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Abstract

In this paper, a convenient technique for evaluating angular frequency in some nonlinear oscillations is proposed. It is
well known that once the restoring force function is given beforehand, the period of motion can be determined by an
integral. The angular frequency has a relation with the period of motion as well as the integral. One makes a little
modification for the integrand in the integral and a change of variable. It is found that if the three divisions are chosen on
the integration interval and the trapezoid quadrature rule is used, a higher accurate result for the angular frequency can be
achieved. For the restoring force being an odd function, three numerical examples are presented. The eardrum-type
oscillation is studied as well. Higher accurate results for the angular frequency are obtained in all those examples.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Problems of nonlinear vibration in conservative systems have a long history [1-3]. The well known
nonlinear oscillation of the Duffing equation is an example in this field. The governing equation for the
problem was formulated in Refs. [1,2]. In the case of ¢ being a small parameter in the equation, the equation is
solved by using the Lindstedt—Poincare technique, the method of multiple scales, and the method of averaging
[1,2]. Almost all perturbation methods are based on small parameters so that the approximate solutions can be
expressed in a series of small parameters. The limitation of the perturbation method is easily seen. Clearly, in
the case of ¢ being a larger value, the perturbation method is no longer valid.

On the other hand, many nonlinear vibration problems were solved by using the harmonic balance method
and other methods [4-10]. The merit of the harmonic balance method is to balance the coefficients of Fourier
series in the governing equation of the nonlinear oscillation, once the assumed motion is substituted in the
equation.

Since the advanced computer was not available in an earlier time, investigators had to pay attention to the
hand-handled type solution. The so-called hand-handled type solution is defined such that the solution can be
obtained by hand and very elementary computation using the calculator (not computer). We will point out
some difficult points by the use of this type of solution. The following is an example.
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In an earlier time, the following equations for Duffing-harmonic oscillation were formulated and studied
[9,10,14]

d%u N woo 0
der 14w 7
with the initial conditions
du
Ug=A, — =0
! dt t=0

where u is the displacement, A is a constant given beforehand.
In the harmonic balance method, one generally assume the motion, saying, in the following forms [9,10]

u=Acos(wt) or u= L T el cos(w) ,

1 + ¢; cos(2wt)
where w is the angular frequency, and ¢;, ¢, are the undetermined coefficients. After some manipulation,
particularly, the usage of the harmonic balance method, three approximate solutions for the angular frequency
w were suggested [9,10].

It is found that the suggested solutions for the angular frequency w have up to 1.5% percentage error
in the case that the “A4” value changes from 0.01 to 100, even though they have a good behavior at the
range 4>10 or 4<0.01. This result can be easily realized by the following reason. The real motion must
be complicated, and sometimes the motion is far different from the harmonic motion. In this case, one
cannot get an accurate result from modeling the motion by some simple function, for example; only two
degrees of freedom are involved in the vibration mode. One way for improving the accuracy for the problem
i1s to choose more terms in the modeled function. However, if one chooses more terms in the vibration
mode, one must meet more complicated nonlinear algebraic equation, which cannot be solved by a simple
derivation.

For solving some nonlinear vibration problems, some techniques, for example, the target function technique
and the multiple-parameters technique were suggested [11,12]. These techniques provide higher accurate
solution. However, these techniques must depend on the iteration, and the target function technique must rely
on the numerical integration of the ordinary differential equation (ODE). These techniques belong to the
computer-computed type solution.

The aim of this paper is to obtain higher accurate results by using the hand-handled type solution. The
investigated item is the angular frequency only. It is well known that once the restoring force function is given
beforehand, the period of motion T}, can be defined by an integral (see Egs. (5), (8) and (9) below). It is found
that if the three divisions are chosen on the integration interval (0,7/2) and the trapezoid quadrature rule is
used, a higher accurate result the angular frequency can be achieved.

For the restoring force being an odd function, three numerical examples are presented. The eardrum-type
oscillation is studied as well. Higher accurate results for the angular frequency are obtained in all those
examples.

