation of the ability of
common commercial finite element packages to accurately consider the large deformation problems. For this
reason the study of the large deflection vibration problem using the finite element package ANSYS was
undertaken. Of particular interest in this regard was the accuracy and stability of the solution procedure,
as well as the solution time requirements. The third and final goal was the investigation of the stability of
particular equilibrium positions using a full nonlinear dynamic analysis.

2. Numerical approach—finite element method

The dynamics of flexible bodies can be simulated by using the finite element method (FEM), which is the
most common of the numerical approaches available for solving geometric nonlinearities.

2.1. Solution procedure

The object is to investigate the nonlinear vibration problem of a uniform cantilever beam undergoing very
large deflection. The motion of flexible beam is simulated by using the ANSYS Finite Element program,
which solves the problem by direct integration of the nonlinear equations of motion. Transient dynamic
analysis used here, is a technique used to determine the dynamic response of a flexible structure under the
action of any general time-dependent load. This analysis can be used to determine the time-varying
displacements, strains, stresses and forces in a structure due to any static, transient, and harmonic load.
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The equations of motion, solved by a transient dynamic analysis, can be written in the following form:

MðxÞ €xðtÞ þ CðxÞ _xðtÞ þ KðxÞxðtÞ ¼ uðtÞ,

where MðxÞ;CðxÞ, and KðxÞ are geometry dependent mass, damping, and stiffness matrices, and x; _x; €x are
vectors of nodal displacement (degrees of freedom (dof)), nodal velocity, and nodal acceleration, respectively;
and uðtÞ is the vector of external loads driving the system. In ANSYS three methods are available to carry out
a transient dynamic analysis: full, reduced, and mode superposition. Details are given in Appendix A. In this
paper, the full transient dynamic analysis was used due to presence of geometric large deflections. A transient
dynamic analysis involves three steps, building the model, applying loads and obtaining the solution, and
reviewing the results.

A two-dimensional elastic beam element (BEAM3) was used to model the flexible structure. The beam
section was considered rectangular. For all of the examples given here, 50 BEAM3 elements were used. Fifty
was the optimum number of elements chosen from the cases where 10–200 elements were investigated. This
was a compromise between accuracy and computational time. The matrices M, C, and K are constant for
elements when defined in the local coordinate system. However they become functions of the dof when
assembling the elements in the global coordinate system due to geometric nonlinearities. The stiffness changes
because the shape changes or the body rotates. It is notable that the program creates a geometric stiffness
matrix, KG, for geometric nonlinearity. This matrix is added to the regular stiffness matrix, K, and is updated
every several iterations such that M €xþ C _xþ ðK þ KGÞx ¼ u. The updated stiffness matrix represents the
correct deformed configuration of the system. The first step in applying transient loads was to establish initial
conditions. To apply initial conditions, a static analysis was performed to transfer the system from a straight
horizontal position to the initial condition (equilibrium positions 1, 2, or 3) to start the vibration analysis. This
was achieved by applying a static load at the tip of the beam when transient effect was off. This load was
applied in four steps (so that the program could converge to the desired equilibrium position when stress
stiffening effect was on) due to very large deflection of the beam.

3. Validation

The problems considered here were conservative (during the entire or part of the motion); thus one
important check was to monitor the consistency of the total mechanical energy of the system. The effect of
parameters such as time step on this behavior was considered. Other checks for specific problems will be
discussed at the appropriate point in the text. One of the method used here to validate ANSYS for this
particular type of analysis was to compare the result generated here with the examples in published literature.
Three examples were used. These examples were also used in Refs. [21–23].

