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Abstract

A new design method, i.e. the Infinite-Multiple tuned mass dampers (IMTMD) method, is proposed for the optimum

configuration of classical MTMD. Firstly, the transfer function (TF) of IMTMD is obtained by integration, and then the

dynamic magnification factor (DMF) of the single-degree-of-freedom (SDOF) main structure with IMTMD under base

acceleration excitation is investigated as well as MTMD. Using IMTMD the best and critical performance of MTMD

composed of many TMDs can be obtained together with optimum design parameters, which can only be conjectured based

on a lot of data observation in previous studies. Moreover, the IMTMD method has excellent efficiency of iteration and it

can give correct optimum parameters numerically for MTMD composed of more than 20 TMDs. For convenience, two

types of MTMD hypotheses proposed in the previous literature are selected as the examples for demonstration and

discussion.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Tuned mass damper (TMD) consisting of a mass, a damper and a spring, is an effective and reliable
structural vibration control device commonly attached to the vibrating structure to suppress its undesirable
vibrations. In general, the natural frequency of TMD is tuned in resonance with the fundamental mode of the
primary structure, so that a large amount of the structural vibrating energy is transferred to the TMD and
then dissipated by the damping of the TMD as the primary structure is subjected to external disturbances.
Consequently, the safety and habitability of the structure are greatly enhanced. Now the TMD devices have
been successfully installed on many slender skyscrapers and towers to suppress their undesirable structural
dynamic responses, such as the CN Tower (535m) in Canada, John Hancock Building (sixty stories) in
Boston, Center-Point Tower (305m) in Sydney, and the tallest building in the world, Taipei 101 Tower (101
stories, 504m) [1] in Taiwan. From the field vibration measurements, TMD has been proven to be an effective
and feasible system for structural vibration control in most cases. Nevertheless, in the case of seismic
excitation, the efficiency of these passive systems has not yet been established, because of their inability to
respond to a variety of transient base excitations within a very short period of time. This has led to the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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development of active and hybrid mass damper systems that can accommodate these features. More
information about these systems and their modeling and analysis may be found in other papers [2].

Additionally, it is well known that there exist some disadvantages of a single TMD, for example, the
performance of single TMD is sensitive to the variation in the natural frequency of the structure and/or the
damping ratio of the TMD. Either mistuning frequency or off-optimum damping can significantly reduce the
performance of single TMD. To overcome these drawbacks, more than one tuned mass damper with different
dynamic characteristics has been proposed. Iwanami and Seto [3] showed that two tuned mass dampers are
more effective than a single TMD. However, the improvement on the performance was not significant.
Recently, multiple tuned mass dampers (MTMD) with distributed natural frequencies were proposed by Xu
and Igusa [4], Yamaguchi and Harnpornchai [5], Abe and Fujino [6], Jangid [7,8], Kareem and Kline [2], Joshi
and Jangid [9], Bakre and Jangid [10], Li [11–13], Zuo [14] and Koc [15]. It was shown that the MTMD is more
effective for vibration control compared to single TMD. In addition, the performance of the MTMD system is
not sensitive to the change or estimation error in the natural frequency of the structure.

In the above-mentioned studies, the optimum parameters of MTMD are determined numerically through
parametric studies or by their proposed optimal design methods. It is impossible to obtain the analytical
optimum parameters because of the complexity of analytical equations, which does not happen for the single
TMD implemented in single-degree-of-freedom (SDOF) structure. For the single TMD, many analytical
solutions for optimum parameters have obtained until now [16]. As for MTMD, the introduction of multiple
TMDs increases the order number of the state space or the length of Transfer Function (i.e. TF). Therefore,
the more the number of TMDs is, the more difficult to obtain numerically the design parameters of MTMD.
Moreover, it will take more CPU time and computer memory in every iteration step as MTMD are composed
of a large number of TMDs. Because only the iteration method can be adopted to search optimum
parameters, the difficulty increases with the increase of the number of TMDs. Sometimes the search process
may be trapped in local minimum points. Some studies just investigated MTMD with 21 or less TMDs [2,11],
some studies investigated more [14].