2. General analyses and the convenient technique for evaluating the angular frequency

In following analysis, the nonlinear oscillation is generally defined by [1,2,10]

&

/W =0, M
where u is the displacement. The imposed boundary conditions take the form
du
o=4, —| =0 2
ult—() B dr —o 5 ( )

where A is a positive value. If f{u) = u, we have a solution u = A cos(wt) with o = 1, which is the case of the
harmonic motion.
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After multiplying both sides of Eq. (1) by 2du and making integration, from condition (2) one will yield

v 4 g(u) = g(A), (3)
where
d
b= di[‘, 4)
o) = 2 /0 oL 5)

Eq. (3) represents the energy conservation relation for the motion.
In the following analysis, the following Duffing oscillation is taken as an example

2
% +1 =0 (orwithf(u) =« in Eq. (1)). ©6)
In this case, from Eq. (5) we have

g(u) = u?“' (7)

If the angular frequency of motion is denoted by w, from Egs. (3) and (4) and the trajectory of motion

(Fig. 1), we will find d¢/du = —1/+/¢g(A4) — g(u) (for 0<wt<n) and dt/du = 1//g(A) — g(u) (for < wr<2n).
From this relation, we can obtain the period of the motion 7}, and the angular frequency  from the following
equation [1,2,10]:

2 A du
T,=—=2 B e— 8
"o L V(A — g(u) ®)

The integral (8) can be integrated numerically by an available quadrature rule (see Appendix A and Ref. [13]).
Alternatively, we can define the following relation:

I,=-=1r. ©)

w 27

Therefore, we have

1 1/ du
l,=— = ———. 10
< ”/—A V9(A4) — g(u) (10

The integral defined by Eq. (10) can be integrated with sufficient accuracy referred to Appendix A.

%
Qs
Q4(A0)
(at ot =2m)
QA — - - :
(atot=m) . .. Qu(A,0)
(at ot = 0)
Q. QU Vi)
(at ot = 1/2) (at ot = 1/4)

Fig. 1. The v vs. u trajectory for solution of the Duffing oscillation on the phase plane.
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If g(u) is an even function with respect to the argument u, the integral can be rewritten as

12
IU=—=—/ L (10a)
o o \/g(A) — g(u)
Further, The integral can be written alternatively
1 2 (4 hwdu
I,=—=- —_—, 10b
W TSy 4/ A2 — 12 ( )
where
A — 2
M) = — 2 — % (11)
V9(A) — g(u)
After letting u = A sin 6, we can define
hi(0) = h(w)| g o o (12)
After this substitution, we have
1 2 /2
I, :—:—/ h1(0)do. (10¢)
w T Jo

In the case of g(u) = u*/2, from Egs. (7), (11) and (12), the explicit expression for the functions 4(u) and /,(0)
are obtained

V2 V2
) = ———, )= ———. 13
®) VA* +u? 1@ AV1 +sin’0 ()

Two approximation schemes are suggested below. In the first scheme, we choose two divisions (0, 7/4) and
(n/4,7/2) for the interval (0,7/2). After using the trapezoid quadrature rule (see Appendix B or Ref. [13]),
from Eq. (10c) we will find

I, =é=%[h1(0)+2h1(n/4)+h1(ﬂ/2)]- (14)

Substituting /1(0) = ~/2/A, hy(n/4) = 2/(~/34)and hi(n/2) = 1/A in the above-mentioned equation yields
I 1V/6+4+3

I,=—=
w 44 V3
Similarly, in the second scheme, we choose three divisions (0,7/6)(n/6,7/3), and (n/3,7/2) on the interval

(0,7/2). After using the trapezoid quadrature rule (see Appendix B or Ref. [13]), from Eq. (10c) we will find

I, = % = é [71(0) + 2h1 (1 /6) + 211 (/3) + i (w/2)]. (13)

(14a)

Substituting /1(0) = ~/2/A, hi(1/6) = 23/2/(v/54), h(n/3) = 2/2/(~/TA4) and hy(n/2) = 1/A in the above-

mentioned equation yields
11 42 42
I,=—=—(V2+—+—+1]. 15¢
0w6A<\/—+\/§+\/7+> (15a)

Note that, Egs. (10b) and (10c) can be used to any case, only if the function g(u) is an even function with
respect to u. From Eq. (11) we see that when u — A, h(u) becomes 0/0 type expression. The value of /4(A4) can
be easily evaluated by L hopital rule in calculus.

