
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +82 1

E-mail addr
Journal of Sound and Vibration 305 (2007) 543–551

www.elsevier.com/locate/jsvi
Short Communication

Free vibration analysis of non-cylindrical helical springs
by the pseudospectral method

Jinhee Lee�

Department of Mechano-Informatics, Hongik University, Chochiwon, Yeonki-kun, Choongnam 339-701, Republic of Korea

Received 12 January 2007; received in revised form 2 April 2007; accepted 8 April 2007

Available online 5 July 2007
Abstract

The pseudospectral method is applied to the free vibration analysis of non-cylindrical helical springs. The entire domain

is considered as a single element and the displacements and the rotations are approximated by the sums of Chebyshev

polynomials. The internal forces and moments are substituted to give six equations of motion, which are collocated to yield

the system of algebraic equations. The boundary condition is considered as the constraints, and the set of equations is

condensed so that the number of degrees of freedom of the problem matches the number of the expansion coefficients.

Numerical examples are provided for clamped–clamped, free–free, clamped–free and hinged–hinged boundary conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Previous investigations on the free vibration of non-cylindrical helical springs [1–6] were based on the multi-
element methods such as the transfer matrix method. The set of equations was expressed as

d

dy
fX ðyÞg ¼ ½Z�fX ðyÞg (1)

with the state vector

fX ðyÞg ¼ UtUnUbOtOnObF tFnF bMtMnMbf gT, (2)

where the differential matrix [Z] was a function of R(y). U, O, F and M represent the displacements, the
rotations, the internal forces and the internal moments, respectively. Subscripts t, n and b stand for the
tangential direction, the normal direction and the binormal direction. Because the horizontal radius R(y) is not
constant for non-cylindrical helical springs they had to employ relatively large number of elements to compute
the natural frequencies. Busool and Eisenberger [7] set six equations of motion, where dR(y)/dy as well as R(y)
was included, and computed the natural frequencies with a smaller number of elements.

Recently, Lee [8] applied the pseudospectral method to the free vibration analysis of cylindrical helical
springs. In the pseudospectral method, the entire domain is considered as a single element and the governing
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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equations are collocated at a number of collocation points inside the element. Since each spectral coefficient is
determined by all the collocation point values the pseudospectral method can be made as spatially accurate as
desired through exponential rate of convergence with grid refinement. Moreover, neither numerical
differentiation nor numerical integration process is associated with the present method. The differentiations
of basis functions can be performed analytically, which enhances the accuracy of the solution of the
pseudospectral method.

2. Formulations for non-cylindrical helical springs

Figs. 1 and 2 describe typical non-cylindrical helical springs and the schematic geometry of a helical spring.
R(y) is given for barrel and hyperboloidal types from

RðyÞ ¼ R1 þ ðR2 � R1Þ 1�
2y
Y

� �2

(3)

and for conical type from

RðyÞ ¼ R1 þ ðR2 � R1Þ
y
Y
, (4)

where (0pypY ¼ 2pnc) and nc is the number of turns of the helix.
Yildirim [2] derived the equations of motion for the free vibration of a helical spring as

F 0t � CF n ¼ �o2 rAR

C
Ut; F 0n þ CF t � SF b ¼ �o2 rAR

C
Un, (5a,b)

F 0b þ SFn ¼ �o2 rAR

C
Ub; M 0

t � CMn ¼ �o2 rJR

C
Ot, (5c,d)

M 0
n �

R

C
Fb þ CMt � SMb ¼ �o2 rInR

C
On; M 0

b þ
R

C
F n þ SMn ¼ �o2 rIbR

C
Ob (5e,f)

at natural frequency o in rad/s, where the notation 0 stands for the differentiation with respect to y. C and S

represent cos a and sin a, where a is the pitch angle of the helix. A, In, Ib and J are the cross-sectional area, the
Fig. 1. Non-cylindrical helical springs.
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Fig. 2. Schematic geometry of a helical spring.
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second moments of area with respect to the normal axis and to the binormal axis, and the torsional moment of
inertia of the cross-section.