If the number of TMDs is large enough, how about the performance of the MTMD (actually infinite-
multiple TMDs, i.e. IMTMD)? What are their optimum parameters? Can these optimum parameters take the
place of that of MTMD with less TMDs? Especially important, does it take a great deal of time to solve
optimum parameters of IMTMD?

This paper tries to study the IMTMD in a simple and effective way and answer these questions. Firstly, the
TFs of IMTMD are given by integration method, which will be proved to be true by letting the number of
TMDs of MTMD approach infinity in the following part. Secondly, based on the TFs obtained, the DMFs of
the primary structure are derived, and then design parameters are given using HN optimization. Thirdly, some
comparisons are given for IMTMD and MTMD, and the differences between these two models are analyzed.
In this paper all studies are based on two hypotheses selected from those proposed by Li [12].

2. Modeling of structure-IMTMD system

The model of classical MTMD is shown in Fig. 1(a). Let oS, zS, cS, mS, kS denote the natural frequency,
damping ratio, damping coefficient, mass and spring stiffness of the main structure respectively. Clearly there
kS
cS

xTj (t)

1 j n

mS

ag(t)

xS (t)

mS

Δω

cS kS
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Fig. 1. Analytical model of MTMD and IMTMD under ground acceleration.



ARTICLE IN PRESS
D. Du et al. / Journal of Sound and Vibration 305 (2007) 843–853 845
exist the following relationships:

mSo2
S ¼ kS; cS ¼ 2mSoSzS. (1)

The total mass ratio of MTMD system is m, and then the total mass of MTMD can be expressed as

mT ¼ mSm. (2)

Individual natural frequencies of MTMD made up of n TMDs are a set of discrete values listed as
o1;o2; . . . ;on. Assuming that these frequencies are distributed uniformly, we define l and s as the tuning
frequency ratio and frequency half-spacing coefficient of MTMD, then

s ¼
on � o1

2oS

; l ¼
on þ o1

2oS

,

oj ¼ o1 þ ðj � 1Þ
2soS

n� 1
ðl� sÞoSpojpðlþ sÞoS

8j ¼ 1; 2; . . . ; n. ð3Þ

As the number of TMDs increases infinitely, MTMD become IMTMD, which is shown in Fig. 1(b).
Individual natural frequencies of IMTMD cover continuously the interval ½ðl� sÞoS; ðlþ sÞoS�. Select an
infinitesimal Do from this interval, which stands for an infinitesimal TMD with the single natural frequency o.
Its mass, damping coefficient and spring stiffness are denoted by Dm, Dc and Dk respectively. Then the density
function of mass, damping coefficient and spring stiffness can be defined as the following:

mðoÞ ¼
dm

do
¼ lim

Do!0

Dm

Do
,

cðoÞ ¼
dc

do
¼ lim

Do!0

Dc

Do
,

kðoÞ ¼
dk

do
¼ lim

Do!0

Dk

Do
. ð4Þ

It is evident that the following equations hold:Z ðlþsÞoS

ðl�sÞoS

mðoÞdo ¼ mSm, (5)

kðoÞ ¼ mðoÞo2, (6)

y ¼
o
oS

2 ½l� s; lþ s�. (7)

Similarly, we may define the damping ratio of the infinitesimal TMD

zðoÞ ¼ lim
Do!0

Dc

2Dmo
¼

cðoÞ
2mðoÞo

. (8)

As for the infinitesimal Do, which is an infinitesimal TMD denoted by Dm, Dc and Dk, there exists only the
interaction between it and the primary structure attaching. The dynamical equation can be expressed as

mðoÞDoð €xT þ €xS þ agÞ þ cðoÞDo _xT þ kðoÞDoxT ¼ 0, (9)

where xS denotes the displacement of the main structure relative to the ground, xT the displacement of the
infinitesimal TMD relative to the main structure and ag denotes the ground acceleration.