3.1. Example 1

The first example is a displacement driven flexible robot arm, which is a simple case of spin-up maneuver
(Example 2.1.1 of Ref. [21]). The same problem was solved in Refs. [22,23]. This flexible robot arm rotates
horizontally about a vertical axis which passes through base of the arm. For this example, fifty BEAM3
elements were used (50 is the optimum number of elements). For simulation, the following parameters were
used: beam length L ¼ 10:0 in (0.254m), modulus of elasticity E ¼ 40:0E3 psi (0.276Gpa), beam cross section
A ¼ 0:250 in2 (1:61E � 4m2), area moment of inertia of beam I ¼ 0:025 in4 (1:04E � 8m4), and density r ¼
5:40 lb s2=in4 (57:7Gg=m3) such that EA ¼ 10:0E3 lb (44.5 kN) and EI ¼ 1:00E3 lb in2 (2:87Nm2) as in
Ref. [21]. The rotation angle of the base, yZ, was changed linearly from 0 to 1.5 rad in 5 s. The base rotation angle
stayed constant, 1.5 rad, for time tX5. The arm position is shown in ten equal intervals during this period in
Fig. 1. Once the angle was fixed, the robot arm underwent free vibration. These results comply closely with
those in Refs. [21] (see Fig. 11), [22,23]. The total mechanical energy (TE) of the beam during the free vibration
phase (5ptp10 s) should be constant. As can be seen in Fig. 2, this total energy was almost constant with a
drop of about 0.02% over 5 s; i.e. 0.004% per second. Tip forces were another check on accuracy of the results.
These forces (not shown here) should be zero, and they almost were zero. The small amount of forces present
were due to the fact that BEAM3 is a constant strain element (see Eq. (A.1) in Appendix A).
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Fig. 1. Example 1, rotation of arm: (a) from 0.5 to 5 s, (b) from 5.5 to 9 s.

0

20

40

60

80

0 10

time (sec)

E
ne

rg
y 

(lb
-in

)

1 2 3 4 5 6 7 8 9

Fig. 2. Example 1, mechanical energy of the arm for 0ptp10 s. solid: total, dashed: kinetic, dotted: strain, total energy at t ¼ 5 is 36.25

and at t ¼ 10 is 36.24.
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3.2. Example 2

The second example is a force driven robot arm (Example 2.1.2 of Ref. [21]) and also solved in Ref. [23]. The
flexible robot arm is driven horizontally about base of the arm. A constant torque of to ¼ 80:0 lb in (9.10Nm)
was applied to the base of arm for 0pto2:5 s and removed instantly; the robot then moved freely afterward
tX2:50. As before, fifty BEAM3 elements were used. For simulation, the parameters used were the same as
those in Example 1 and as in Ref. [21]. The arm position in five equal intervals in 2.50 s is shown in Fig. 3. The
applied torque was removed at t ¼ 2:50, and the robot arm underwent a free rotation as shown also in 25
equal intervals in Fig. 3. These results comply closely with those in Refs. [21] (see Fig. 11) and [23]. Total
mechanical energy of the beam during free rotation phase (2:5ptp15 s) should be constant. As shown in
Fig. 4, this total energy was almost constant with a drop of about 2% over 12.5 s or 0.16% per second. The
variation of total energy here was a little bigger than that of example one. This can be attributed to the fact
that the arm underwent a much larger rotation than before and subsequently numerical error became larger.
Again, tip forces (not shown here) should be zero, which they almost were zero.

3.3. Example 3

The third example is a similar beam as in example 1, however, it is now subject to a given spin-up maneuver
(Example 2.4 of Ref. [21]). It is not as simple case as Example 1. The same problem was solved in Ref. [10]. For
this example, again 50 BEAM3 elements were used. For simulation, the following parameters were used: beam
length L ¼ 10 in (0.254m), modulus of elasticity E ¼ 1:12E8 psi (772Gpa), beam cross section A ¼ 0:250 in2

(1:61E � 4m2), area moment of inertia of beam I ¼ 0:125E � 3 in4 (5:20E � 11m4), and density r ¼
4:80 lb s2=in4 (51:3Gg=m3) such that EA ¼ 2:80E7 lb (1.24E5 kN), EI ¼ 1:40E4 lb in2 (40:2Nm2), Ar ¼ A:r ¼
1:20 lb s2=in2 (8.26Mg/m), and Ir ¼ I :r ¼ 6:00E � 4 lb s2 (0:267E � 2 kgm) as in Ref. [21]. The rotation angle
of base, yZ, is given as

yZðtÞ ¼

6
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Fig. 3. Example 2, rotation of arm, from 0.5 to 15 s
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Fig. 4. Example 2, mechanical energy of the arm for 0ptp15 s. Solid: total, dashed: kinetic, dotted: strain. Total energy at t ¼ 2:5 is 64.93
and at t ¼ 15 is 63.62.
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Fig. 5. Example 3, (a) rotation of the arm from 0 to 7 s, (b) tip axial relative displacement of the arm.
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The results obtained comply closely with those in Refs. [21,10] (compare Fig. 5 with Fig. 12). The
displacements shown here are relative displacements (with respect to shadow, or rigid, beam) to be able to
compare them with those of Ref. [21].
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4. Large amplitude free vibration of cantilever beams

As it was said earlier the free vibration problem is of considerable interest to engineers. The object of the
present work is to investigate the nonlinear free vibration of a uniform cantilever beam released from rest after
having undergone very large deflections initially due to a static transverse load.

