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Abstract

An analysis is made of the stability of a Rijke tube. The tube is open at both ends and contains an acoustically compact

flame holder that ‘‘blocks’’ the acoustic motions and across which there is a jump in the tube cross-sectional area.

Oscillations are described in terms of an acoustic Green’s function obtained in analytic form. The blocked motion near the

flame holder can be regarded as incompressible; on either side of the flame holder full acoustic wave propagation is

assumed. Velocity potentials of the incompressible and acoustic regions are matched by requiring continuity of pressure

and volume flow. A linear heat release model is introduced that relates heat transfer from the flame to the acoustic field and

provides the acoustic feedback necessary to maintain the oscillations. The oscillations can then be described in terms of the

eigenmodes of an integral equation derived using the Green’s function. Growth rates predicted from this equation are

expressed in terms of properties of the heat release model.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

An unsteady source of heat within a cavity can be a source of intense acoustic waves. The Rijke tube is
probably one of the simplest such examples. It consists of a vertical and straight open-ended tube with a heat
source, typically a hot gauze or a flame, inside it. The sound is generated by a feedback mechanism involving a
periodic transfer of heat between the heat source and air drawn up through the tube by convection, leading to
an oscillation whose amplitude is determined by nonlinear mechanisms.

There is an extensive literature on the Rijke tube and related devices; see, for example the review by Raun et
al. [1]. The Rijke tube derives its name from the 19th-century Dutch scientist Rijke [2], who discovered that a
vertical tube with a hot gauze in the lower half would make a loud noise, whereas the tube was silent if the
gauze was in the upper half. Various explanations and models for this phenomenon have been proposed since
then, most notably by Rayleigh [3], who derived a general criterion for the excitation of heat-driven
oscillations. Recent studies by Lighthill and Ffowcs Williams [4] and by Heckl [5] have involved stability
analyses for specific cases, such as for a tube with a hot-wire gauze whose heat release characteristic is known
from boundary layer theory.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In this paper, a new stability analysis of the Rijke tube is discussed, based on an acoustic analogy equation
with a heat source term. This is combined with the Rijke tube’s Green’s function to obtain an integral
equation. This approach has the advantage that it is readily extended to include additional sources that can
influence the acoustics of the tube, such as the presence of vorticity and mean density variations (temperature
‘‘hot spots’’) within the flow, and the action of an active control system.

The Green’s function and the eigenfrequencies of the tube with non-uniform mean temperature are
calculated in Section 2. The integral equation is derived in Section 3 and analysed in Section 4 to extract
equations for the modal amplitudes and growth rates of the oscillations with unsteady heating. Section 5
presents numerical solutions for the eigenfrequencies and for the stability behaviour of a particular Rijke tube.
The relative advantages of the present approach are discussed in Section 6.

2. Green’s function of the Rijke tube

2.1. Rijke tube configuration

We consider a Rijke tube with axisymmetric geometry; a cross-section between the tube axis and the tube
wall is shown in Fig. 1. The tube has been turned sideways in this figure, i.e. the axial coordinate x denotes the
vertical position, measured from the lower tube end at x ¼ 0. The length of the tube is L, and a fuel line spans
a length ‘ within the tube. There is a flame holder that introduces a blockage to the motion, where the tube
cross-sectional area changes from A1 to A2. A small distance downstream of the flame holder, the mean
temperature jumps from T̄1 to T̄2. The change in temperature causes the mean speed of sound to jump from c1
to c2. The tube ends are open with pressure nodes at x ¼ ‘1, just below the lower end (‘1o0), and at x ¼ ‘2,
just above the upper end (‘24L).

The heat source has steady and unsteady components, each modelled as a point source (i.e. as a sheet
spanning the cross-section of the tube and located at a point on the x-axis). The steady component is
responsible for the jump in mean temperature. To keep the treatment general, the positions of the unsteady
and steady heat source are taken to be independent. The effect of the unsteady source is discussed in Section 3;
the current section considers the case of steady heating of the mean flow.

2.2. Analytical form of the Green’s function

Green’s function Gðx;x0; t; t0Þ is the velocity potential in the tube at position x and time t, created by an
impulsive point source at position x0 and time t0. It is the solution of

1

c2
q2G
qt2
�r2G ¼ dðx� x0Þdðt� t0Þ (1)

inside the tube, where c ¼ c(x) is the mean sound speed, and d denotes the delta-function. x and x0 are vectors
in three-dimensional space; only their axial components, x and x0, are of interest in most regions of the tube
because the field there is one-dimensional, as will be shown in Section 2.3. G is required to vanish at x ¼ ‘1 and
x ¼ ‘2; thus radiation losses from the ends are neglected. It has a normal derivative equal to zero on all
internal surfaces and on the tube axis; it also satisfies the conditions of reciprocity and causality.
xL0l1 l2

pressure node

flame holder temperature jump

pressure node

l

tube axis

fuel line

T1, c1, A1 T2, c2, A2

Fig. 1. Cross-section of the Rijke tube.
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Green’s function is calculated analytically in Sections 2.5 and 2.6, where it is shown to have the form

Gðx; x0; t� t0Þ ¼
X1
n¼1

gnðx;x
0ÞHðt� t0Þsinonðt� t0Þ. (2)

H is the Heaviside function, on are the eigenfrequencies of the Rijke tube (with steady heating) and gn are
the modal amplitudes. Green’s function is an impulse response: it is zero before the impulse (at t ¼ t0) and
consists of a superposition of eigenmodes (numbered by the index n) thereafter.

2.3. The hydrodynamic and acoustic regions in the Rijke tube

The tube is divided into three regions as shown in Fig. 2: a hydrodynamic region (marked by grey shading)
surrounds the flame holder, and there are two acoustic regions on either side of the hydrodynamic region.

