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Abstract

In this paper, He’s variational iteration method (VIM) is applied to nonlinear oscillators with discontinuities. We

illustrate that the VIM is very effective and convenient and does not require linearization or small perturbation. Contrary

to the conventional methods, in VIM, only one iteration leads to high accuracy of the solutions. Moreover, we show that

the obtained approximate solutions are valid for the whole solution domain and the approximations are uniformly valid

not only for small parameters, but also for very large parameters.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

This paper considers the following general nonlinear oscillators with discontinuities [1]:

u00 þ f u; u0; u00ð Þ ¼ 0, (1)

with initial conditions u(0) ¼ A and u0(0) ¼ 0. Here f is a known discontinuous function.
If there is no small parameter in the equation, the traditional perturbation methods cannot be applied

directly. Recently, considerable attention has been directed towards the analytical solutions for nonlinear
equations without possible small parameters. The traditional perturbation methods have many shortcomings,
and they are not valid for strongly nonlinear equations. To overcome the shortcomings, many new techniques
have appeared in open literature, for example, d-perturbation method [2,3], energy balance method [4,5],
variational iteration method (VIM) [6–11], homotopy perturbation method [12–19], bookkeeping parameter
perturbation method [20], just to name a few, a review on some recently developed nonlinear analytical
methods can be found in detail in Refs. [21–23]. The homotopy perturbation method [17] and the modified
Lindstedt–Poincare method [24–27] were first applied to the nonlinear oscillators with discontinuities, and the
first-order approximate solution is of high accuracy. New interpretations of homotopy perturbation method
were also discussed by He and others [28–30].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The VIM was first proposed by He [31] and used to give approximate solutions of the problem of seepage
flow in porous media with fractional derivatives. In this paper, we will show how to solve nonlinear oscillators
with discontinuous terms by the VIM, which leads to a very rapid convergence of the solution series, in the
most cases only one iteration leads to high accuracy of the solution, providing an effective and convenient
mathematical tool for nonlinear equations. The VIM is useful to obtain exact and approximate solutions of
linear and nonlinear differential equations. There is no need of linearization or discretization, and large
computational work and round-off errors is avoided. It has been used to solve effectively, easily and
accurately a large class of nonlinear problems with approximation [32,33]. Applications of VIM to the
nonlinear oscillators can be found in Refs. [34,35].

2. Solution procedures

We re-write Eq. (1) in the following form:

u00 þ O2u ¼ F uð Þ; F uð Þ ¼ O2u� f uð Þ. (2)

We consider that the angular frequency of the oscillator is O, and we choose the trial function
u0ðtÞ ¼ A cos Ot. The angular frequency O is identified with the physical understanding that no secular terms
should appear in u1(t), which leads toZ T

0

cos Ot O2u0 � f u0ð Þ
� �

dt ¼ 0; T ¼
2p
O

. (3)

From this equation, O can easily be found. It should be specially pointed out that the more accurate the
identification of the multiplier, the more faster the approximations converge to its exact solution, and for this
reason, we identify the multiplier from Eq. (2) rather than Eq. (1).

According to the VIM, we can construct a correction functional as follows:

unþ1 tð Þ ¼ un tð Þ þ

Z t

0

l u00n tð Þ þ O2un tð Þ � ~F n

� �
dt, (4)

where l is a general Lagrange multiplier [36], which can be identified optimally via the variational theory [37],
the subscript n denotes the nth-order approximation, ~Fn is considered as a restricted variation [38], i.e.,
d ~Fn ¼ 0. Under this condition, its stationary conditions of the above correction functional can be written as
follows:

l00 tð Þ þ O2l tð Þ ¼ 0,

l tð Þjt¼t ¼ 0,

1� l0 tð Þjt¼t ¼ 0. ð5Þ

The Lagrange multiplier, therefore, can be readily identified by

l ¼
1

O
sin O t� tð Þ, (6)

which leads to following iteration formula:

unþ1 tð Þ ¼ un tð Þ þ

Z t

0

1

O
sin O t� tð Þ u00n tð Þ þ f n

� �
dt. (7)

As we will see in the forthcoming illustrative examples, we always stop at the first-order approximation, and
the obtained approximate and accurate solution is valid for the whole solution domain.