When the range of the independent variable is given by (0pypY), it is convenient to use the normalized
variable

x ¼
2y�Y

Y
2 �1; 1½ �. (6)

The displacements and the rotations are expressed as sums of Chebyshev polynomials as follows:

UtðxÞ ¼
PKþ2
k¼1

akTk�1ðxÞ; UnðxÞ ¼
PKþ2
k¼1

bkTk�1ðxÞ; UbðxÞ ¼
PKþ2
k¼1

ckTk�1ðxÞ;

OtðxÞ ¼
PKþ2
k¼1

dkTk�1ðxÞ; OnðxÞ ¼
PKþ2
k¼1

ekTk�1ðxÞ; ObðxÞ ¼
PKþ2
k¼1

f kTk�1ðxÞ;
(7)

where ak, bk, ck, dk, ek and fk are the expansion coefficients. K is the number of collocation points. Tk(x) is the
Chebyshev polynomial of the first kind defined as

TkðxÞ ¼ Tk ðcos fÞ ¼ cos kf ð�1pxp1Þ, (8)

where f ¼ cos�1 x. Its derivatives with respect to x are

dTkðxÞ=dx ¼ k sin kf= sin f;

d2TkðxÞ=dx
2
¼ �k2 cos kf=sin2 fþ k cos f cos kf=sin3 f ð�1oxo1Þ

(
(9)

and

dnTk=dx
n
��
x¼�1 ¼ ð�1Þ

kþn
Yn�1
p¼0

ðk2
� p2Þ=ð2pþ 1Þ (10)

at x ¼71.
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Ft, Fn, Fb, Mt, Mn and Mb for a helical spring of constant cross-section are extracted from the remaining six
equations of Yildirim [2] and expansions (7) are applied to result in

F tðxÞ ¼
EA

R
U 0t � C2Un

� �
¼

EA

R

XKþ2
k¼1

2ak

Y
T�k�1ðxÞ � bkC2Tk�1ðxÞ

� �
, (11a)

FnðxÞ ¼
GA

b
U 0n þ C2Ut � CSUb

R
� Ob

� �

¼
GA

b

XKþ2
k¼1

2bk

RY
T�k�1ðxÞ þ

akC2 � ckCS

R
� f k

� �
Tk�1ðxÞ

� �
, ð11bÞ

FbðxÞ ¼
GA

b
U 0b
R
þ

CS

R
Un þ On

� �

¼
GA

b

XKþ2
k¼1

2ck

RY
T�k�1ðxÞ þ

bkCS

R
þ ek

� �
Tk�1ðxÞ

� �
, ð11cÞ

MtðxÞ ¼
GJ

R
ðO0t � C2OnÞ ¼

GJ

R

XKþ2
k¼1

2dk

Y
T�k�1ðxÞ � ekC2Tk�1ðxÞ

� �
, (11d)

MnðxÞ ¼
EIn

R
ðO0n þ C2Ot � CSObÞ ¼

EIn

R

XKþ2
k¼1

2ek

Y
T�k�1ðxÞ þ ðdkC2 � f kCSÞTk�1ðxÞ

� �
, (11e)

MbðxÞ ¼
EIb

R
ðO0b þ CSOnÞ ¼

EIb

R

XKþ2
k¼1

2f k

Y
T�k�1ðxÞ þ ekCSTk�1ðxÞ

� �
. (11f)

The notation * stands for the differentiation with respect to x. E, G and b are Young’s modulus, the shear
modulus and the Timoshenko coefficient, respectively.

Eqs. (7) and (11a)–(11f) are substituted into Eqs. (5a)–(5f), and are collocated at the Gauss–Lobatto
collocation points

xi ¼ � cos
pð2i � 1Þ

2K
ði ¼ 1; 2; . . . ; KÞ (12)

to yield the collocated governing equations as given below:

XKþ2
k¼1

ak

4EAC

RiY2
T��k�1ðxiÞ �

2EAR0iC

R2
i Y

T�k�1ðxiÞ �
GAC3

bRi

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

bk � EAþ
GA

b

� �
2C2

RiY
T�k�1ðxiÞ þ

EAR0iC
2

R2
i

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

ck

GAC2S

b
Tk�1ðxiÞ þ

XKþ2
k¼1

f k

GAC

b
Tk�1ðxiÞ

¼ �o2 rA

C

XKþ2
k¼1

akRiTk�1ðxiÞ, ð13aÞ
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XKþ2
k¼1

ak EAþ
GA

b

� �
2C2

RiY
T�k�1ðxiÞ �

GAR0iC
2

bR2
i

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

bk

4GAC

bRiY2
T��k�1ðxiÞ �

2GAR0iC

bR2
i Y

T�k�1ðxiÞ � EAC2 þ
GAS2

b

� �
C

Ri

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

ck �
4GACS

bRiY
T�k�1ðxiÞ þ

GAR0iCS

bR2
i

Tk�1ðxiÞ

( )