4.1. Problem solution

A cantilever straight beam with a uniform rectangular cross section in horizontal plane was considered. To
apply initial condition for transient dynamic analysis, a large lateral load was applied to the tip of the beam
statically (time integration effect was off). It was necessary to set a very small time to perform this step. A non-

dimensional load was defined as a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL2=EI

q
where P is the lateral load, L is the length of the beam and EI

is the flexural rigidity of the beam. A load factor of a ¼ 5:0 was considered here which resulted initially in a
very large deflection. Once the initial displacement was determined, the static load was removed and the
transient dynamic analysis was started. For simulation, the following parameters were used: Beam’s length
L ¼ 100 in (2.54m), modulus of elasticity E ¼ 3:00E7 psi (207Gpa), beam’s rectangular cross section A ¼

H2 ¼ 0:250 in2 (1:61E � 4m2) in which H is height of the beam, area moment of inertia of beam I ¼

H4=12 ¼ 5:21E � 3 in4 (2:17E � 9m4), and density of the steel beam was set to r ¼ 7:35E � 4 lb s2=in4

(7:85E3kg=m3). This load (a ¼ 5:0, corresponds to P ¼ 391 lb (1.74 kN)) has three equilibrium shapes or

positions (see Ref. [24]), here referred to as shape 1, shape 2 and shape 3 (see Fig. 6). Fifty BEAM3 element
were used for equilibrium position one, and 60 for positions two and three. The equilibrium positions 1, 2, and
3 were used as initial conditions for transient dynamic analysis. These equilibrium positions were obtained by
applying specific loading patterns in the static analyzes.

4.2. Finite element analysis results

In Figs. 7 and 8 are shown the deflected shape of the beam at selected times in the first cycle of the vibration
as initiated from the equilibrium positions 1 and 3, respectively. The vibration of the beam initiated from ,
shape 2 was chaotic, as discussed later. Shown in Figs. 9 and 10 are the kinetic, strain and conservation of total
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Fig. 6. Three equilibrium shapes of a cantilever beam corresponding to a ¼ 5:0.
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Fig. 7. Deflected shape of a cantilever beam at selected times in one cycle of vibration started from equilibrium shape 1 corresponding to

a ¼ 5:0.

Fig. 8. Deflected shape of a cantilever beam at selected times in one cycle of vibration started from equilibrium shape 3 corresponding to

a ¼ 5:0.
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Fig. 9. Mechanical energy of a cantilever beam in three cycles of vibration started from equilibrium shape 1 corresponding to a ¼ 5:0.
Solid: total, dashed: kinetic, dotted: strain. Total energy at t ¼ :0037 is 4576 and at t ¼ 1:875 is 4567.
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Fig. 10. Mechanical energy of a cantilever beam in three cycles of vibration started from equilibrium shape 3 corresponding to a ¼ 5:0.
Solid: total, dashed: kinetic, dotted: strain. Total energy at t ¼ :0036 is 26481 and at t ¼ 1:838 is 26034.
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mechanical energy of the beam as a function of time in three cycles initiated from equilibrium positions 1 and
3, respectively. As can be seen from the figures, the total mechanical energy were almost constant for these two
cases. The variations of total energy were .19% in about 2 s (.01% per second) for position 1, and 1.7% in
about 2 s (.92% per second) for position 3 for three cycles of vibration; for position 2 this drop was .013% in
about 0.2 s (not shown here). As time increased the drop of total energy became larger for equilibrium position
2 (see related discussion on stability, in the next section, for this shape).