In the hydrodynamic region the field is three-dimensional. This region is assumed to be small compared with
the wavelength of low-order modes, so the acoustic motion can be treated as incompressible in this region. In
the acoustic regions, the field is one-dimensional and acoustic waves are assumed to propagate.

For each mode of frequency o (�e�iot), the velocity potential f in the three regions can be written as

f ¼

a sin o
c1
ðx� ‘1Þ; acoustic region ðcoldÞ;

aþ bj�ðxÞ; hydrodynamic region;

b sin o
c2
ðx� ‘2Þ; acoustic region ðhotÞ;

8><
>: (3a,b,c)

where a,b,a and b are constants to be determined. The first and third expression in Eq. (3) represent harmonic
waves, with a pressure node at x ¼ ‘1 and x ¼ ‘2, respectively. The second expression is an incompressible
representation of the field in the hydrodynamic region, assuming the latter to be small compared with the
acoustic wavelength.

j* is the velocity potential of the potential flow in the hydrodynamic region, normalized to have the
following limiting values for its x derivative (the axial velocity)

qj�

qx
!

A2

A1
as x!�1 ðto satisfy mass conservationÞ, (4a)

qj�

qx
! 1 as x!1 ðnormalizationÞ. (4b)

The normal derivatives of j* are zero on the solid boundaries, the radial derivative vanishes at the tube axis,
and j* satisfies the axisymmetric form of Laplace’s equation. The motion is conveniently determined by
considering the corresponding stream function c*, which satisfies (see Ref. [6])

q2c�

qx2
þ

q2c�

qr2
�

1

r

qc�

qr
¼ 0, (5)

where r is the radial coordinate. Eq. (5) is readily solved by relaxation and finite differencing (see Ref. [7,
pp. 652–653]), taking account of suitable conditions on the solid boundaries and of uniform inflow and
xL0

acoustic region 

(cold)

hydrodynamic 

region

acoustic region 

(hot)

tube axis

l2ll1

Fig. 2. Acoustic and hydrodynamic regions in the Rijke tube.
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outflow conditions as x-7N. This was done by Laws [8], and the field was visualized by plotting streamlines
c* ¼ const. The case shown in Fig. 3 is for a geometry specified in Section 5.

The figure shows how the flow is distorted by the flame holder, and that the distortion is confined to a
narrow region surrounding the flame holder. Thus the three-dimensional motion within the hydrodynamic
region becomes one-dimensional at a small distance from the flame holder. We denote the axial position of the
boundaries between one- and three-dimensional motion by X1 (about 0.225m for the case shown in Fig. 3) and
X2 (about 0.290m for the same case) and regard these boundaries as interfaces between the acoustic regions
and the hydrodynamic region. For simplicity we assume that the jump in mean temperature occurs at X2; this
limits the generality of our treatment, but still includes the typical case of a flame located a small distance
downstream of the flame holder. The mean density is then uniform within each of the three regions; it is r̄1 in
the upstream acoustic region and hydrodynamic region (i.e. for 0oxoX 2), and r̄2 in the downstream acoustic
region (i.e. for X 2oxoL).

The hydrodynamic region can be regarded as an airplug oscillating parallel to the x-axis. The conservation
equations of volume flow and momentum across this airplug are

A1u1 �A2u2 ¼ 0, (6a)

p1 � p2 ¼ r̄1Leff
qu2

qt
. (6b)

p1 and u1 are pressure and velocity respectively at the upstream interface (situated at X1), and the equivalent
quantities at the downstream interface (situated at X2) are denoted by a subscript 2. Leff is the effective length
of the airplug [9, chapter 16], determined below in Section 2.4. The pressure and velocity are both continuous
across the interfaces. The corresponding velocity potential at X1 is f1. The velocity potential at X2 jumps from
f2� on the hydrodynamic side to f2+ on the acoustic side, due to the jump in mean density from r̄1 to r̄2
at X2.

2.4. The effective length of the airplug

An expression for the effective length can be derived by evaluating the momentum balance (6b) on the
hydrodynamic side of the interfaces at X1 and X2, and combining it with the velocity potential j*. This is
shown in detail in Appendix A.1. The result is

Leff ¼

Z 1
X 2

qj�

qx
� 1

� �
dxþ

Z X 2

�1

qj�

qx
�

A2

A1

� �
dxþ

A2

A1
ðX 2 � X 1Þ. (7)

This expression must be evaluated numerically, using the results of the calculation plotted in Fig. 3,Z �1
X 2

qj�

qx
dx ¼

Z �1
X 2

1

r

qc
qr

dx. (8)

Both integrands in Eq. (7) are large near x ¼ X2, and approach zero exponentially fast with increasing
distance from this point, hence the integration limits of 7N do not cause a problem numerically.
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Fig. 3. Stream lines of potential flow in a tube section including the flame holder.
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2.5. Eigenfrequencies

We return to the balance equations (6a) and (6b) and evaluate them on the acoustic side of the interfaces.
The results can be written in terms of the velocity potentials f1 and f2+ to give

A1
qf1

qx
�A2

qf2þ

qx
¼ 0, (9a)

r̄2f2þ � r̄1f1 ¼ r̄1Leff
qf2þ

qx
. (9b)

f1 can be obtained from Eq. (3a), evaluated at x ¼ X1, and f2+ from Eq. (3c), evaluated at x ¼ X2. Eqs. (9a)
and (9b) then become

a cos
o
c1
ðX 1 � ‘1Þ � b

A2

A1

c1

c2
cos

o
c2
ðX 2 � ‘2Þ ¼ 0, (10a)

a sin
o
c1
ðX 1 � ‘1Þ þ b Leff

o
c2

cos
o
c2
ðX 2 � ‘2Þ �

r̄2
r̄1

sin
o
c2
ðX 2 � ‘2Þ

� �
¼ 0. (10b)