The force applied to the main structure by the infinitesimal TMD is expressed as

Df T ¼ cðoÞDo _xT þ kðoÞDoxT . (10)
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The Laplace transformation of the force can be obtained according to Eqs. (9) and (10):

DF T ¼
�mðoÞs2ðcðoÞsþ kðoÞÞ
mðoÞs2 þ cðoÞsþ kðoÞ

X SDoþ
�mðoÞðcðoÞsþ kðoÞÞ

mðoÞs2 þ cðoÞsþ kðoÞ
AgDo

9DGT X S þ DḠT Ag, ð11Þ

where

DGT ¼
�mðoÞs2ðcðoÞsþ kðoÞÞ
mðoÞs2 þ cðoÞsþ kðoÞ

Do,

DḠT ¼
�mðoÞðcðoÞsþ kðoÞÞ

mðoÞs2 þ cðoÞsþ kðoÞ
Do. ð12Þ

Clearly

DḠT ¼
DGT

s2
. (13)

The total force applied to the primary structure by the whole IMTMD system is

FT ¼

Z
o
dFT

¼ X S

Z
o
dGT þ Ag

Z
o
dḠT

9X SGT þ AgḠT , ð14Þ

where

GT ¼

Z
o
dGT ; ḠT ¼

Z
o
dḠT . (15)

According to Eq. (13), there also exists

ḠT ¼
GT

s2
. (16)

Substituting Eq. (16) into Eq. (14), we can obtain

FT ¼ X SGT ðsÞ þ Ag

GT ðsÞ

s2
. (17)

As for GT(s), it can be derived further as following:

GT ðsÞ ¼

Z ðlþsÞoS

ðl�sÞoS

�mðoÞs2ðcðoÞsþ kðoÞÞ
mðoÞs2 þ cðoÞsþ kðoÞ

do (18)

or

GT ðsÞ ¼

Z ðlþsÞoS

ðl�sÞoS

�mðoÞs2ð2ozðoÞsþ o2Þ

s2 þ 2ozðoÞsþ o2
do. (19)

Based on classical control theories, the secondary parts (i.e. MTMD or IMTMD) can be considered as
feedback components, which receive the signals of the primary structure’s displacement XS as well as the base
acceleration excitation Ag, at the same time, output the corresponding control force FT onto the primary
structure (Ref. to Eq. (17)). To obtain the TF of the whole system, that of the primary structure under the
external force should be solved in advance. We define P as the force applied on the primary structure, which
actually is the feedback force FT exerted by the secondary parts added by the inertial force �mSAg caused by
the base acceleration. That is

P ¼ F T �mSAg9FT þ KAg, (20)

where

K ¼ �mS. (21)
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Fig. 2. The block diagram of the whole system.
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The primary structure is a SDOF spring–damper–mass system, and then the TF from P to its displacement XS

can be easily expressed as

GSðsÞ ¼
X S

P
¼

1

mSs2 þ 2cSsþ kS

¼
1

ðs2 þ 2zSoSsþ o2
SÞmS

. (22)

Based on the above description the block diagram of the whole IMTMD–Structure system can be plotted as
shown in Fig. 2.

According to Fig. 2 the TF of the IMTMD-structure system can be obtained with the help of Eqs. (21)
and (22):

GðsÞ ¼
X S

Ag

¼
ðK þ ḠT ðsÞÞGSðsÞ

1� GSðsÞGT ðsÞ
¼

�mS þ
GT ðsÞ

s2

ðs2 þ 2zSoSsþ o2
SÞmS � GT ðsÞ

. (23)

The DMF is defined as [12]

DMF ¼
X S

AgmS=kS

����
���� ¼ jGðsÞjo2

S. (24)

3. The first hypothesis

To further simplify the above model, assume that

mðoÞ � ~mT ; zðoÞ � zT . (25)