�
XKþ2
k¼1

ek

GAS

b
Tk�1ðxiÞ �

XKþ2
k¼1

f k

2GA

bY
T�k�1ðxiÞ

¼ �o2 rA

C

XKþ2
k¼1

bkRiTk�1ðxiÞ, ð13bÞ

XKþ2
k¼1

ak

GAC2S

bRi

Tk�1ðxiÞ þ
XKþ2
k¼1

bk

4GACS

bRiY
T�k�1ðxiÞ �

GAR0iCS

bR2
i

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

ck

4GAC

bRiY2
T��k�1ðxiÞ �

2GAR0iC

bR2
i Y

T�k�1ðxiÞ �
GACS2

bRi

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

ek

2GA

bY
T�k�1ðxiÞ �

XKþ2
k¼1

f k

GAS

b
Tk�1ðxiÞ

¼ �o2 rA

C

XKþ2
k¼1

ckRiTk�1ðxiÞ, ð13cÞ

XKþ2
k¼1

dk

4GJC

RiY2
T��k�1ðxiÞ �

2GJR0iC

R2
i Y

T�k�1ðxiÞ �
EInC3

Ri

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

ek � GJ þ EInð Þ
2C2

RiY
T�k�1ðxiÞ þ

GJR0iC
2

R2
i

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

f k

EInC2S

Ri

Tk�1ðxiÞ

¼ �o2 rJ

C

XKþ2
k¼1

dkRiTk�1ðxiÞ, ð13dÞ

�
XKþ2
k¼1

bk

GAS

b
Tk�1ðxiÞ �

XKþ2
k¼1

ck

2GA

bY
T�k�1ðxiÞ

þ
XKþ2
k¼1

dk EIn þ GJð Þ
2C2

RiY
T�k�1ðxiÞ �

EInR0iC
2

R2
i

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

ek

4EInC

RiY2

�
T��k�1ðxiÞ �

2EInR0iC

R2
i Y

Tn

k�1ðxiÞ

�
GARi

bC
þ

GJC3

Ri

þ
EIbCS2

Ri

� �
Tk�1ðxiÞ

�
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þ
XKþ2
k¼1

f k �ðEIn þ EIbÞ
2CS

RiY
T�k�1ðxiÞ þ

EInR0iCS

R2
i

Tk�1ðxiÞ

( )

¼ �o2 rIn

C

XKþ2
k¼1

ekRiTk�1ðxiÞ, ð13eÞ

XKþ2
k¼1

ak

GAC

b
Tk�1ðxiÞ þ

XKþ2
k¼1

bk

2GA

bY
T�k�1ðxiÞ �

XKþ2
k¼1

ck

GAS

b
Tk�1ðxiÞ

þ
XKþ2
k¼1

dk

EInC2S

Ri

Tk�1ðxiÞ þ
XKþ2
k¼1

ek EIn þ EIbð Þ
2CS

RiY
T�k�1ðxiÞ �

EIbR0iCS

R2
i

Tk�1ðxiÞ

( )

þ
XKþ2
k¼1

f k

4EIbC

RiY2
T��k�1ðxiÞ �

2EIbR0iC

R2
i Y

T�k�1ðxiÞ �
GARi

bC
þ

EInCS2

Ri

� �
Tk�1ðxiÞ

( )

¼ �o2 rIb

C

XKþ2
k¼1

f kRiTk�1ðxiÞ ði ¼ 1; . . . ; KÞ. ð13fÞ

Ri and R0i represent R(xi) and dR(xi)/dy, respectively. Eqs. (13a)–(13f) can be rearranged in the matrix form

½B�fdg þ ½D�fgg ¼ o2ð½P�fdg þ ½Q�fggÞ, (14)

where the vectors in Eq. (14) are defined by

fdg ¼ fa1a2 � � � aK b1b2 � � � bK c1c2 � � � cK d1d2 � � � dK e1e2 � � � eK f 1f 2 � � � f Kg
T;

fgg ¼ faKþ1 aKþ2 bKþ1 bKþ2 cKþ1 cKþ2 dKþ1 dKþ2 eKþ1 eKþ2 f Kþ1 f Kþ2g
T:

(15)

The total number of equations in Eqs. (13a)–(13f) is 6K whereas the total number of unknown expansion
coefficients is 6(K+2). The remaining 12 equations are obtained from the boundary conditions. Typical
boundary conditions are represented by

clamped : Ut ¼ 0; Un ¼ 0; Ub ¼ 0; Ot ¼ 0; On ¼ 0; Ob ¼ 0, (16a)

hinged : Ut ¼ 0; Un ¼ 0; Ub ¼ 0; Mt ¼ 0; Mn ¼ 0; Mb ¼ 0, (16b)

free : F t ¼ 0; Fn ¼ 0; F b ¼ 0; Mt ¼ 0; Mn ¼ 0; Mb ¼ 0. (16c)