The determinant of this 2� 2 system of equations for a and b must vanish, and this yields

�
r̄2
r̄1

cos
o
c1
ðX 1 � ‘1Þsin

o
c2
ðX 2 � ‘2Þ

þ cos
o
c2
ðX 2 � ‘2Þ

A2

A1

c1

c2
sin

o
c1
ðX 1 � ‘1Þ þ Leff

o
c2

cos
o
c1
ðX 1 � ‘1Þ

� �
¼ 0. ð11Þ

This is a nonlinear equation for the frequency o. It is best solved numerically, e.g. by the Newton–Raphson
method with starting values oð0Þn ¼ npc2=ð‘2 � ‘1Þ, the eigenfrequencies of an open-ended uniformly hot tube
without blockage or jump in cross-sectional area.
2.6. Modal amplitudes of Green’s function

For the calculation of the Green’s function and its amplitudes, we consider a point source at position x0 in
the hot acoustic region, as shown in Fig. 4. This particular case is relevant to the application discussed in
Section 3.

At first the time-harmonic Green’s function, Ĝðx;x0;oÞ, is determined, which is the solution of

q2Ĝ
qx2
þ

o2

c2
Ĝ ¼ dðx� x0Þ, (12)

where c ¼ c1 for 0oxoX 1, and c ¼ c2 for X 2oxoL. The time-dependent Green’s function, Gðx;x0; t� t0Þ, is
then obtained by inverse Fourier transform. The calculations are quite lengthy, and full details are given in
xx' L0 X1 X2 l2l1

acoustic region 

(cold)

hydro dynamic 

region

acoustic region 

(hot)

Fig. 4. Rijke tube with a point source.
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Appendix A.2. The result for the modal amplitudes gn(x,x
0) in Eq. (2) is

gnðx;x
0Þ ¼ 2

ĝðx;x0;onÞ

onf 0ðonÞ
, (13)

where

ĝðx;x0;oÞ ¼

Aðx;oÞCðx0;oÞ for 0oxoX 1;

Dðx;oÞCðx0;oÞ for X 2oxox0;

Cðx;oÞDðx0;oÞ for x0oxoL;

8><
>: (14a,b,c)

with

Aðx;oÞ ¼ sin
oðx� ‘1Þ

c1
, (15a)

Cðx;oÞ ¼ sin
oðx� ‘2Þ

c2
, (15b)

Dðx;oÞ ¼
r̄1
r̄2

sinot1 þ
A1

A2

Leff

c1
o cosot1

� �
cos

oðx� X 2Þ

c2
þ

A1

A2

c2

c1
cosot1 sin

oðx� X 2Þ

c2
, (15c)

and

t1 ¼
X 1 � ‘1

c1
; t2 ¼

X 2 � ‘2
c2

. (16a,b)

f0 in Eq. (13) is the derivative of the function f that is defined in Eq. (A.18) and that specifies the
eigenfrequencies, on, by f(on) ¼ 0.

3. Governing equations for the stability problem

3.1. Governing differential equation

We now consider a Rijke tube with an unsteady heat source. The velocity potential f in the tube is governed
by the acoustic analogy equation (see Ref. [10, p. 508])

1

c2
q2f
qt2
�

q2f
qx2
¼ �

g� 1

c2
q0ðx; tÞ. (17)

q0 is the fluctuating part of the heat release per unit mass of air (from the heat source to the air), and g is the specific
heat ratio; the speed of sound c takes values c1 in the upstream region and c2 in the downstream region.

In our configuration, the heat source is concentrated at the axial position xq in the hot acoustic region. We assume
a simple time-lag law, where the heat release q0 depends linearly on the velocity fluctuation u0 at an earlier time,

q0ðx; tÞ ¼
c2

g� 1
Cqu0ðx; t� tÞdðx� xqÞ. (18)

This heat release characteristic is known to apply to hot gauzes (see Ref. [10, p. 511]) and to certain flames. t
is a time lag, and Cq is a measure of the strength of the heat source (t40, CqX0). With u0 ¼ ðqf=qxÞ and
Eqs. (17) and (18), we obtain the governing equation

1

c2
q2f
qt2
�

q2f
qx2
¼ �Cq

qfðx; t� tÞ
qx

dðx� xqÞ. (19)

This is a homogeneous equation and has the trivial solution f(x,t) ¼ 0. Nontrivial solutions arise if the
velocity potential is disturbed at some point in time, say at t ¼ 0. Such a disturbance is typically described by
imposing initial conditions, by specifying fðx; tÞjt¼0 and ðqf=qtÞjt¼0.

Eq. (19) is now transformed into an integral equation involving the Green’s function.
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3.2. Integral equation for the acoustic velocity

Eq. (19) and the one-dimensional form of Eq. (1) are written in terms of the source variables x0 and t0.
Eq. (1) is multiplied by f(x0,t0), Eq. (19) by G(x,x0,t�t0), and the resulting equations are subtracted. This gives

fðx0; t0Þdðx� x0Þdðt� t0Þ þ CqG
qfðx0; t0 � tÞ

qx0
dðx0 � xqÞ

¼
1

c2
f
q2G

qt02
� G

q2f

qt02

� �
� f

q2G

qx02
� G

q2f

qx02

� �
. ð20Þ

This is integrated with respect to x0 (from ‘1 to ‘2) and t0 (from 0 to t). The result can be simplified (using the
boundary conditions at the tube ends and causality, see Ref. [11]) to give the following integro-differential
equation for f:

fðx; tÞ ¼ �C

Z t

t0¼t
Gðx;xq; t� t0Þ

qfðx0; t0 � tÞ
qx0

����
x0¼xq

dt0 �
j0

c2
qG

qt0

����
x0¼xd

t0¼0

þ
_j0

c2
G

����
x0¼xd

t0¼0
,

(21)

where it has been assumed that

fðx; tÞjt¼0 ¼ j0dðx� xdÞ, (22a)

qf
qt

����
t¼0

¼ _j0dðx� xdÞ. (22b)

These initial conditions describe a disturbance at t ¼ 0, located at the axial position x ¼ xd. j0 and _j0 are a
measure of the disturbance strength.