Here zT is an undetermined value. According to Eq. (5), ~mT must satisfy the following equation:

2 ~mTsoS ¼ mSm (26)

or

~mT ¼
mSm
2soS

. (27)

Actually Eq. (25) is in accordance with the 2nd MTMD hypothesis proposed by Li [12] expressed as

m1 ¼ m2 ¼ � � � ¼ mn,

z1 ¼ z2 ¼ � � � ¼ zn ¼ zT ,

kj ¼ mjo2
j ; cj ¼ 2zjmjoj ; 8j ¼ 1; . . . ; n. ð28Þ

Substituting Eqs. (25), (27) into (19), the TF of IMTMD system can be obtained as

GT ðsÞ ¼ �
mSms2

2soS

Z ðlþsÞoS

ðl�sÞoS

2ozT sþ o2

s2 þ 2ozT sþ o2
do. (29)

Let oI represents the input frequency of ground acceleration, and the ratio of input frequency can be defined
as

Z ¼
oI

oS

. (30)
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Substituting

s ¼ oI i ¼ ZoSi (31)

and Eq. (7) into Eq. (29)

GT ðZoSiÞ ¼
mSo2

SmZ
2

2s

Z lþs

l�s

2yzTZiþ y2

�Z2 þ 2yzTZiþ y2
dy, (32)

where i denotes the imaginary unit
ffiffiffiffiffiffiffi
�1
p

.
Let

AðZ; l;s; zT Þ ¼
mZ2

2s

Z lþs

l�s

2yzTZiþ y2

�Z2 þ 2yzTZiþ y2
dy

¼
mZ2

2s
2sþ

Z

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2T

q Arctan
lþ sþ zTZi

Zi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2T

q �
Z

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2T

q Arctan
l� sþ zTZi

Zi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2T

q
0
B@

1
CA. ð33Þ

The function Arctan is a complex function, which is defined as follows:

Arctanz ¼ �
i

2
Ln

1þ zi

1� zi
; z 2 C. (34)

Apparently A(Z, l, s, zT) is a dimensionless variable, which is a function of Z and undetermined values l, s, zT.
It can be seen from Eqs. (32) and (33) that

GT ðZoSiÞ ¼ mSo2
SAðZ; l; s; zT Þ (35)

Substituting Eqs. (31) and (35) into Eq. (23), the TF of IMTMD-structure system is

GðZoSiÞ ¼
1

o2
S

�1�
AðZ; l;s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� AðZ; l; s; zT Þ

0
BB@

1
CCA. (36)

The TF of the classical MTMD system under the Hypothesis of Eq. (28) [12] can be expressed as

GT ðsÞ ¼ mSo2
SADðZ; l;s; zT Þ, (37)

where

ADðZ; l;s; zT Þ ¼
Z2m
n

Xn

j¼1

2yjðl;sÞzTZiþ ðyjðl;sÞÞ
2

�Z2 þ 2yjðl;sÞzTZiþ ðyjðl; sÞÞ
2
, (38)

where yj(l, s) denotes the ratio of the natural frequencies of the jth TMD versus oS. As for the uniform
distribution of frequency, we can obtain

yjðl;sÞ ¼
oj

oS

¼ l� sþ
2sðj � 1Þ

n� 1
. (39)

The TF of MTMD-structure system is

GDðZoSiÞ ¼
1

o2
S

�1�
ADðZ; l; s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� ADðZ; l;s; zT Þ

0
BB@

1
CCA. (40)

That is to say, when the MTMD is composed of a large enough number of TMDs, i.e. IMTMD, the TF of
the whole system can be expressed in a more simple way compared to that of classical MTMD, while the
previous methods [11,12] will lead to lengthy series expression.
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According to Eq. (24), the DMF for the primary structure equipped with IMTMD and MTMD can be
expressed as the following equations respectively:

DMF ¼

1þ
AðZ; l;s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� AðZ; l;s; zT Þ

��������

��������
(41)

and

DMF ¼

1þ
ADðZ; l; s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� ADðZ; l;s; zT Þ