In the case of f(u) = u’, the exact solution is [9,10,14]

A = 0.8472024, (16)

Wex

7
2F(1/V2,m/2)
where F(1/+/2,m/2) is the complete elliptic integral of the first kind.
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If two-divisions technique is used, from Eq. (14a) we have the following angular frequency and percentage
error:

T V6314

where the subscript d2 means the result is obtained from two-divisions technique.
If three-divisions technique is used, from Eq. (15a) we have the following angular frequency and percentage
error:

A =08468094, S = (a2 — Wex)/ex = —0.0463%, (17)

o — 6+/35 y
BT Y10+ V18) + /35 + V70

where the subscript d3 means the result is obtained from three-divisions technique.
The following two examples can be solved in a similar manner.

= 0.8472034, 843 = (a3 — Wex)/Wex = 0.0002%, (18)

Example 2.1. In the first example, we consider the following Duffing oscillation:
d?u

dr
where ¢ is a parameter subject to variation. In this case, from Eqgs. (5), (11) and (12), we have

+u+4ea’ =0 (orwith f(u) = u+ e’ in Eq. (1)), (19)
u 4
o =2 [ fdu= i+

A* — 2 _ V2
VIA) —g@w) 2+ (A2 +2)
V2

V24 6421 +sin’ 0)

h(u) =

hi(0) = (20)

As before, the exact result for the angular frequency @ can be obtained from

2n 4 du
Z=2 ) ——— 8
® /—A Vg(A) — g(u) ®

12 (2
Ioz—:—/ h(0)do. (10c)
TJo

w

T,=

In the example, we assume 4 = 1, and ¢ changes from 1,2, ..., 10. The obtained exact results are expressed
as
wex = F1(2). (21)

This result is obtained from Eq. (8) and a quadrture rule described in Appendix A [13].
Similarly, if two-divisions technique shown by Eq. (14) is used, we have the following angular frequency:
V2pipops

= , (22)
DPap3 + 2pspy + pips

Dd2

where

pr=V8+4ed®, p,=\8+684>, p; =8+ 8ed’. (23)
3

If three-divisions technique shown by Eq. (15) is used, we have the following angular frequency:

3 9149243494 (24)

W3 = —= >
V2(q1 + 49095 + 24> + 93)9194
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where

Q=P =V 8 + 5eA?, 43 = V38 + 7ed?, q4 = Ps3. (25)

The computed results for wey, w» and w3 are listed in Table 1. From listed results we see that the maximum
error for w  (wg3) is —0.0281% (—0.0005%), respectively

Example 2.2. In the second example, we consider the following Duffing-harmonic oscillation [9,10,14]:

d?u w w
—+t——= ith = in Eq. (1) |. 2
a7 + T+ 0 (orw1t S () 2 nEq ( )) (26)

In this case, from Egs. (5), (11) and (12), we have

A? — 2

VA =2 —In(1+ A +In(l +2)

gu) =2 /0 ’ fwydu=1>—In(1+u?), hu)=
A cos 0

hi(0) = .
\/A2 cos2 0 — In(1 4+ A%) 4 In (1 4+ A*sin’ )

27)

As before, the exact result for the angular frequency w can be obtained from

2n 4 du
T,=—=2 —_— 8
Y B il
/2
I, :lzg/ h(0)do. (10c)
[6)] T Jo

In the example, we assume A4 = 0.01, 0.05,0.1, 10,50,100. The obtained exact results are expressed as
Wex = Fa(A). (28)
This result is obtained from Eq. (8) and a quadrture rule described in Appendix A [13].
Similarly, if two-divisions technique shown by Eq. (14) is used, we have the following angular frequency:

_ 44p,p,
A*(2py + py) + Pipaps

O (29)

where

p =\ A*—In(1 + 4%, p,= \/A2 —2In[(14 4%)/(1 + 4%/2)], p3=VA>+1. (30)

Table 1

Comparison results for the angular frequencies wq, ws» and w 3 for the Duffing oscillation dzu/dt2 + u(1 + eu*) = 0 with the conditions
u(0)=A and ¥/(0) =0, fore =1,2,...,10 and 4 =1