Eq. (21) can be turned into an integral equation for the velocity by differentiating with respect to x. Also,
the lower integration limit can be changed to t0 ¼ 0 by use of the Heaviside function. Evaluation at x ¼ xq

leads to an integral equation of the Volterra type [12] for the velocity at the heat source,

uqðtÞ ¼ �Cq

Z t

t0¼0

qGðx;x0; t� t0Þ

qx

����
x¼xq

x0¼xq

Hðt0 � tÞuqðt
0 � tÞdt0�

j0

c2
q2G
qxqt0

���� x¼xq

x0¼xd

t0¼0

þ
_j0

c2
qG

qx

���� x¼xq

x0¼xd

t0¼0

, (23)

where the abbreviation uqðtÞ ¼ qfðx; tÞ=qxjx¼xq
has been introduced for the velocity at the heat source.

Eq. (23) can be solved numerically with an iteration scheme stepping forward in time, starting at t ¼ 0.
However, more insight will be gained by an analytical approach; this is described in the next section.
4. Analytical solution of the governing integral equation

4.1. Amplitudes and complex eigenfrequencies

We assume that the velocity uq is a superposition of modes for t4t with amplitudes um and complex
eigenfrequencies Cm ¼ Om þ iDm,

uqðtÞ ¼
X1
m¼1

ume�iCmt þ u�me
iC�mt

� �
for t4t. (24)

Om is the real eigenfrequency of mode m in the tube with unsteady heating (not to be confused with its
equivalent om for the tube with steady heating). The imaginary part of Cm is the growth rate Dm; this indicates
whether mode m is stable (Dmp0) or unstable (Dm40). Once the modal properties um and Cm are known, the
stability behaviour can be predicted, and the detailed time history obtained from Eq. (24). The determination
of um and Cm requires several mathematical steps, which are outlined in Appendix A.3.
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The following result is obtained for the complex eigenfrequencies Cm,

1 ¼ �Cq

X1
n¼1

qgnðxq; xqÞ

qx

one
iCmt

o2
n �C2

m

; m ¼ 1; 2; 3; . . . . (25)

These are nonlinear equations, one for each mode m.
For the amplitudes, two sets of linear equations for um and um* are obtained,

Cq

qgnðxq;xqÞ

qx

X1
m¼1

�
cosont

o2
n �C2

m

�
iCm

on

sinont

o2
n �C2

m

 !
um

"

þ �
cosont

o2
n �C�

2

m

þ
iC�m
on

sinont

o2
n �C�

2

m

 !
u�m

#
¼

j0

c2
qgnðxq;xd Þ

qx
, ð26aÞ

and

Cq

qgnðxq; xqÞ

qx

X1
m¼1

iCm

cosont
o2

n �C2
m

� on

sinont
o2

n �C2
m

 !
um

"

þ �iC�m
cosont

o2
n �C�

2

m

� on

sinont

o2
n �C�

2

m

 !
u�m

#
¼
_j0

c2
qgnðxq; xdÞ

qx
, ð26bÞ

where n ¼ 1,2,3,y.

4.2. Approximate solution for the growth rate

An approximate analytical solution for the complex eigenfrequencies can be derived if the following
assumptions are made:

Om � on for n ¼ m; but not for nam (27a)

(steady and unsteady case have similar real eigenfrequencies),

jDmj5Om ðsmall growth ratesÞ, (27b)

Omt51 ðtime lag smaller than acoustic period of mode mÞ. (27c)

With Eqs. (27a) and (27b) the denominator of the term ðone
iCmt=o2

n �C2
mÞ in Eq. (25) is small for n ¼ m,

but not for n 6¼m, and thus the mth term dominates over all the others in the sum. This sum can then be
approximated by the dominant term to give

1þ Cq

qgmðxq; xqÞ

qx

ome
iCmt

o2
m �C2

m

¼ 0. (28)

For the low-order modes, Eq. (27c) is a reasonable assumption, and with that the approximation

eiCmt � 1þ iCmt (29)

can be made. Eq. (28) can then be turned into a quadratic equation for Cm which has the following solutions:

Cm ¼
1

2
itCqom

qgmðxq;xqÞ

qx
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� tCqom

qgmðxq;xqÞ

qx

� �2

þ 4 o2
m þ Cqom

qgmðxq;xqÞ

qx

� �s0
@

1
A. (30)

If the term under the square root is negative, the real part of Cm is zero. This describes the case where the
velocity rises exponentially without oscillating. We ignore this case here and assume that the square-root term
in Eq. (30) represents the real part of Cm. Then

Dm ¼ ImCm ¼
1

2
tCqom

qgmðxq; xqÞ

qx
, (31a)
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and

Om ¼ ReCm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

m þ Cqom

qgmðxq;xqÞ

qx
� D2

m

r
. (31b)

Let us consider Dm, which indicates the stability behaviour of the heat-driven oscillation. Dm has four
factors, three of which are positive:
press

l1
t40
 (otherwise the heat transfer would lead the velocity, rather than lag behind it)