��������

��������
. (42)

Let n-N, then

lim
n!1

ADðZ; l; s; zT Þ ¼ lim
n!1

Z2m
2s

2s
n

Xn

j¼1

2yjðl;sÞzTZiþ ðyjðl;sÞÞ
2

�Z2 þ 2yjðl;sÞzTZiþ ðyjðl;sÞÞ
2

¼
Z2m
2s

Z lþs

l�s

2yzTZiþ y2

�Z2 þ 2yzTZiþ y2
dy. ð43Þ

Hence

lim
n!1

ADðZ; l;s; zT Þ ¼ AðZ; l;s; zT Þ. (44)

That is to say, Eqs. (41) and (42) are in accordance actually if n-N.
4. The second hypothesis

Another assumption is adopted in the following:

kðoÞ � ~kT ,

mðoÞ ¼ ~kT=o2,

cðoÞ � ~cT , ð45Þ

where ~kT and ~cT are constant values independent of o. The above hypothesis (45) just matches the 1st MTMD
hypothesis of those proposed by Li [12], which is most commonly employed by researchers because of
its well performance and convenience for manufacture and application in practice. The hypothesis can be
expressed as

m1am2a � � �amn,

c1 ¼ c2 ¼ � � � ¼ cn,

k1 ¼ k2 ¼ � � � ¼ kn,

kj ¼ mjo2
j ; cj ¼ 2zjmjoj ; 8j ¼ 1; . . . ; n. ð46Þ

Based on Eqs. (5) and (45), we can obtain

~kT

Z ðlþsÞoS

ðl�sÞoS

1

o2
do ¼ mSm (47)

or

~kT ¼
mSmoSðl

2
� s2Þ

2s
(48)
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and

mðoÞ ¼
mSmoSðl

2
� s2Þ

2so2
. (49)

According to Eq. (8),

zðoÞ ¼
~cT

2omðoÞ
. (50)

Then we can define the average of damping ratio

zT ¼

R ðlþsÞoS

ðl�sÞoS
zðoÞdo

2soS

. (51)

Substituting Eqs. (49) and (50) into Eq. (51), we can obtain

~cT ¼
mSmðl

2
� s2Þ

sl
zT (52)

and

zðoÞ ¼
zTo
loS

. (53)

With the help of Eqs. (49) and (53), Eq. (19) can be simplified further as

GT ðsÞ ¼
�s2oSmSmðl

2
� s2Þ

2s

Z ðlþsÞoS

ðl�sÞoS

1

o2 þ
loSs2

2zT sþ loS

do. (54)

Substituting Eqs. (7) and (31) into Eq. (54), then

GT ðZoSiÞ ¼
mSo2

SmZ
2ðl2 � s2Þ
2s

Z lþs

l�s

1

y2 �
lZ2

2zTZi þ l

dy

9mSo2
SBðZ; l;s; zT Þ, ð55Þ

where

BðZ; l; s; zT Þ ¼
mZ2ðl2 � s2Þ

2s

Z lþs

l�s

1

y2 �
lZ2

2zTZiþ l

dy

¼
Z2mðl2 � s2Þ

2si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lZ2

2zTZiþ l

s Arctan
lþ s

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lZ2

2zTZiþ l

s �Arctan
l� s

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lZ2

2zTZiþ l

s
0
BBBB@

1
CCCCA. ð56Þ

Apparently, B is a dimensionless variable dependent on Z and undetermined parameters l, s, zT as well as A.
Similar to Eq. (36), the TF of the whole IMTMD-structure system can be expressed as

GðZoSiÞ ¼
1

o2
S

�1�
BðZ; l;s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� BðZ; l;s; zT Þ

0
BB@

1
CCA. (57)
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The DMF can be obtained based on Eq. (24)

DMF ¼

1þ
BðZ; l;s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� BðZ; l; s; zT Þ

��������

��������
. (58)