Note that while ideally the energy loss should be zero for this conservative problem, the nature of this
problem is such that it is exceedingly difficult to obtain a constant energy level. A careful observation of the
total energy shows that for some cases a significant portion of the energy loss occurs during the very first part
of the motion. This pattern is most easily explained if one considers the boundary conditions at the free end of
the beam. In the initial configuration, which is obtained as the static equilibrium solution for an applied tip
load, the tip of the beam is not a ‘‘free-end’’, but rather there is an applied shear load there. As a result at the
tip of beam d2yz=ds2a0. Shortly after the load is removed, the tip becomes a free end and d2yz=ds2 ¼ 0. It is
the propagation and reflection of axial waves which governs the transition between these two states. In order
to have any possibility of observing this transition clearly, not only would different elements with more
freedom in the axial direction be required, but it would also be necessary to use very small time steps to
capture details of the axial waves (which occur at significantly higher frequencies than the lateral vibration).
This would be prohibitively expensive computationally and is not the goal of the present work. As a result we
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Fig. 11. Examples 1 and 2, Simo’s results [21] for comparison with Figs. 1 and 3. (Reproduced from Simo, J.C. and Vu-Quoc, L., ASME

Journal of Applied Mechanics 53, 855–863 (1986) with permission).
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are missing out on the fine detail of the solution at early stages in favor of the long term response of the
structure. In light of these ideas, the small amounts of energy loss observed in the solutions seems quite
acceptable. Note that these ideas also play a role in the purely linear (small deflection) situation where the
geometric nonlinearities do not play a role. Even in the linear situation (not shown), it can be observed that
the energy loss occurs almost entirely in the first small part of the motion, similar to the results observed in the
large deflection case discussed above.

4.3. Stability analysis

The use of a finite element formulation to evaluate the stability of geometrically nonlinear equilibrium
configurations will now be considered for the three equilibrium shapes shown in Fig. 6 corresponding to
a ¼ 5:0. The same finite element models as discussed in Section 4.1 are used here as well. The basic approach
used to investigate the stability was to introduce perturbations to the equilibrium configuration and to
determine the subsequent motion of the structure. If the subsequent motions remained small, the configuration
was considered stable, but if the perturbation grew larger, the equilibrium position was unstable. The specific
perturbations used in the current work are described below. In order to introduce perturbation to the
equilibrium shapes shown in Fig. 6, the following procedure was used. Initially, an equilibrium configuration
was determined which corresponded to the applied load a ¼ 5:0 plus a small additional load at the beam’s tip.
Once this equilibrium position was established, the small additional load was then removed and the full
dynamic analysis was started. In this way, the beam was started in a slightly perturbed configuration, which
was very close to the equilibrium shapes shown in Fig. 6. It should be noted that this was a preliminary
stability analysis, not a comprehensive one (where the magnitude and/or direction of the perturbed load are
considered unknown variables). In the present work, the tip load used corresponded approximately to a
change in a of �0:01 in both the vertical and horizontal directions. That is, two of the perturbed positions
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Fig. 12. Example 3, Simo’s results [21] for comparison with Fig. 5. (Reproduced from Simo, J.C. and Vu-Quoc, L., ASME Journal of

Applied Mechanics 53, 855–863 (1986) with permission).
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considered included equilibrium shapes corresponding to a ¼ 4:99 and 5:01. Similarly, the other two perturbed
configurations considered were equilibrium shapes corresponding to a ¼ 5:00 plus a small additional load in
both the positive and negative horizontal directions.

Shape 1 was found to be stable for all of the applied perturbation loads. The dynamic equations predicted
small oscillatory motions about the equilibrium configuration. The frequency of these small motions
(as estimated from a plot of the tip deflection in the axial s and lateral y directions) agreed well with the natural
frequencies for pre-stressed large deflection eigenvalue analysis as predicted by ANSYS. Very similar results
were obtained for shape 3, which was found to be stable for all of the perturbation loads considered. Again,
the frequencies of the motions agreed well with those predicted by a pre-stressed large deflection eigenvalue
analysis of shape 3. Shape 2 however, was found to be unstable. Any of the applied perturbation loads caused
large motions which caused the beam to ‘‘flop’’ towards either shape 1 or 3, depending on the direction of the
perturbation. Qualitatively, these results were fairly intuitive and agreed well with previously published results
[24] for this load (a ¼ 5). In all of the cases considered above, the total energy of the system was monitored as
a check on the accuracy of the solution. The energy was conserved to within approximately 1–2% (except for
the shape 2 which was more); in all these cases the largest changes in total energy occurred for shape 2 as the
motions became large.
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5. Conclusions