Cq40
 (in the case where the heat source is a wire gauze, Cqo0 would describe the scenario of the surrounding

air getting cooled, rather than heated, by the gauze; see the ‘‘Bosscha tube’’ described in Ref. [10, p. 512])

om40
 for all m ¼ 1,2,3,y
Thus the sign of Dm is determined by the sign of the fourth factor, qgmðxq; xqÞ=qx, and this depends on the
position xq of the heat source. We analyse the behaviour of qgmðxq;xqÞ=qx as a function of xq numerically in
the next section.
5. Numerical results

We consider a Rijke tube with the following geometry (see Fig. 5).
Tube length (L): 1m
Inner tube radius (R): 0.0226m
Length of flame holder (h): 0.03m
Radius of flame holder: 0.0144m
Radius of fuel line: 0.0076m
These values correspond to our experimental Rijke tube arrangement.
The pressure nodes just outside the tube (determined by the Rayleigh end correction) are at a distance of

0.61R from the tube ends, giving

‘1 ¼ �0:014m; ‘2 ¼ 1:014m.

The ratio of downstream to upstream cross-sectional area is

A2

A1
¼ 1:1128.

The effective length of the airplug has the value

Leff ¼ 0:093m;
xL0 xq

ure node pressure node

tube axis

fuel line

Leff

h

flame holder

temperature jump unsteady heat source

airplug

l2l

T1, c1, A1
T1, c1, A1

Fig. 5. Geometry of the Rijke tube.
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this was calculated from Eq. (7), with X2�X1 ¼ 0.065m. Although Leff is surprisingly large, it is still much
smaller than the wavelengths of the first few modes, which are of the order of 1m. Hence the assumption in
Section 2.3 (that the hydrodynamic region is acoustically compact) is still satisfied.

The mean temperature upstream of the heat source is room temperature. It jumps by 200K across the heat
source, i.e.

T̄1 ¼ 288K ðroom temperatureÞ; T̄2 ¼ 488K:

The corresponding speeds of sound are

c1 ¼ 342m s�1; c2 ¼ 446m s�1.

The source position xq was increased in small steps from 0 to L. The hydrodynamic region was shifted
accordingly, in such a way that xq was a small constant distance of 0.01L downstream of this region, which
had a constant length of 0.065m. Thus its edges X1 and X2 (see Fig. 4) were at

X 2 ¼ xq � 0:01L; X 1 ¼ X 2 � 0:065m:

The length of the fuel line was also increased in line with xq, ‘ ¼ X 1 þ 0:015m.
The eigenfrequencies were calculated from Eq. (A.3). Their dependence on the heat source position xq is

shown in Fig. 6 for the first two modes. As xq increases, the length of the cold region in the tube increases,
while that in the hot region decreases. This would lead to a monotonic decrease of the eigenfrequencies (with
increasing xq) if the blockage and the jump in cross-sectional area were absent. Their presence disturbs the
monotonic pattern and is responsible for the undulations in the curves of Fig. 6. o1 (black curve) fluctuates
between 1295 and 1032 s�1 (206–164Hz), and o2 (grey curve) between 2742 and 2074 s�1 (436–330Hz).

Fig. 7 shows qgmðxq; xqÞ=qx as a function of xq. The black curve is for the fundamental mode (m ¼ 1), and
the grey curve for the second mode (m ¼ 2). The curves indicate that mode 1 is unstable in the range
0oxqo0:469L, and mode 2 in the ranges 0oxqo0:246L and 0:413Loxqo0:722L.

Our model assumes simple end conditions, neglecting losses due to acoustic radiation from the tube ends.
As a consequence, the xq ranges, for which instability is predicted, are slight over-estimates.

The predictions from our model are in line with the well-known observation that the fundamental mode of a
Rijke tube is unstable if the heat source is in the lower half of the Rijke tube. The predicted stability behaviour
for the second mode has also been observed.

The predictions are also in line with Rayleigh’s criterion [3], which states that thermo-acoustic instabilities
can occur if the phase difference between the rate of heat release q0 and the sound pressure p is such that q0 has
its maximum during the high-pressure part of a cycle and its minimum during the low-pressure part of a cycle.
Unstable oscillations are therefore only possible if pq040, where the time average (denoted by the over-bar)
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Fig. 6. Dependence of the eigenfrequencies o1 and o2 on the heat source position.
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is evaluated over one period of the oscillation. For the fundamental mode of a simple tube (uniform cross-
sectional area and uniform mean temperature, no blockage), this is the case if 0oxqo0:5L, the energy input to
the sound being maximum when xq ¼ 0:25L (see Ref. [10, Section 6.4.4]).

6. Conclusions and outlook

The Green’s function approach presented in this paper predicts the stability behaviour of a Rijke tube with
geometrical complications, in particular a blockage. Equivalent predictions can be made with simpler theories,
for example with a classical control volume analysis, where balance equations for mass, momentum and
energy across the heat source are formulated and analysed by an eigenvalue approach.

In contrast to other methods, our approach has several advantages: The acoustic analogy equation can
readily be extended to include acoustic source processes, in addition to the heat release, such as vorticity or an
active control system. An active control system, for example, that involves a sound source (within the tube or
near one of its ends) can be simulated by adding a term to the right-hand side of Eq. (17), which represents a
sound source coupled to the acoustic field in the tube. Heat release characteristics, other than the simple time-
lag law used in this study, can be incorporated, for example the characteristic given by McIntosh and Rylands
[13]. Furthermore, the heat release need not even be linear (as assumed in Section 3); an integral equation
equivalent to Eq. (23) could be derived for a general nonlinear heat release characteristic and solved
numerically by iteratively stepping forward in time, to give the time history of the acoustic velocity. This
would show the transient behaviour, such as an amplitude increase during an instability, and also the long-
term behaviour, such as convergence to a limit cycle. A further advantage is that our approach readily
provides the effective length of the air surrounding the blockage; other approaches do not give this
information.

