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Abstract

This study investigates dynamic structural displacements estimation using displacement–strain relationship and measured

strain data. Strain signals are obtained from fiber Bragg grating (FBG) sensors that have an excellent multiplexing ability.

Vibration experiments were performed with aluminum and acryl beam specimens. The beam structures were subjected to

various loading conditions, and deformed shapes were reconstructed by using strain signals. The estimated displacements show

good agreements with those measured directly from laser displacement sensors. In present study, it is confirmed structural

displacements can be estimated using strain data without displacement measurement.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In order to measure structural shape and deformation, displacement measurement sensor must be installed
somewhere. However, sometimes we cannot directly measure displacements of the structure due to the
operating conditions. Some examples are the measurements of airplane wing deflection, blade shape changes
of windmill or helicopters, tool-tip displacement of line boring machines, etc. In these cases, it is helpful to use
attached sensors such as strain gages or fiber optic sensors to measure in-plane strains of the structures.

Many researchers have investigated how to estimate out-of-plane displacements by measuring in-plane
strains. Haugse et al. [1,2] suggested the concept of a modal transformation algorithm to recover deformations
from strains. They showed the effectiveness of the method by performing an experiment using a cantilevered
plate of which modal characteristics were obtained from modal testing in the laboratory. Strains were then
measured by the use of strain gages and deformation patterns were predicted. Pisoni and Santolini [3]
presented a similar procedure for the determination of displacements at any given point in a vibrating body by
using two strain gages. To verify the method, a clamped-end beam was instrumented and experimented upon
under different loading conditions. Li and Ulsoy [4] presented a method to measure tool-tip displacement of
precision line boring machine. Their method is based on the fact that the vibration displacement can be
expressed in terms of an infinite number of vibration modes and be related to the measured strains through the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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displacement–strain relationship. In Refs. [5,6], vertical deflections of simple beam models were reconstructed
using fiber Bragg grating (FBG) sensor signals and relationship between strain and deflection. As a similar
application, strains were reconstructed from operational displacements and displacement-to-strain transfor-
mation relationship when strain cannot be measured directly [7,8].

Although many relevant works have been accomplished, most of them [1–4] have used conventional strain
gages, which need complex wiring in order to measure the strains at several points. Only static deformations
have been treated in most previous literature [5,6]. Even the dynamic deflections were estimated in the previous
studies [3,4], the deflections of a few interesting points of the structures were obtained.

The objective of this study is to reconstruct the whole deformation and vibration of structures. The use of
strain sensors, which are available to measure in-plane strains, is expanded to out-of-plane vibration
measurement and shape sensing. To achieve this goal, we adopted modal approach to construct
displacement–strain relationship and used FBG strain sensors to measure the strains at several points.

2. FBG sensor

Fiber optic sensors have been considered as a good alternative transducer for many applications recently.
They are immune to electromagnetic interference and their sizes are small enough to be embedded into
structures without causing any structural defects. Among these sensors, FBG sensors have been increasingly
studied for a variety of applications such as health monitoring, vibration measurement, non-destructive
testing, and so forth. FBG sensor arrays are easily made by connecting several Bragg gratings written at
different wavelengths serially in a line along the length of a single fiber and addressing each sensor individually
using wavelength division multiplexing (WDM) technology. FBG sensors are suitable for the present study
because strains at several positions can be measured using only a single optical fiber line.

A FBG is composed of periodic changes of the refractive index that are formed by the exposure to an
intense UV interference pattern in the core of an optical fiber. If a broadband light is put into the FBG sensor,
it reflects the special wavelength component, called the Bragg wavelength. The Bragg condition is expressed
as [9]

lB ¼ 2neL, (1)

where lB is the Bragg wavelength of FBG, ne is the effective refractive index of the fiber core and L is the
grating period. The wavelength, which is determined by the Bragg condition, is reflected at the Bragg grating
part, and the other wavelengths pass through it. Fig. 1 shows this process. If we make different Bragg
wavelengths along a single strand of optical fiber, strain data can be measured at several points.

The Bragg wavelength is a function of the refractive index of the fiber core and the grating period. If the
grating is exposed to external perturbation, such as strain and temperature, the Bragg wavelength is changed.
By measuring the wavelength change accurately, the physical properties can be measured. The shift of a Bragg
�B = 2neΛ
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Fig. 1. FBG sensor wavelength-encoding operation.
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wavelength due to strain and temperature can be expressed as

DlB ¼ lB½ðaf þ xf ÞDT þ ð1� peÞ��, (2)

pe ¼
n2

e

2

� �
½p12 � nðp11 þ p12Þ�, (3)

where af is the coefficient of thermal expansion, xf is the thermo-optic coefficient, and pe is the strain-optic
coefficient of an optical fiber. In Eq. (3), n is the Poisson’s ratio, and p11 and p12 are the components of
the strain-optic tensor. A germanosilicate glass generally has a strain-optic coefficient of 0.22. Using
above equations with the assumption of no temperature change, we can measure the strain from the
wavelength shift as