The geometrically nonlinear, large amplitude vibration of several very flexible beams predicted by using the
finite element (FE) package ANSYS was analyzed. The FE responses of the systems were compared with the
responses of similar models available in published works. Very good agreement was observed for the three
examples examined. Also several successful checks on the FE results were performed to ensure the accuracy of
the solution. It was shown that finite element analysis is a reliable approach and can produce acceptable
(good) results for the large amplitude vibration analysis of very flexible beams. It is sometimes much more
economical and easier to use these commercial FE codes, if they have been independently verified for the
particular analysis, than developing one’s own code. Due to the geometric nonlinearity (large deflections),
several static equilibrium shapes can exist for the elastica of a given load. An investigation of the dynamic
stability with large deflection was performed for some of these shapes. Evaluation of other FE software, such
as ADINA, for such a problem is underway and the results will be published when available.
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Appendix A. ANSYS details

The ANSYS program uses the Newmark time integration method to solve equations of motion in time. The
time increment between successive time-points is called the integration time step. The natural frequencies of
the system are used for calculating the correct integration time step. In ANSYS three methods are available to
do a transient dynamic analysis: full, reduced, and mode superposition. The full method uses the full system
matrices to calculate the transient response; that is there is no matrix reduction as in the reduced method. It is
most powerful of the three methods because it also allows all types of nonlinearities to be included (plasticity,
large deflection, and large strain, etc.) However, it is computationally the most expensive method of the three.
In the reduced and mode superposition methods, the nonlinearity due to large deflection is not allowed. In this
paper, the full transient dynamic analysis was used due to presence of geometric large deflections. Doing a
transient dynamic analysis involved three steps, building the model, applying the loads and obtaining the
solution, and reviewing the results.

A.1. Model used: number and type of elements, and solver

The two-dimensional elastic beam element (BEAM3) of the ANSYS element library was used here to model
the flexible structure. The element has three dof at each of its two nodes: translations in the local axial s and
lateral y directions and rotation about the nodal z-axis (perpendicular to s and y in a right-hand coordinate
system.) The shape functions for this element are linear in the s direction and the third-order polynomial in the
y direction as follows:

u ¼
1

2
ðuI ð1� sÞ þ uJð1þ sÞÞ; �1psp1, (A.1)

v ¼
1

2
vI 1�

s

2
ð3� s2Þ

� �
þ vJ 1þ

s

2
ð3� s2Þ

� �h i
þ

L

8
½yzI ð1� s2Þð1� sÞ þ yzJ ð1� s2Þð1þ sÞ�, ðA:2Þ

where L is the length of the element, and yz represents rotation about the z-axis. Here u and v are
displacements in the s and y directions, respectively, and uI and vI represent these displacements in the node I.
Options used in transient dynamic analysis are as follows: transient dynamic analysis (TRNOPT, FULL):
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full method was used, large deformation effects (NLGEOM,ON): for large deflections and large geometric
nonlinearities, Stress stiffening effects (SSTIF,ON): for convergence in a large deflection analysis, Newton–
Raphson option (NROPT,FULL,ON): full Newton–Raphson with adaptive decent on (this option specifies
how often the tangent matrix is updated during solution and was used here because nonlinearities were
present), Equation solver option (EQSLV,SPARSE): default when ‘‘solcontrol’’ is on (ANSYS offers eight
different solver; SPARSE solver worked best in here for geometric nonlinearities). Integration time step
(DELTIM) is the time increment used in the time integration of equations of motion. The size of time step
determines the accuracy of the solution. The smaller its value, the higher the accuracy. The initial time
step used was inverse of the fundamental natural frequency (period) divided by (512� 20). Automatic time
stepping was on (AUTOTS,ON): This option, also known as time-step optimization in a transient analysis,
increases or decreases the integration time step based on the response of the structure. Nonlinear options used:
Maximum number of equilibrium iterations (NEQIT,250), Convergence Tolerance (CNVTOL) was 10�5.

References

[1] I. Fried, Stability and equilibrium of the straight and curved elastica-finite element computation, Computer Methods in Applied

Mechanics and Engineering 28 (1981) 49–61.

[2] R.F. Gans, On the dynamics of a conservative elastic pendulum, ASME Journal of Applied Mechanics 59 (1992) 425–430.