As the Green’s function is the response to excitation by an impulse, it is in principle possible to measure it.
This would allow experimental validation of the Green’s function we calculated theoretically. More generally,
a measured Green’s function could be incorporated into our approach to predict the stability behaviour of
Rijke tubes whose geometry is too complicated for analytical treatment.

The Green’s function of this paper is easily extended to include effects such as radiation losses at the tube
ends. Similarly, the influence of the heat source being within or near the blocked region, where the flow is
three-dimensional, could be incorporated using a Green’s function for the special case where the unsteady heat
source is in the hydrodynamic region of Fig. 4. Other tube geometries, more representative of practical
devices, could also be treated. For example, an annular gas turbine combustor could, in a first approximation,
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be represented by a ‘‘two-dimensional Rijke tube’’. Such a tube would have a wide, but thin rectangular cross-
section and a heat source extending across the span of the tube. It would involve an analytic Green’s function
in two dimensions, obtained by extending the calculations in Section 2 from one to two dimensions.

Appendix A

A.1. The effective length of the airplug

We evaluate the momentum balance (6b) on the hydrodynamic side of the interfaces at X1 and X2, and write
it in terms of the velocity potentials f1 and f2�, using

p1 ¼ �r̄1
qf1

qt
; p2 ¼ �r̄1

qf2�

qt
; u2 ¼

qf2�

qx
. (A.1a,b,c)

This leads to

f2� � f1 ¼ Leff
qf2�

qx
. (A.2)

The velocity potentials are obtained by integrating Eqs. (4a, b) with respect to x and substituting the result
into Eq. (3b) to give

fðxÞ ¼ aþ b
A2

A1
ðx� ðX 1 � ‘̄1ÞÞ for x � X 1, (A.3a)

fðxÞ ¼ aþ bðx� ðX 2 � ‘̄2ÞÞ for x � X 2. (A.3b)

The integration constants have been chosen such that fðX 1 � ‘̄1Þ ¼ fðX 2 � ‘̄2Þ ¼ a; ‘̄1 and ‘̄2 represent end
corrections.

Evaluation of Eq. (A.3b) at x ¼ X1 and Eq. (A.3b) at x ¼ X2 gives f1 and f2�, and then Eq. (A.2) leads to

Leff ¼ ‘̄2 �
A2

A1
‘̄1. (A.4)

The effective length Leff can be expressed in terms of the velocity potential j* by considering the limits x-
7N. As x-+N,

j�ðxÞ !

R1
X 2

qj�

qx
dxþ j�ðX 2Þ ðidentityÞ;

x� ðX 2 � ‘̄2Þ ¼
R x

X 2
dxþ ‘̄2 ðfrom Eq: ðA:3bÞÞ:

8><
>: (A.5a,b)

These two limits must be equal as x-+N, hence

‘̄2 ¼

Z 1
X 2

qj�

qx
� 1

� �
dxþ j�ðX 2Þ. (A.6)

As x-�N,

j�ðxÞ !

R�1
X 2

qj�

qx
dxþ j�ðX 2Þ ðidentityÞ;

A2

A1
ðx� ðX 1 � ‘̄1ÞÞ ¼

A2

A1

R x

X 2
dxþ

A2

A1
ð�X 1 þ X 2 þ ‘̄1Þ ðfrom Eq: ðA:3aÞÞ:

8>><
>>: (A.7a,b)

Again, these two limits must be equal as x-�N, giving

A2

A1
ðX 2 � X 1 þ ‘̄1Þ ¼

Z �1
X 2

qj�

qx
�

A2

A1

� �
dxþ j�ðX 2Þ. (A.8)

Subtraction of Eq. (A.8) from Eq. (A.6), and use of Eq. (A.4) gives the expression for the effective length
stated in Eq. (7) in the main text.
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A.2. Modal amplitudes of Green’s function

For the calculation of the Green’s function and its amplitudes, we consider a point source at position x0 in
the hot acoustic region, as shown in Fig. 4.

At first we determine the time-harmonic Green’s function, Ĝðx; x0;oÞ, which is the solution of

q2Ĝ
qx2
þ

o2

c21
Ĝ ¼ 0 in 0oxoX 1, (A.9a)

and

q2Ĝ

qx2
þ

o2

c22
Ĝ ¼ dðx� x0Þ in X 2oxoL. (A.9b)

In the cold acoustic region, Ĝ is given by Eq. (3a). The hot acoustic region is subdivided by x0 into two parts
with forward and backward travelling waves in each. In summary,

Ĝðx; x0;oÞ ¼

a sin k1ðx� ‘1Þ for 0oxoX 1 ðcold acoustic regionÞ;

c eik2ðx�X 2Þ þ d e�ik2ðx�X 2Þ for X 2oxox0 ðhot acoustic regionÞ;

b sin k2ðx� ‘2Þ for x0oxoL ðhot acoustic regionÞ:

8><
>: (A.10a,b,c)

a,b,c and d are unknown coefficients, and k1 ¼ ðo=c1Þ, k2 ¼ ðo=c2Þ. The conditions across the hydrodynamic
region apply as before (see Eqs. (9a) and (9b)), with f1 and f2+ replaced by