€ 1 2 3 4 5 6 7 8 9 10

Wex 1.31778 1.56911 1.78442 1.97602 2.15042 2.31159 2.46217 2.60401 2.73849 2.86664
O 1.31776 1.56902 1.78424 1.97573 2.15004 231111 2.46160 2.60336 2.73776 2.86583
O —-0.00145  —-0.00571  —0.01026 ~ —0.01428  —-0.01767 —0.02049  —0.02287  —0.02489  —0.02661  —0.02810
g3 1.31778 1.56911 1.78442 1.97601 2.15041 2.31158 2.46216 2.60400 2.73847 2.86663
O3 —0.00001  —0.00005  —0.00012  —0.00019  —0.00026  —0.00033  —0.00039  —0.00044  —0.00048  —0.00052

wex—Angular frequency from the exact solution using Eq. (8).

ws—Angular frequency from the two-divisions technique using Eqgs. (14) and (22).
du.—Percentage error defined by ds = 100 X (a2 — Wex)/Wex-

wgs—Angular frequency from the three-divisions technique using Egs. (15) and (24).
d43—Percentage error defined by d43 = 100 X (a3 — Wex)/Wex-
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If three-divisions technique shown by Eq. (15) is used, we have the following angular frequency:

6AqIQZq3 (31)
AX(G2q3 + 20,45 + 26,92) + 41929344

Wd3 =

where

G =P @ =\ A — G/3)In[(1 + 42)/(1 + A4 /4)
gs = /42— 4In[(1 + A /(1L + 343 /8), g, = py. (32)

The computed results for wey, w» and w3 are listed in Table 2. From listed results we see that the maximum
error for w  (wg3) is —0.2622% (—0.0612%), respectively
For this problem, three previously obtained solutions are cited below [9,10,14]

34*
2 .
=——— (latter, the relevant result is denoted by wy,1), 33
11342 ( Y Wth1) (33)
, A ) .
= T4A with 4 = (0.8472)° = 0.7177 (latter, the relevant result is denoted by wyp), (34)
2 2 1 .
o =l+—|—-1 (latter, the relevant result is denoted by w3). (35
A 1+ 47

The computed results for w1, wmr and w3 are also listed in Table 2. The computed results for w1, Wm>
and wy,3 are sufficient accurate for example in the range, for example, 4 > 10. However, they are not accurate,
for example at 4 = 1. In the case of 4 =1, the errors for wp, wni, Om, Om and ogs are —0.1118%,
—0.0056%, 2.8086%, 1.5118% and 1.0701%, respectively. In Table 2, many places for |dyi|>0.5%,

Table 2
Comparison results for the angular frequencies ey, Mgz, O3> Oin1> Oz and w3 for the Duffing-harmonic oscillation d?u/d#* 4+ u? /(1 +
u?) = 0 with the conditions u(0) = 4 and /(0) = 0, for 4 = 0.01,0.05,0.1,0.5 ..., 10,50,100

A 0.01000 0.05000 0.10000 0.50000 1.00000 5.00000 10.0000 50.0000 100.000

Mex 0.00847 0.04232 0.08439 0.38737 0.63678 0.96698 0.99092 0.99961 0.99990
D2 0.00847 0.04230 0.08435 0.38712 0.63607 0.96462 0.98944 0.99942 0.99984
O —0.04767 —0.04784 —0.04832 —0.06406 —0.11175 —0.24349 —0.14925 —0.01883 —0.00633
W3 0.00847 0.04232 0.08439 0.38736 0.63674 0.96627 0.99031 0.99951 0.99986
O3 —0.00115 —0.00117 —0.00119 —0.00194 —0.00562 —0.07252 —0.06121 —0.01023 —0.00361
Dih1 0.00866 0.04326 0.08628 0.39736 0.65465 0.97435 0.99340 0.99973 0.99993
Oth1 2.22071* 2.22562* 2.24077* 2.57996* 2.80683* 0.76309* 0.25057 0.01257 0.00323
Wih2 0.00847 0.04232 0.08442 0.39005 0.64641 0.97325 0.99311 0.99972 0.99993
Oth2 —0.00117 0.00750 0.03430 0.69254* 1.51182% 0.64865* 0.22094 0.01137 0.00293
Wih3 0.00866 0.04326 0.08624 0.39423 0.64359 0.96731 0.99095 0.99961 0.99990
Oth3 2.22029* 2.21501% 2.19869* 1.77209* 1.07006* 0.03459 0.00381 0.00001 0.00000