3. Applications

In order to assess the advantages and the accuracy of the VIM, we will consider the following three
examples.
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Example 1. Let us consider the following nonlinear oscillators with discontinuities [1]:

u00 þ uþ �ujuj ¼ 0, (8)

with initial conditions u(0) ¼ A and u0(0) ¼ 0.
Here the discontinuous function is f(u) ¼ u+eu|u|. From Eq. (3), we can determine the angular frequency:Z T

0

cos Ot O2A cos Ot� A cos Otþ �A cos Ot A cos Otj jð Þ
� �

dt ¼ 0; T ¼
2p
O

. (9)

Noting that |cosOt| ¼ cosOt when �p/2pOtpp/2, and |cosOt| ¼ �cosOt when p/2pOtp3p/2, so we
write Eq. (9) in the following form:Z p=2O

�p=2O
O2 � 1
� �

A cos2Ot� �A2 cos3 Ot
� �

dt

þ

Z 3p=2O

p=2O
O2 � 1
� �

A cos2 Otþ �A2 cos3Ot
� �

dt ¼ 0. ð10Þ

From the above equation, one can easily conclude that

O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8

3p
�A

r
. (11)

We re-write Eq. (7) in the following form:

unþ1 tð Þ ¼ un tð Þ þ

Z t

0

1

O
sin O t� tð Þ u00n tð Þ þ un tð Þ þ �un tð Þ un tð Þ

		 		� �
dt. (12)

By the above iteration formula, we can calculate the first-order approximation:

u1 tð Þ ¼

A cos Otþ
R t

0

1

O
sin O t� tð Þ 1� O2

� �
A cos Otþ �A2 cos2 Ot

� �
dt; �

p
2
pOtp

p
2
;

A cos Otþ
R t

0

1

O
sin O t� tð Þ 1� O2

� �
A cos Ot� �A2 cos2 Ot

� �
dt;

p
2
pOtp

3p
2
;

8>><
>>: (13)

which yields

u1 tð Þ ¼

A cos Otþ
1

2O
A O2 � 1
� �

t sin Otþ
�A2

6o2
cos 2Otþ 2 cos Otð Þ �

�A2

2O2
; �

p
2
pOtp

p
2
;

A cos Otþ
1

2O
A O2 � 1
� �

t sin Ot�
�A2

6o2
cos 2Otþ 2 cos Otð Þ þ

�A2

2O2
;

p
2
pOtp

3p
2
;

8>>><
>>>:

(14)

where the angular frequency O is defined as Eq. (11).
The above results are in good agreement with the results obtained by the homotopy perturbation reported

in Ref. [17].
In order to compare with traditional perturbation solution, we write Nayfeh’s result [1]:

u ¼ A cos 1þ
4

3p
�A


 �
tþ � � � , (15)

which is valid only for small parameter.

Example 2. Considering the following nonlinear oscillator with discontinuities [17]:

€uþ bu3 þ �ujuj ¼ 0, (16)

with initial conditions u(0) ¼ A and u0(0) ¼ 0.
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Here the discontinuous function is f(u) ¼ bu3+eu|u|. Now we begin with the initial approximation
u0(t) ¼ A cosOt. From Eq. (3), we can determine the angular frequency easily asZ T

0

cos Ot O2A cos Ot� b A cos Otð Þ
3
� �A cos OtjA cos Otj

� �
dt ¼ 0; T ¼

2p
O

. (17)

Similar to Example 1, we haveZ p=2O

�p=2O
O2A cos2Ot� bA3 cos4 Ot� �A2 cos3Ot
� �

dt

þ

Z 3p=2O

p=2O
O2A cos2Ot� bA3 cos4Otþ �A2 cos3 Ot
� �

dt ¼ 0. ð18Þ

For e ¼ 0, we obtain

O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
bA2 þ

8

3p
�A

r
, (19)

and its period is given by

T ¼
2p
O
¼

2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
bA2 þ 8

3p �A
q . (20)

In the case in which e ¼ 0, its period can be written as

T ¼
4p

A
ffiffiffiffiffiffi
3b

p ¼ 7:25b�1=2A�1. (21)

Its exact period can be readily obtained, and it reads [39]

T ex ¼ 7:4164b�1=2A�1. (22)

Therefore, the maximal relative error is less than 2.2% for b40.
We re-write Eq. (7) in the following form:

unþ1 tð Þ ¼ un tð Þ þ

Z t

0

1

O
sin O t� tð Þ u00n tð Þ þ bu3

n tð Þ þ �un tð Þ un tð Þ
		 		� �

dt. (23)

By the above iteration formula, we can calculate the first-order approximation:

u1 tð Þ ¼

A cos Otþ
R t

0

1

O
sin O t� tð Þ u000 tð Þ þ bu3

0 tð Þ þ �u2
0

� �
dt; �

p
2
pOtp

p
2
;