Ĝ1 ¼ a sin k1ðx� ‘1Þ½ �x¼X 1
, (A.11a)

and

Ĝ2 ¼ c eik2ðx�X 2Þ þ d e�ik2ðx�X 2Þ

 �

x¼X 2
, (A.11b)

respectively. This leads to the following two linear equations for a,c and d,

cþ d ¼ a
r̄1
r̄2

sin k1ðX 1 � ‘1Þ þ Leff
A1

A2
k1 cos k1ðX 1 � ‘1Þ

� �
, (A.12a)

ik2c� ik2d ¼ a
A1

A2
k1 cos k1ðX 1 � ‘1Þ. (A.12b)

c and d can now be expressed in terms of a, to give

c ¼ a g, (A.13a)

d ¼ a g�, (A.13b)

where

g ¼
1

2

r̄1
r̄2

sin k1ðX 1 � ‘1Þ þ
r̄1
r̄2

A1

A2
Leffk1 cos k1ðX 1 � ‘1Þ � i

A1

A2

k1

k2
cos k1ðX 1 � ‘1Þ

� �
, (A.14)

and g* is the complex conjugate of g. The expression for Ĝðx;x0;oÞ in Eq. (A.10b) can then be rewritten to give

Ĝðx;x0;oÞ ¼ 2a ðRe gÞcos k2ðx� X 2Þ � ðIm gÞsin k2ðx� X 2Þ½ �, (A.15)

for X 2oxox0.
Using the Heaviside function H, it is possible to write Ĝðx; x0;oÞ for both parts of the hot acoustic region as

Ĝðx; x0;oÞ ¼ 2aHðx0 � xÞ ðRe gÞcos k2ðx� X 2Þ � ðIm gÞsin k2ðx� X 2Þ½ �

þ bHðx� x0Þ sin k2ðx� ‘2Þ. ðA:16Þ

a and b are determined to ensure that Eq. (A.16) satisfies Eq. (A.9b) in the hot acoustic region (see Ref. [14,
pp. 43–44]). This involves differentiating Eq. (A.16) twice with respect to x, and using
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dHðx� x0Þ=dx ¼ dðx� x0Þ. Eq. (A.9b) then becomes an equation where the coefficients of d(x�x0) and its
derivative d0(x�x0) on the left-hand side can be equated with those on the right. This leads to the following
linear equations for a and b:

�2a ðRe gÞcos k2ðx
0 � X 2Þ � ðIm gÞsin k2ðx

0 � X 2Þ½ � þ b sin k2ðx
0 � ‘2Þ ¼ 0, (A.17a)

2ak2 ðRe gÞsin k2ðx
0 � X 2Þ þ ðIm gÞcos k2ðx

0 � X 2Þ½ � þ bk2 cos k2ðx
0 � ‘2Þ ¼ 1. (A.17b)

The 2� 2 determinant of these equations can be calculated and simplified to give

det 	 �
A1

A2

1

c1
of ðoÞ,

where

f ðoÞ ¼
A1

A2

1

c1
�cosot1 sinot2 þ

r̄1
r̄2

cosot2
A2

A1

c1

c2
sinot1 þ

Leff

c2
o cosot1

� �� �
. (A.18)

a and b can then be found by Cramer’s rule, and used to determine c and d from Eq. (A.13a,b).
If these results are combined with Eqs. (A.10a,b,c), Ĝðx; x0;oÞ assumes the compact form

Ĝðx;x0;oÞ ¼
ĝðx;x0;oÞ
of ðoÞ

, (A.19)

where

ĝðx;x0;oÞ ¼

Aðx;oÞCðx0;oÞ for 0oxoX 1;

Dðx;oÞCðx0;oÞ for X 2oxox0;

Cðx;oÞDðx0;oÞ for x0oxoL;

8><
>: (A.20a,b,c)

with

Aðx;oÞ ¼ sin
oðx� ‘1Þ

c1
, (A.21a)

Cðx;oÞ ¼ sin
oðx� ‘2Þ

c2
, (A.21b)

Dðx;oÞ ¼
r̄1
r̄2

sinot1 þ
A1

A2

Leff

c1
o cosot1

� �
cos

oðx� X 2Þ

c2

þ
A1

A2

c2

c1
cosot1 sin

oðx� X 2Þ

c2
, ðA:21cÞ

and

t1 ¼
X 1 � ‘1

c1
; t2 ¼

X 2 � ‘2
c2

. (A22a,b)

The time-dependent Green’s function is obtained from Ĝðx;x0;oÞ by the inverse Fourier transform,

Gðx;x0; t� t0Þ ¼ �
1

2p

Z 1
�1

Ĝðx;x0;oÞe�ioðt�t0Þ do. (A.23)

The integrand has singularities at the resonance frequencies, where o ¼ on (and also at o ¼ 0). This can be
seen from the fact that the expression for f(o) in Eq. (A.18) only differs by the constant factor
ðr̄1=r̄2ÞðA1=A2Þð1=c1Þ from the left-hand side of Eq. (11), which is zero if o ¼ on. The integral can therefore
be evaluated by application of the residue theorem. Suitable integration paths are chosen for the cases tot0

(before the source time t0) and t4t0 (after the source time t0) to ensure that causality is satisfied. For tot0, the
integration is along the real o-axis, and a semicircular arc in the upper half-plane, without capturing the
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singular points. For this case

Gðx;x0; t� t0Þ ¼ 0; tot0. (A.24)

For t4t0, the integration is along the real o-axis, and a semicircular arc in the lower half-plane, such that the
singular points are enclosed. For this case

Gðx;x0; t� t0Þ ¼ i
X1

n¼�1

Reson
Ĝðx; x0;oÞe�ioðt�t0Þ
h i

; t4t0. (A.25)

The residues at the simple poles on (n 6¼0) can be calculated from the standard formula, given e.g. in Ref. [15,
p. 158]. The residue at o0 turns out to be zero. Eq. (A.25) then becomes