wex—Angular frequency from the exact solution using Eq. (8).
ws»—Angular frequency from the two-divisions technique using Eqgs. (14) and (29).
d4—Percentage error defined by d,2 = 100 X (w2 — Wex)/Dex-
ws—Angular frequency from the three-divisions technique using Egs. (15) and (31).
d43—Percentage error defined by d43 = 100 X (w43 — Wex)/Wex-
om1—Angular frequency from Eq. (33).
dm1—Percentage error defined by 92 = 100 X (W) — Wex)/Dex-
omr>—Angular frequency from Eq. (34).
dma—Percentage error defined by dpny = 100 X (W2 — Wex)/Dex-
wmz—Angular frequency from Eq. (35).
Om3—Percentage error defined by 03 = 100 X (0th3 — Wex)/Dex-
*The error |6]>0.5%.
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[0th2| >0.5%, [0h3]>0.5%, (dtn1, 1 and Oy are the error for wyg, wgm» and wy,3) have been found. However,
the errors for wy, and wgy, are rather small.

3. Solution for the eardrum-type oscillation

In the following, we consider the eardrum-type oscillation [4,12]:

d’u . .
gz tut e =0 (or with f(u) = u + eu? in Eq. (1)). (36)
In this case, the restoring force f{u) is not an odd function with respect to u, and the analysis is not very the
same as in the previous section.

From Eq. (5) we have
u 2
g(u) = 2/ fwydu= u2+;u3. 37
0

Eq. (3), or v* 4+ g(u) = g(A), is still valid in the present case. In the present case, another pair of the
displacement and velocity, or u = B and v = 0, is the solution of Eq. (3). Substituting of u = B and v = 0 into
Eq. (3) yields

2 2
Bz+§33=A2+§A3. (38)

From Eq. (38), we can obtain a solution for B as
_ —(3+2eA) 4+ /3(3 4 2eA)(1 — 2¢A)
= 2 .

It is proved that, B is a negative value (B<0), and —B> A4 is valid in general. Since B is a real value, 1 — 2¢4
must be positive. Thus, the following condition should be satisfied:
1 —-264A>0 or 2eA<]1. (40)

B (39)

From Eq. (3), or v> + g(u) = g(A), we can obtain the period of the motion [1,2,10]

2n 1 1/ du
T,=2nl,=— withI(,:—:f/ — . 41)
’ g ( o m)5 /g(d) - g(u))
In the example, we assume 4 = 0.45 and ¢ = 0.1,0.2, ..., 1.0, the exact results from Eq. (41) are expressed as
Wex = F4(8)- (42)

This result is obtained from Eq. (41) (using a substitution # = s+ D mentioned below), and a quadrture rule
described in Appendix A [13].
In the following, we define

A-B A+B
c=""2 p=2T- 43
—, . 43)

and let
2¢
u=s+D, gi(s) =9, ,=(+D’+(s+D). (44)
Thus, the integral I, can be reduced to

] :LZL/CL
‘o m)_c\/g(A) = g,(s)

(45)

or

C 2
=t In(s)ds (with In(s) = Ci_”@) (46)

o 1) corog g(4) — g:(s)
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Table 3
Comparison results for the angular frequencies w.x, @4, and @, for the eardrum oscillation d?u/d#> + u(1 + eu) = 0 with the conditions
u(0) = 4 and «/(0) =0, for e =0.1,0.2,...,1.0 and 4 = 0.45

P 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
wee 099913 099639 099152 098418 097387 095981  0.94078 0.91463 0.87689 0.81531
wp 099913 0.99639 099152 098418  0.97387  0.95981  0.94078 0.91463 0.87689 0.81530
S 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  —0.00002  —0.00015  —0.00143
wgs 099913 0.99639 099152 0.98418  0.97387  0.95981  0.94078 0.91463 0.87689 0.81531
S 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 0.00000 0.00000  —0.00001

Wexs D> Oy W3, O3, S€E NOtations in Table 1.