� ¼
1

1� pe

DlB

lB

. (4)

3. Displacement–strain transformation relationship

In this study, modal approach is used for construction of displacement–strain relationship. Using
displacement mode shapes and strain mode shapes, displacement–strain transformation matrix can be
constructed [1]. We assume that displacement and strain of structures can be expressed using finite N mode
shapes. Then, the displacement and strain are

fdg ¼ ½FN �fZNg, (5)

fsg ¼ ½CN �fZNg, (6)

where {d}, [FN], {s}, [CN] and {Zn} represent the displacement, the displacement mode shapes, the strain, the
strain mode shapes and the modal coordinates, respectively. Each mode shape was obtained using MSC/
NASTRAN for the beam model.

From Eq. (6), the modal coordinates can be expressed as

fZNg ¼ ð½CN �
T½CN �Þ

�1
½CN �

Tfsg. (7)

Substituting Eq. (7) into Eq. (5), we obtain

fdg ¼ ½FN �ð½CN �
T½CN �Þ

�1
½CN �

Tfsg. (8)

According to Eq. (8), it is possible to estimate displacement by the multiplication of strain data by
displacement–strain relationship matrix. The rank of ð½CN �

T½CN �Þ
�1
½CN �

T cannot exceed the number of used
strain sensors. It means we can use as many mode shapes as the number of used sensors at most. Therefore, we
must use more sensors if we want to estimate the vibration or deformed shapes accurately at the higher
frequency excitation.

4. Experimental results

A schematic diagram of the whole experimental setup is shown in Fig. 2. In this paper, the aluminum and
acryl beam structures were considered to estimate the whole deformations of the structures. One end of the
beam is clamped and the other end is free. The clamped end is connected to the shaker, which makes the beam
vibrate.

IS7000 [10], which is FBG interrogation system of FIBERPRO Inc., was used for the strain measurements.
It has modular structure-main frame, laser module, and sensor modules. The laser module is based on the
patented wavelength swept fiber laser [11]. It can be easily used to get multipoint strains and the wavelength
resolution is 2 pm, but it has a limitation of maximum sampling frequency of 200Hz.

An aluminum beam specimen with small thickness was fabricated first so that the natural frequencies of the
first a few modes are low enough compared with the sampling frequency of IS7000. The dimensions of the
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aluminum beam structure is 300� 25� 0.49mm3 (Table 1). Due to small difference between the sensor
diameter (0.25mm) and the thickness of the aluminum beam, the measured strains were overestimated. For
this reason, we introduced a compensation factor, which converts the measured strain into the strain on the
Laser controller

PC

Shaker

Function generatorAmp

Excitation

FBG sensors

Beam structure

Laser head
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data

IS7000
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Fig. 2. Schematic of the whole experimental setup.

Table 1

Properties of the beam structures

Property Aluminum beam Acryl beam

Length (L) (m) 0.3 0.8

Width (b) (m) 0.025 0.04

Thickness (h) (m) 0.00049 0.01

Young’s modulus (E) (Pa) 7.1� 1010 3.9� 109

Density (r) (kg/m3) 2710 1160

PCPC

AmpAmpFunction Function 

GeneratorGenerator

Acryl BeamAcryl Beam

ShakerShaker

IS7000IS7000

DAQ SystemDAQ System

Laser SensorsLaser Sensors

Fig. 3. Photograph of the experimental setup.
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Table 2

Natural frequencies of the beam model

Mode no. Natural frequency (Hz)

Aluminum beam Acryl beam

Experiment Analysis Experiment Analysis

1 4.50 4.47 4.43 4.63

2 28.02 28.04 29.59 29.00

3 78.71 78.51 84.24 81.21

4 154.4 153.9 168.4 159.1
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Fig. 4. Transmitted signal of the fabricated FBG sensors.
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excitation, (c) free vibration, (d) random vibration, ———, estimated displacement; – – – – measured displacement.
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surface of the aluminum beam. Then, Eq. (8) becomes

fdg ¼ ½FN �ð½CN �
T½CN �Þ

�1
½CN �

T afsgð Þ, (9)

where a is the compensation factor having the value of 0.6622, a ratio of 0.245mm (half thickness of the beam)
to 0.37mm (half thickness of the beam plus radius of the FBG sensor). We also prepared a thick beam
specimen made of acryl and we did not have to consider the compensation factor for the optical fiber strain
sensors. The dimensions of the acryl beam structure is 800� 40� 10mm3 (Table 1). A photograph of the
experimental setup is presented in Fig. 3. Table 1 shows the properties of the beam models and Table 2 shows
the natural frequencies of the structures.

4 FBG sensors along a single fiber were fabricated using different phase masks as shown in Fig. 4. The
central wavelengths of FBG sensors are 1536.4, 1540.6, 1547.1, and 1551.6 nm, and they are attached at the
positions of 30, 37.5, 114, and 184.5mm from the base of aluminum beam and at the positions of 80, 100, 304,
and 492mm from the base of acryl beam, respectively. These sensor locations were determined in a way that
the transformation matrix in Eq. (8) had the minimum condition number [4].