Gðx;x0; t� t0Þ ¼ i
X1
n¼�1

na0

ĝðx; x0;onÞ

onf 0ðonÞ
e�ionðt�t0Þ; t4t0, (A.26)

where f0 is the derivative of the function f in Eq. (A.18). The frequencies on have the symmetry property
o�n ¼ �on. Taking into account the symmetry properties of the functions ĝðx;x0;oÞ and f0(o) with respect to
o, it is possible to reduce the sum over n to include only terms with positive n. The results (A.24) and (A.26)
can be combined with the Heaviside function to give

Gðx;x0; t� t0Þ ¼ 2Hðt� t0Þ
X1
n¼1

ĝðx; x0;onÞ

onf 0ðonÞ
sinonðt� t0Þ. (A.27)

Comparison of Eqs. (A.27) and (2) shows that the modal amplitudes of Green’s function are given by

gnðx;x
0Þ ¼ 2

ĝðx;x0;onÞ

onf 0ðonÞ
. (A.28)

A.3. Modal amplitudes and complex eigenfrequencies

The aim is to extract equations for the modal properties um (amplitude) andCm (complex eigenfrequencies) of the
heat-driven oscillation from Eq. (23). To this end, we Laplace transform (23) from the t-domain into the s-domain,

L½uqðtÞ� ¼ � CqL

Z t

t0¼0

qGðx;x0; t� t0Þ

@x

���� x ¼ xq

x0 ¼ xq

Hðt0 � tÞuqðt
0 � tÞdt0

2
66664

3
77775

�
j0

c2
L

q2G
qxqt0

���� x ¼ xq

x0 ¼ xd

t0 ¼ 0

2
6666666664

3
7777777775
þ
_j0

c2
L

qG

qx

���� x ¼ xq

x0 ¼ xd

t0 ¼ 0

2
6666666664

3
7777777775
, ðA:29Þ

where the Laplace transform is defined in the standard way (see Ref. [16, p. 243]). The Laplace transform of the
integral can be simplified by applying the convolution theorem and the shift theorem ([16, p. 243, entries 4 and 13]).
The Laplace transforms of the Green’s function derivatives are obtained by differentiating (2) and using

L sinont½ � ¼
on

s2 þ o2
n

, (A.30a)

L cosont½ � ¼
s

s2 þ o2
n

, (A.30b)
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to transform the individual terms in the sum. Eq. (A.29) then becomes

L½uqðtÞ� ¼ � Cq

X1
n¼1

qgnðxq;xqÞ

qx

on

s2 þ o2
n

e�stL½uqðtÞ�

þ
j0

c2

X1
n¼1

qgnðxq;xd Þ

qx

son

s2 þ o2
n

þ
_j0

c2

X1
n¼1

qgnðxq;xd Þ

qx

on

s2 þ o2
n

. ðA:31Þ

This is an algebraic equation for the Laplace transform of uq(t). Instead of solving it directly for L½uqðtÞ�, we
substitute for uq(t) with Eq. (24), which has the Laplace transform

L½uqðtÞ� ¼
X1
m¼1

um

sþ iCm

þ
u�m

s� iC�m

� �
. (A.32)

Eq. (A.31) can then be written as

X1
m¼1

um

sþ iCm

þ
u�m

s� iC�m

� �
¼ � Cqe

�st
X1
m¼1

X1
n¼1

qgnðxq;xqÞ

qx

onum

ðs2 þ o2
nÞðsþ iCmÞ

þ
onu�m

ðs2 þ o2
nÞðs� iC�mÞ

� �

þ
1

c2

X1
n¼1

qgnðxq;xdÞ

qx
on

sj0 þ _j0

s2 þ o2
n

. ðA:33Þ

This can be transformed back from the s-domain into the t-domain, using Eq. (A.30a,b), the entries 4 on p. 243 and 5
on p. 245 in Ref. [16],

L�1
1

ðs2 þ o2
nÞðsþ iCmÞ

� �
¼

1

o2
n �C2

m

�cosontþ
iCm

on

sinontþ e�iCmt

� �
, (A.34)

and an equivalent formula for the complex conjugate to give

X1
m¼1

ume
�iCmt þ u�me

iC�mt
� �

¼ � Cq

X1
m¼1

X1
n¼1

qgnðxq;xqÞ

qx

onum

o2
n �C2

m

�cosonðt� tÞ þ
iCm

on

sinonðt� tÞ þ e�iCmðt�tÞ
� ��

þ
onu�m

o2
n �C�

2

m

�cosonðt� tÞ �
iC�m
on

sinonðt� tÞ þ eiC
�
mðt�tÞ

� �#

þ
1

c2

X1
n¼1

qgnðxq;xdÞ

qx
on j0 cosontþ

_j0

on

sinont

� �
; ðA:35Þ

this is valid for all observer times t4t.
The basic functions of time in Eq. (A.35) are e�iCmt, eiC

�
mt, cosont and sinont. Further functions of time in

this equation are

e�iCmðt�tÞ ¼ eiCmt e�iCmt, (A.36a)

e�iC
�
mðt�tÞ ¼ eiC

�
mt e�iC

�
mt, (A.36b)

cosonðt� tÞ ¼ cosont cosontþ sinont sinont, (A.37a)

sinonðt� tÞ ¼ sinont cosont� cosont sinont, (A.37b)

which can be expressed in terms of the basic functions as indicated. We use these in Eq. (A.35) to express this
equation purely in terms of the basic functions and then equate their coefficients on the left and right-hand
side of the equation. Equating the coefficients of e�iCmt gives Eq. (25), and equating those of eiC

�
mt gives the

complex conjugate of Eq. (25). Equating the coefficients of cosont and sinont gives Eqs. (26a) and (26b),
respectively.
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