A cos Otþ
R t

0

1

O
sin O t� tð Þ u000 tð Þ þ bu3

0 tð Þ � �u2
0

� �
dt;

p
2
pOtp

3p
2
:

8>><
>>: (24)

Ultimately, we obtain the following results:

u1 tð Þ ¼

A cos Otþ
1

8O2
A 8O2 þ 6�A� 6bA2
� �

cos Otþ 4bA2 � 4A�� 4O2
� �

cos 2Ot
�

þ 2A�� 2A2b
� �

cos 3Otþ A2b cos 4Ot� 4A�þ 3bA2 � 4O2
�
;

�
p
2
pOtp

p
2
;

A cos Otþ
1

8O2
A 8O2 � 6�A� 6bA2
� �

cos Otþ 4bA2 þ 4A�� 4O2
� �

cos 2Ot
�

þ �2A2b� 2A�
� �

cos 3Otþ A2b cos 4Otþ 4A�þ 3bA2 � 4O2
�
;

p
2
pOtp

3p
2
:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(25)
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The above results are in the very good agreement with the results obtained by the homotopy perturbation
reported in Ref. [17].

Example 3. This example considers the following nonlinear oscillators with discontinuities [24]:

u00 þ uð Þ ¼ 0, (26)

with initial conditions u(0) ¼ A and u0(0) ¼ 0, and sign(u) is defined by

uð Þ ¼
1; u40:

�1; up0:

(
(27)

Here the discontinuous function is f(u) ¼ sign(u). There is no small parameter in the equation, so the
traditional perturbation methods cannot be applied directly. From Eq. (3), we can determine the angular
frequency easily: Z T

0

cos Ot O2u0 � u0ð Þ
� �

dt

¼

Z T

0

cos Ot O2A cos Ot� A cos Otð Þ
� �

dt ¼ 0; T ¼
2p
O

. ð28Þ

Noting that |cosOt| ¼ cosOt when �p/2pOtpp/2, and |cosOt| ¼ �cosOt when p/2pOtp3p/2, we write
Eq. (28) in the formZ p=2O

�p=2O
cos Ot O2A cos Ot� 1

� �
dtþ

Z 3p=2O

p=2O
cos Ot O2A cos Otþ 1

� �
dt ¼ 0. (29)

From the above equation, the angular frequency can easily be found:

O ¼
2ffiffiffiffiffiffiffi
pA
p , (30)

and its approximate period

T ¼
2p
o
¼ p

ffiffiffiffiffiffiffi
pA
p

¼ 5:56
ffiffiffiffi
A
p

. (31)

Its exact period can be easily obtained, and is given by [24]:

T ex ¼ 5:66
ffiffiffiffi
A
p

. (32)

The 1.76% accuracy is remarkably good in view of the first-order approximate solution. We re-write Eq. (7)
in the following form:

unþ1 tð Þ ¼ un tð Þ þ

Z t

0

1

O
sin O t� tð Þ u00n tð Þ þ unð Þ

� �
dt. (33)

By the above iteration formula, we can calculate the first-order approximation:

u1 tð Þ ¼

A cos Otþ
R t

0

1

O
sin O t� tð Þ u000 tð Þ þ 1

� �
dt; �

p
2
pOtp

p
2
;

A cos Otþ
R t

0

1

O
sin O t� tð Þ u000 tð Þ � 1

� �
dt;

p
2
pOtp

3p
2
:

8>><
>>: (34)

We, therefore, obtain the following results:

u1 tð Þ ¼

1

2O2
4AO2 cos Ot� AO2 cos 2Ot� AO2 þ 2 cos Ot� 2
� �

; �
p
2
pOtp

p
2
;

1

2O2
4AO2 cos Ot� AO2 cos 2Ot� AO2 � 2 cos Otþ 2
� �

;
p
2
pOtp

3p
2
:

8>><
>>: (35)
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The above results are in good agreement with the results obtained by modified Lindstedt–Poincare method
reported in Ref. [24] and homotopy perturbation method reported in Ref. [19].

4. Conclusions

He’s variational iteration method (VIM), for the first time, was applied to nonlinear oscillators with
discontinuities. We demonstrated the accuracy and efficiency of the method by solving some examples.
Moreover, we showed that the obtained solutions are valid for the whole domain. Furthermore, we concluded
that discontinuous function had no tangible effect on the efficiency of the method.
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