Using the first 4 mode shapes, deformations of the beam structures were estimated. Displacements were also
directly measured at 3 points (aluminum beam: 100, 190, and 290mm from the base, acryl beam: 300, 500, and
700mm from the base) using laser displacement sensors. The structures were subjected to various loading
conditions and dynamic behaviors of the acryl beam structure are shown in Fig. 5. From Fig. 5, we can see the
estimated displacement results show good agreements with those measured directly.
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In addition to the local displacement estimation, the estimation results of the whole structural deformation
are shown in Fig. 6. Because it is well known that a structure vibrates with the corresponding mode shape if it
is excited at its natural frequency, the vibration experiments were performed in the cases of first and second
natural frequency excitation for comparison. To obtain experimental mode shapes, we performed a shaker
test. We used a modal shaker (for random excitation up to 100Hz, MB Dynamics MODAL50), a force
transducer (PCB Piezotronics 208B02), a laser Doppler vibrometer (LDV, Polytec OFV303), some amplifiers
and FFT analyzer (HP3565). The excitation point was fixed and velocities at various locations (each 40mm
from the clamped end) were measured. A Hanning window was utilized for the frequency analysis and STAR
MODAL S/W was used to extract modal parameters. The experimental setup is shown in Fig. 7. In Fig. 6, we
can see that the deformed shapes of the structures are similar with their own mode shapes, which were
obtained by experiment. In acryl beam case, especially at the second natural frequency excitation, we can see
the beam vibrates as a complex mode shape due to the large damping effect. In order to measure relative errors
Beam

LDV Head

Velocity Measurement
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Shaker
Amp

LDV Controller

Force Measurement

Force Transducer

Random Excitation Signal

HP3565

DAQ
System
(FFT 

Analyzer)

Shaker

Force transducer
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Acryl beam

LDV

Shaker

LDV

Fig. 7. The experimental setup for modal testing: (a) schematic diagram of the test setup and (b) photograph of the test setup.
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Table 4

RMS errors (%) for different loading conditions (acryl beam)

Measured point (mm) Excitation

3Hz First mode (4.43Hz) 15Hz Second mode (29.59Hz) Free Random

300 7.85 5.16 31.7 7.45 1.59 1.01

500 3.28 1.84 4.97 31.0 1.43 0.806

700 5.16 4.46 5.71 30.0 1.39 0.695

Table 3

RMS errors(%) for different loading conditions (aluminum beam)

Measured point (mm) Excitation

3Hz First mode (4.5Hz) 15Hz Second mode (28Hz) Free Random

100 9.42 10.2 34.7 8.12 1.64 5.73

190 3.97 4.10 9.12 7.08 1.90 8.00

290 3.99 3.82 6.34 11.91 1.08 7.46

L.-H. Kang et al. / Journal of Sound and Vibration 305 (2007) 534–542 541
between measured and estimated displacements, following RMS (root mean square) percent error was
introduced.

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
SN

n¼1ðdmeasured � destimatedÞ
2

q
maxðdmeasuredÞ

� 100ð%Þ. (10)

In Eq. (10), N is the number of time data, dmeasured represents the measured displacement at a specific point
and destimated represents the estimated displacement at the same point. These values were obtained at one
interesting point of the structure through time. Tables 3 and 4 show the errors at 3 points of the structures
according to the different loading conditions. In the off-resonant cases (especially, 15Hz excitation), the
results are worse than the other cases. Because the amplitude level of the beam at off-resonant excitation is not
large enough, small noise can generate big relative errors. The damping coefficient of the acryl beam is
generally quite large, so it vibrates in a complex mode. Because we used normal mode shapes to estimate
structural deformation, the estimated results of the acryl beam are a little bigger than those of the aluminum
beam. Nevertheless, the experimental results generally showed the effectiveness of the present method. Using
this method, we can estimate the whole structural shape using small number of strain sensors.

5. Conclusion

In this study, displacement estimation method using strain has been introduced. This method requires
relationship between displacement and strain mode shapes. Then, structural vibration can be estimated using
the displacement–strain relationship with strain sensor signals. Strains were measured by using FBG optical
strain sensor array, which has a good multiplexing ability.

To observe the structural deformation, the vibration experiments were performed for the aluminum and
acryl beam specimens attached with 4 FBG strain sensors in the laboratory. The beam structures were
subjected to various loading conditions, and deformed shapes were well reconstructed by the use of the
displacement–strain transformation relationship. The estimated displacement results show good agreements
with those measured directly from laser sensors.

This study enables us to estimate the whole structural deformations as well as local displacements with
relatively simple computation. The present method can be widely used for applications of vibration sensing
and control for the enhanced safety and reliability of the structures [12,13].
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