[3] M. Stylianou, B. Tabarrok, Finite element analysis of an axially moving beam, part i: time integration, Journal of Sound and Vibration

178 (1994) 433–453.

[4] M. Stylianou, B. Tabarrok, Finite element analysis of an axially moving beam, part ii: stability analysis, Journal of Sound and

Vibration 178 (1994) 455–481.

[5] B.D. Coleman, J.-M. Xu, On the interaction of solitary waves of flexure in elastic rods, Acta Mechanica 110 (1995) 173–182.

[6] S. Essebier, G. Baker, Computational techniques for nonlinear dynamics of continuous systems, Journal of Engineering Mechanics

121 (1995) 1193–1199.

[7] J. Stolte, R.C. Benson, Dynamic deflection of paper emerging from a channel, Journal of Vibration and Acoustics 114 (1992) 187–193.

[8] J.C. Simo, N. Tarnow, Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms,

International Journal for Numerical Methods in Engineering 38 (1995) 1431–1473.

[9] J.M. Snyder, J.F. Wilson, Dynamics of the elastica with end mass and follower loading, ASME Journal of Applied Mechanics 57

(1990) 203–208.

[10] T.Y. Tsang, A. Arabyan, A novel approach to the dynamic analysis of highly deformable bodies, Computers and Structures 58 (1996)

155–172.

[11] H.H. Yoo, R.R. Ryan, R.A. Scott, Dynamics of flexible beams undergoing overall motions, Journal of Sound and Vibration 181

(1995) 261–278.

[12] J. Chung, H.H. Yoo, Dynamic analysis of a rotating cantilever beam by using the finite element method, Journal of Sound and

Vibration 249 (2002) 147–164.

[13] A. Ibrahimbegovic, R.L. Taylor, H. Lim, Non-linear dynamics of flexible multibody systems, Computers and Structures 81 (2003)

1113–1132.

[14] H. Du, S.F. Ling, A nonlinear dynamics model for three-dimensional flexible linkages, Computers and Structures 56 (1995) 15–23.

[15] J.P. Cusmano, F.C. Moon, Chaotic non-planar vibrations of the thin elastica, part i: experimental observation of planar instability,

Journal of Sound and Vibration 179 (1995) 185–208.

[16] J.P. Cusmano, F.C. Moon, Chaotic non-planar vibrations of the thin elastica, part ii: derivation and analysis of a low-dimensional

model, Journal of Sound and Vibration 179 (1995) 209–226.

[17] A.A. Shabana, H.A. Hussien, J.L. Escalona, Application of the absolute nodal coordinate formulation to large rotation and large

deformation problems, Journal of Mechanical Design, Transactions of the ASME 120 (1998) 188–195.

[18] M.B. Rubin, Numerical solution procedures for nonlinear elastic rods using the theory of a cosserat point, International Journal of

Solids and Structures 38 (2001) 4395–4437.

[19] J.J. Jiang, C.L. Hsiao, A.A. Shabana, Calculation of non-linear vibration of rotating beams by using tetrahedral and solid finite

elements, Journal of Sound and Vibration 148 (1991) 193–213.

[20] J.A.C. Ambrosio, Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach, Computers

and Structures 59 (1996) 1001–1012.

[21] J.C. Simo, L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: part ii, ASME Journal of

Applied Mechanics 53 (1986) 855–863.

[22] K.-M. Hsiao, J.-Y. Jang, Dynamic analysis of planar flexible mechanisms by co-rotational formulation, Computer Methods in Applied

Mechanics and Engineering 87 (1991) 1–14.

[23] J.L. Meek, H. Liu, Nonlinear dynamics analysis of flexible beams under large overall motions and the flexible manipulator

simulation, Journal of Computers and Structures 56 (1995) 1–14.

[24] D.W. Raboud, A.W. Lipsett, M.G. Faulkner, J. Diep, Stability evaluation of very flexible cantilever beams, International Journal of

Non-Linear Mechanics 37 (2001) 1109–1122.


	Dynamic analysis of very flexible beams
	Introduction
	Numerical approach--finite element method
	Solution procedure

	Validation
	Example 1
	Example 2
	Example 3

	Large amplitude free vibration of cantilever beams
	Problem solution
	Finite element analysis results
	Stability analysis

	Conclusions
	Acknowledgements
	ANSYSdetails
	Model used: number and type of elements, and solver

	References