Similarly, the DMF for the primary structure equipped with MTMD is expressed as [12]

DMF ¼

1þ
BDðZ; l;s; zT Þ

Z2

�Z2 þ 2zSZiþ 1� BDðZ; l;s; zT Þ

��������

��������
, (59)

where BD(Z, l, s, zT) is defined as

BDðZ; l;s; zT Þ ¼
mZ2Pn

k¼1

1

ðykðl; sÞÞ
2

Xn

j¼1

1

ðyjðl;sÞÞ
2
þ
�lZ2

2zTZiþ l

� �. (60)

Let n-N, then

lim
n!1

BDðZ; l;s; zT Þ ¼ lim
n!1

mZ2

2s
n

Pn
k¼1

1

ðykðl; sÞÞ
2

2s
n

Xn

j¼1

1

ðyjðl;sÞÞ
2
þ
�lZ2

2zTZiþ l

� �

¼
mZ2R lþs

l�s
1

y2
dy

Z lþs

l�s

1

y2 �
lZ2

2zTZiþ l

dy

¼
mZ2ðl2 � s2Þ

2s

Z lþs

l�s

1

y2 �
lZ2

2zTZiþ l

dy: ð61Þ

Hence

lim
n!1

BDðZ; l;s; zT Þ ¼ BðZ; l; s; zT Þ. (62)

That is, Eqs. (58) and (59) are in accordance if n-N.
Now we can know that IMTMD is not a real physical system, but a approximate mathematical model close

to MTMD made up of many TMDs.

5. Optimization method

If HN optimization is adopted, which often appeared in previous studies [11–13], and then the objective
function can be expressed as

min
l;s;zT

max
Z

DMF: (63)

There are just three undetermined design parameters, i.e. l, s and zT, so it is possible to obtain the numerical
optimum solutions by the gradient search method as well as some previous studies. It is well known that
during each iteration step the gradient search method will give a set of tentative parameters and find the
steepest decrease direction, then adjust the parameters towards this direction. The performance, i.e. the
objective function, must be evaluated in each iteration step. Consequently, the less the CPU time spent on each
evaluation is, the better the efficiency of the method is.
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6. Numerical result and comparison

In this paper, for the convenience of the engineering design and application of the MTMD/IMTMD, the
damping ratio zS ¼ 0.02 is selected for the steel-structure buildings according to the Chinese code-Technical

specification for steel structure of tall buildings. For three different total mass ratio m, the performances of MTMD
made up of 2–200 TMDs and IMTMD are listed below. At the same time, in order to demonstrate the superior
efficiency of IMTMD versus classical MTMD, the approximate time for each iteration step in gradient search are
given, too. The MTMD model is calculated using TF by series forms Eqs. (42) and (59), while IMTMD by Eqs.
(41) and (58). All these computations are carried out on the same PC (512MB, Pentium 2.8GHz, Matlab 7.1 by
Mathworks). In Table 1, the row in which n is assigned to Inf denotes the IMTMD.

Some conclusions can be drawn from Table 1 as follows:
1.
Tab

m

0.0

0.1

0.2
It seems that the 2nd hypothesis is better than the 1st one, which has been pointed out in the previous
study [12].
2.
 The IMTMD can reflect the best or critical performance of MTMD composed of a large number of TMDs.
In other words, for the optimum IMTMD and MTMD under the HN optimization, there is a relationship
between the TF of the primary structures equipped with them expressed as

sup
Z
ðjGIMTMDjÞ ¼ inf

n
sup
Z
ðjGMTMDjÞ

� �
. (64)
le 1

The 1st model The 2nd model

zT s l n Max.

DMF

Time per

itr. step (s)

zT s l n Max.