For example when the series expansions of Eqs. (7) and (11a)–(11f) are substituted into the
clamped–clamped boundary condition at x ¼71, the boundary condition set in the spectral form is
expressed as

PKþ2
k¼1

akTk�1ð�1Þ ¼ 0;
PKþ2
k¼1

bkTk�1ð�1Þ ¼ 0;
PKþ2
k¼1

ckTk�1ð�1Þ ¼ 0;

PKþ2
k¼1

dkTk�1ð�1Þ ¼ 0;
PKþ2
k¼1

ekTk�1ð�1Þ ¼ 0;
PKþ2
k¼1

f kTk�1ð�1Þ ¼ 0;

PKþ2
k¼1

akTk�1ð1Þ ¼ 0;
PKþ2
k¼1

bkTk�1ð1Þ ¼ 0;
PKþ2
k¼1

ckTk�1ð1Þ ¼ 0;

PKþ2
k¼1

dkTk�1ð1Þ ¼ 0;
PKþ2
k¼1

ekTk�1ð1Þ ¼ 0;
PKþ2
k¼1

f kTk�1ð1Þ ¼ 0;

(17)

which acts as the constraints of Eqs. (13a)–(13f). The boundary condition set in the spectral form can be
rearranged in the matrix form

½V �fdg þ ½W �fgg ¼ f0g (18)
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and Eq. (14) can be reformulated as

ð½B� � ½D�½W ��1½V �Þfdg ¼ o2ð½P� � ½Q�½W ��1½V �Þfdg. (19)

The solution of Eq. (19) yields the estimate for the natural frequencies and the expansion coefficients. The
formulation is straightforward and easy for writing the code.
Table 1

Convergence test of the natural frequencies in Hz (hyperboloidal helix, R2/R1 ¼ 2.4, R1 ¼ 13mm, a ¼ 4.81, wire radius r ¼ 1.3mm,

A ¼ pr2, In ¼ Ib ¼ pr4/4, J ¼ pr4/2, nc ¼ 6.5, n ¼ 0.3, E ¼ 210GPa, r ¼ 7850 kg/m3, b ¼ 1.1, clamped–clamped boundary condition)

o1 o2 o3 o4 o5 o6

Present study

K ¼ 20 76.483 125.327 180.509 194.008 235.289 264.569

K ¼ 30 75.783 97.014 97.175 133.488 160.471 184.298

K ¼ 40 75.762 96.311 103.086 133.212 160.702 184.316

K ¼ 50 75.762 96.311 103.086 133.212 160.702 184.316

Busool–Eisenberger [7] (7 elements) 75.762 96.312 103.087 133.213 160.702 184.316

Table 2

Natural frequencies in Hz of a hyperboloidal-type helical spring (R1 ¼ 13mm, r ¼ 1.3mm, A ¼ pr2, In ¼ Ib ¼ pr4/4, J ¼ pr4/2, nc ¼ 6.5,

a ¼ 4.81, b ¼ 1.1, E ¼ 210GPa, Poisson’s ratio n ¼ 0.3, r ¼ 7850 kg/m3, clamped–clamped boundary condition, K ¼ 50)

R2/R1 o1 o2 o3 o4 o5

1.2

Present study 178.93 208.80 227.83 238.45 360.07

Yildirim [2] 178.94 208.80 227.85 238.46 360.07

1.6

Present study 130.29 159.62 170.74 193.59 271.12

Yildirim [2] 130.29 159.63 170.76 193.60 271.12

2.0

Present study 97.85 122.69 131.07 160.03 205.82

Yildirim [2] 97.85 122.69 131.08 160.03 205.82

2.4

Present study 75.76 96.31 103.09 133.21 160.70

Yildirim [2] 75.76 96.31 103.10 133.22 160.70

Table 3

Natural frequencies in Hz of a barrel-type helical spring (R1 ¼ 25mm, r ¼ 1mm, A ¼ pr2, In ¼ Ib ¼ pr4/4, J ¼ pr4/2, nc ¼ 6.5, a ¼ 4.81,

b ¼ 1.1, E ¼ 210GPa, n ¼ 0.3, r ¼ 7850kg/m3, clamped–clamped boundary condition, K ¼ 50)

R2/R1 o1 o2 o3 o4 o5

0.2

Present study 71.86 81.19 99.94 99.95 143.88

Yildirim [2] 71.86 81.19 99.95 99.96 143.88

0.4

Present study 65.53 71.52 86.93 87.00 129.60

Yildirim [2] 65.53 71.52 86.94 87.01 129.60

0.6

Present study 59.62 61.79 75.07 75.08 114.01

Yildirim [2] 59.62 61.78 75.08 75.09 114.01

0.8

Present study 52.11 54.57 64.46 64.76 99.15

Yildirim [2] 52.11 54.57 64.46 64.77 99.15
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3. Numerical examples