In Eq. (46), one can let s = C sin 0(—n/2<60<mn/2). Two approximations are suggested below. If four
divisions (—n/2, —7/4), (—n/4,0), (0,7/4) and (n/4,n/2) are chosen for the interval —n/2<6<n/2, and the
trapezoid quadrature rule is used [13], we have the following angular frequency

8

s 1+ 20y +p3+py) s’ 4D
where
p - < Py = < p S —
1 V—C(B+¢BY) ? \/2[g(A)—g1(—C/«/§)]’ : \/[g(A)_gl(O)],
< < (48)

Py = . D .
T —gciva) V)

In Eq. (47), the subscript d4 means the result is obtained from four-divisions technique.
If six divisions (—n/2, —n/3), (—=n/3, —1/6), (—1/6,0), (0,7/6)(%/6,7/3) and (n/3,7/2) are chosen for the
interval —n/2<0< /2, and the trapezoid quadrature rule is used, we have the following angular frequency:

12

e = , 49
“ g1 +2(q, + g3+ q4 + g5+ gg) + g7 (49)
where
9 =p;. 4 ¢ q C o= p
1= 2= ? 3= P 4 =P3
V4 — g/(—/3C/2)] VA — 0, (—C/3
¢ c
qs de¢ = , ¢, = ps. (50)

V4g(4) — g,(C/2)]/3 \/4[9(,4) — ¢,(v/3C/2)]

In Eq. (49), the subscript d6 means the result is obtained from six-divisions technique. The computed results
for wex, W and wyz are listed in Table 3. From listed results we see that the maximum error for w» (wg3) is
—0.0014% (0.0000%), respectively.

4. Remarks

In this paper, total four examples are presented. The maximum percentage errors in four examples are
0.0002%, —0.0005%, —0.0725%, and 0.0000% (from Eq. (18) and Tables 1-3), respectively. The background
for obtaining so high accuracy can be explained by the following reason.

It is an essential step to convert the integral shown by

(10)

; ZE/AL
no \g(A) = gu)
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into the form of Eq. (11)
2 (4 h(u)du A? — 2

=2 O Ghere h(u) = —t Y
Tl Va—m @ Va(4) — g(u)

We know that in the harmonic motion case, there are (1) = u?, h(u) = 1, I, = 1. In the nonlinear vibration
case, the function A(u) can be considered as a modification of the nonlinear vibration to the harmonic
vibration. Therefore, the function /4(u) may be varied smoothly within the interval (0,4). This good behavior
of the function /4(u) must provide rather accurate result for the angular frequency.

1, (11)
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Appendix A. A quadrature rule for the integral shown by Eq. (8) [13]

The integral in Eq. (8) is written as

4 du
J = _— . (A.1)
—4/9(4) — g(u)
The integral can be rewritten in the following form:
4 2
h(u) du ) A" —u?
J = ———— with () =———. (A.2)
—ANA* =2 V9(A) — g(u)
Meantime, the following quadrature rule was available [13]:
oM
J = MZ h(u;), with uj = A cos((j — 0.5)m/M)), M-integer. (A.3)
J=1
In the present study, M = 180 was chosen. In this case, the computed result must be very accurate.
Appendix B. The trapezoid quadrature rule [13]
For the usage of the trapezoid quadrature rule, from Eq. (10c) the following integral is introduced:
n/2
K = / h1(0)do. (B.1)
0

The integration interval (0, 7/2) may be divided into n divisions, and the width of the division will be b = 7/2n.
Therefore, n divisions (0;,0,41) (i =1,2, ...,n) will be obtained, where 0, = (i — 1)b, (i=1,2,...,n+1) and
01 = 0, 0n+l = 7'[/2
The contribution from the interval (6;,0,,1) to the integral will be
Ki—b (hl(ei) +2h1(9i+1)

Therefore, the integral defined by Eq. (B.1) can be integrated as follows:

) = Z () + (0r1). (B.2)
n

K= ;Ki = 4_7:1[//”(91) + 2011(92) +eet /’11(0”)) + hl(9n+1)] (B3)
or

K = ;K,- - % [11(0) + 20 (m/2n) + - - - + In((n — D) /2n)) + i (n/2)]. (B.4)
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In the case of n =2, we have

K= g (h1(0) + 24y (1/4) + hy(/2)). (B.5)
In the case of n = 3, we have
K:%(hl(O)+2h1(n/6)+2h1(n/3)+h1(n/2)). (B.6)
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