DMF

Time per

itr. step (s)

3 0.076 0.050 0.958 2 5.983 0.0021 0.071 0.054 0.963 2 5.975 0.015

0.039 0.112 0.959 10 5.690 0.0035 0.034 0.117 0.971 10 5.440 0.0153

0.027 0.125 0.965 20 5.689 0.0049 0.032 0.124 0.971 20 5.425 0.0161

0.031 0.124 0.962 30 5.668 0.0057 0.028 0.129 0.971 30 5.422 0.0167

0.031 0.126 0.962 50 5.667 0.0099 0.028 0.131 0.971 50 5.420 0.0166

0.031 0.127 0.962 100 5.667 0.0221 0.028 0.133 0.971 100 5.419 0.0181

0.031 0.128 0.962 200 5.667 0.0226 0.028 0.133 0.971 200 5.419 0.0248

0.031 0.129 0.962 Inf 5.667 0.0022 0.028 0.134 0.971 Inf 5.419 0.0023

0.128 0.081 0.882 2 3.899 0.0028 0.127 0.094 0.899 2 3.915 0.0151

0.074 0.189 0.879 10 3.795 0.0038 0.047 0.215 0.915 10 3.545 0.0154

0.085 0.190 0.878 20 3.792 0.0054 0.053 0.219 0.920 20 3.495 0.0158

0.084 0.198 0.876 30 3.789 0.0077 0.052 0.223 0.920 30 3.490 0.0166

0.085 0.200 0.875 50 3.789 0.0101 0.051 0.227 0.920 50 3.488 0.0179

0.074 0.208 0.879 100 3.790 0.0159 0.051 0.229 0.920 100 3.488 0.0197

0.074 0.209 0.879 200 3.790 0.0225 0.051 0.231 0.920 200 3.488 0.0213

0.084 0.205 0.876 Inf 3.788 0.0024 0.051 0.232 0.920 Inf 3.487 0.0028

0.176 0.099 0.788 2 3.167 0.0021 0.198 0.115 0.824 2 3.251 0.0164

0.127 0.245 0.772 10 3.104 0.0037 0.067 0.289 0.851 10 2.989 0.0153

0.130 0.249 0.775 20 3.099 0.0052 0.061 0.311 0.867 20 2.916 0.0157

0.129 0.253 0.776 30 3.099 0.0071 0.062 0.308 0.860 30 2.874 0.0159

0.130 0.256 0.775 50 3.099 0.0094 0.061 0.313 0.861 50 2.867 0.0165

0.130 0.258 0.775 100 3.098 0.016 0.060 0.317 0.861 100 2.865 0.0201

0.130 0.260 0.775 200 3.098 0.0224 0.060 0.318 0.861 200 2.864 0.0208

0.130 0.261 0.775 Inf 3.098 0.0023 0.060 0.320 0.861 Inf 2.864 0.0029
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3.
 The IMTMD have excellent efficiency of iteration. Its time spent on each iteration step is about 1
10

of
MTMD composed of 200 TMDs, however it still can give correct design parameters. Actually, from the
above table it can be demonstrated that the MTMD can fully adopt design parameters from IMTMD when
MTMD have more than 20 TMDs.
4.
 The objective function of IMTMD is smoother than that of MTMD, so it has less chance to be trapped in
local minimum points.

7. Conclusion

A new optimization method is proposed for the MTMD, i.e. the IMTMD method. Some optimum
parameters under various total mass ratios for the damped primary structure, whose damping ratio is selected
as 0.02 according to the Chinese code—Technical specification for steel structure of tall buildings for the
convenience of the engineering design and use, are given. At the same time, the approximate time spent on
each iteration step of MTMD and IMTMD are listed for comparison. It is demonstrated that (1) the TF or
DMF of the main structure with IMTMD can be expressed with a more simple way compared to that of the
main structure with MTMD, (2) using the IMTMD method, we can obtain the critical performance of
MTMD made up of many TMDs, (3) the IMTMD method have excellent iteration efficiency compared to the
existing method, (4) if MTMD is composed of more than 20 TMDs, the IMTMD method can be used for the
optimization design of MTMD. Hence, the IMTMD method is a simple and effective alternative; moreover, it
is a very potential one for application in practice.
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