The algorithm developed in the preceding section was realized by a program written in Matlab, and a
preliminary run was carried out to check the convergence of the natural frequencies of a hyperboloidal helical
spring for R2/R1 ¼ 2.4 for clamped–clamped boundary condition and the results are given in Table 1.
The number of collocation points, which had impact on the accuracy of the solution ranged from K ¼ 20
to 50. Table 1 shows that the solution was converged for the six lowest natural frequencies to five
significant figures for Ko40. The converged frequencies are in excellent agreement with the results of
Busool–Eisenberger [7].

The natural frequencies were computed for hyperboloidal-type, barrel-type and conical-type helical springs
and the results are given in Tables 2–4. It is found that the computational results in Tables 2–4 are in good
agreement with those of Yildirim [2,6]. The largest discrepancy between them is found in the case of conical
spring when R2/R1 is close to unity, of which relative error is less than 0.05%.

Any set of boundary condition can be merged into the collocated governing equations systematically by the
procedure explained in Eqs. (17)–(19). The natural frequencies computed by the pseudospectral method for
clamped–clamped, free–free, clamped–free and hinged–hinged boundary conditions are given in Table 5.
Table 5

Natural frequencies in Hz of a hyperboloidal-barrel-type helical springs (R1 ¼ 13mm, r ¼ 1.3mm, A ¼ pr2, In ¼ Ib ¼ pr4/4, J ¼ pr4/2,

nc ¼ 6.5, a ¼ 4.81, b ¼ 1.1, E ¼ 210GPa, n ¼ 0.3, r ¼ 7850 kg/m3, K ¼ 50)

R2/R1 Boundary condition o1 o2 o3 o4 o5 o6

0.5 (barrel) Clamped–clamped 300.40 319.00 387.25 387.53 583.96 613.70

Hinged–hinged 189.75 197.38 337.50 363.26 467.76 499.64

Free–free 264.34 362.37 375.48 375.88 542.17 634.94

Clamped–free 89.91 90.09 144.86 165.41 346.97 348.59

2 (hyperboloidal) Hinged–hinged 43.97 46.94 122.46 122.56 159.96 174.84

Free–free 109.29 115.35 125.23 145.94 191.98 231.99

Clamped–free 35.17 35.35 55.38 63.05 112.15 123.60

Table 4

Natural frequencies in Hz of a conical-type helical spring (R1 ¼ 5mm, r ¼ 0.5mm, A ¼ pr2, In ¼ Ib ¼ pr4/4, J ¼ pr4/2, nc ¼ 7.6,

a ¼ 8.57441, b ¼ 1.1, E ¼ 206.1GPa, n ¼ 0.3, r ¼ 7900 kg/m3, clamped–clamped boundary condition, K ¼ 50)

R2/R1 o1 o2 o3 o4 o5 o6

0.9

Present study 435.73 438.56 512.74 581.45 955.83 970.39

Yildirim [6] 435.65 438.43 512.62 581.32 955.73 969.98

0.8

Present study 484.58 487.63 571.14 644.10 1060.6 1076.8

Yildirim [6] 484.49 487.47 571.00 643.96 1060.5 1076.3

0.7

Present study 541.32 544.58 639.89 714.23 1179.7 1197.9

Yildirim [6] 541.23 544.39 639.72 714.08 1179.6 1197.3

0.6

Present study 607.47 610.98 720.96 792.42 1314.5 1335.8

Yildirim [6] 607.37 610.74 720.77 792.24 1314.4 1335.2

0.5

Present study 684.76 688.76 816.06 879.38 1465.5 1492.7

Yildirim [6] 684.64 688.48 815.82 879.17 1465.4 1491.9
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4. Conclusions

The pseudospectral method is applied to the free vibration analysis of non-cylindrical helical springs and
numerical examples are provided for clamped–clamped, free–free, clamped–free and hinged–hinged boundary
conditions. The displacements and the rotations are approximated by the series expansions of Chebyshev
polynomials. The equations of motion include dR(y)/dy as well as R(y), and the entire domain is considered as
a single element. The equations of motion are collocated to yield the collocated governing equations, from
which the natural frequencies are computed. To handle the boundary condition the number of collocation
points is chosen to be less than the number of the expansion terms. The boundary condition is considered as
the constraints of the governing equations, and the set of algebraic equations is condensed so that the number
of degrees of freedom of the problem matches the total number of the expansion coefficients. The results of
present study show good agreement with those of the published literature.
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