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Abstract

The multidimensional Lindstedt-Poincaré (MDLP) method is extended to the nonlinear vibration analysis of axially
moving systems. Galerkin method is used to discretize the governing equations. The forced response of an axially moving
beam with internal resonance between the first two transverse modes is studied. The fundamental harmonic resonance is
studied. The response curves exhibit the same internal resonance characteristics as that of non-transferring thin plates and
beams because all these systems possess cubic nonlinearity and similar frequency distribution. The examples show that the
results of the MDLP method agree reasonably well with that obtained by the incremental harmonic balance (IHB) method.
However, the former is more straightforward and efficient for obtaining the solution.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic tapes, power transmission belts, band saws, aerial cable tramways and pipes conveying fluid can
be considered as axially moving systems. Investigations have been conducted on the linear and nonlinear
responses of axially moving strings and beams. Among them, Ulsoy et al. [1] and Wickert and Mote [2]
presented comprehensive reviews on the subject area up to 1978 and 1988, respectively. More recently,
Wickert [3] analyzed the nonlinear vibration and bifurcation of axially moving beams through the
Krylov—Bogoliubov—Mitropolsky asymptotic method. Pellicano and Vestroni [4,5] studied the bifurcation, the
post-bifurcations velocity with viscous damping and external harmonic excitation. Pellicano et al. [6] also
studied the stability of parametrically excited axially moving systems by experimental and theoretical means.
Chen and his co-workers [7-9] investigated the bifurcations and chaos of an axially moving viscoelastic and
geometric nonlinear string/beam. They studied the nonlinear dynamics behavior of the traveling system with
time-dependent axial velocity and tension. Zhang and Zu [10,11] used the method of multiple scales to study
the dynamic response and stability parametrically for viscoelastic and geometric nonlinear moving belts. Fung
and Chang [12] employed the finite difference method with variable grid for numerical computation of the
string/slider nonlinear coupling system with time-dependent boundary condition. Oz et al. [13,14] also applied
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the method of multiple scales to study the nonlinear vibrations and stability of axially moving beams and
tensioned pipes conveying fluid at harmonically varying speeds. Suweken and Horssen [15-17] used a two
time-scale perturbation method to approximate the solutions of a conveyor belt moving at low and time-
varying velocities. Cao and Zhang [18] obtained the quasi-periodic solutions of the coupled string-beam
system subjected to a harmonic axial load by the method of multiple scales.

Complex dynamic behavior of the axially moving system occurs when the excitation frequency Q is the sum,
difference and small multiples of its natural frequencies. Pellicano et al. [19] considered the primary resonance
and the parametric resonance that occur when Q is near the first natural frequency w; and 2w, respectively.
Chen et al. [20] studied the dynamic stability of an axially accelerating beam. Sub-harmonic and combination
resonances were considered. On the contrary, only a few studies have been devoted to the internal resonance of
the axially moving system [21]. In this aspect, Riedel and Tan [22] studied the forced responses of an axially
moving strip with internal resonance when  is near w;. The method of multiple scales is used to conduct the
perturbation analysis and to determine the frequency response numerically at low and high axial velocities.
Suweken and Van Horssen [17] investigated the complicated dynamical behavior for sum-type and difference-
type of internal resonances on the transverse vibrations of a conveyor belt with time-varying velocity. The
stability properties of the belt system were demonstrated. The present authors [23] have studied the forced
response of an axially moving strip with internal resonance by using the incremental harmonic balance (IHB)
method developed by Lau et al. [24-26].

Note worthily, Lau et al. [27] and Chen et al. [28] developed an alternative perturbation procedure of
multiple scales for the nonlinear vibration analysis of multi-degree-of-freedom systems. In this paper, the
method is extended to the analysis of nonlinear vibration of axially moving beams which belong to the
gyroscopic system. The method can be considered as a generalization of the Lindstedt—Poincaré method to
multidimensional systems and will be termed as the multidimensional Lindstedt—Poincaré (MDLP) method.
This paper starts with a brief description on the governing equation of the axially moving system followed by
an introduction on the essence of the MDLP method. Typical cases of the axially moving beam problem will
be investigated. Results will be presented and compared with that obtained by the IHB method.

2. Governing equation for axially moving beam

A beam passing through two simple supports at constant axial or transport velocity V is considered.
Properties of the beam include its cross-sectional area 4, mass density p and flexural rigidity EI. The beam is
tensioned by a force P and oscillates in the X—Z-plane with the transverse displacement W(X, T) where T
denotes time, see the sketch in Fig. 1. From previous studies, the natural frequencies of the transverse
vibration are much larger than that of the longitudinal vibration [23]. Their coupled effect is weak and we will
focus on the forced transverse vibrations with the longitudinal ones neglected. The material transverse velocity
of the beam is

d_W ow oW oX

FVa zﬁ—i_ﬁﬁ: Wr+VWy. (1

li Bl X
- A

Fig. 1. Schematic diagram for an axially moving beam.
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The pertinent kinetic energy T} and potential energy U, of the beam are

A [ L 1 1
T = % / (W, + VW, )*dX, U, = / (PaX +5 EA &% +5 EI W,§(X) dX, )
0 0

where the von Karman approximation is employed for the nonlinear axial strain, i.e., &, = (WX)Z/Z. The
Hamilton Principle states

T,
5 [ (Ty—U)dT =0. 3)

T,

By virtue of Eq. (2), the Principle can be expressed as

oL
| X W W axar =0, @)
where
A 1 1
F = %(W,T + VW,X)2 — |:P8X + E EASix + E EI W,zXX:| .
Further manipulation yields:
T2 o [ oF o* ([ OF
- — — = |6WdXdT = 0. 5
/Tl / { (aWX> oT (aW,T) e <6W,XX)] ®
Hence, the Euler equation is
o [ oF o ( OF o’ ([ OF
= +—= ——5|z=—) =0. (6)
oT \oW r OX \OW x 0X? \OW xx
After some differential operations, the governing equation can be derived to be
PAW 17+ 2pAVW xr + pAVW xxy — (P +3EA W)W xx + EI W yyyx = 0. (7)

For simplicity, the following parameters are introduced:

(w,x,t,v,01,v7) = (W/L,X/L,T\/ P/pAL*, V /\/P/pA,/EA/P,\/ EI/PL?), (®)

where w(x, 1), v, v; and vy are respectively the dimensionless lateral deflection, constant transport velocity,
longitudinal stiffness parameter and flexural stiffness parameter, respectively. With these parameters, Eq. (7)
can be expressed non-dimensionally as

W+ 20w + (v — Dw .y 21)%»112 Wy + vf Woxxx = 0, 9)

where w,,,, 2vw,,, and v’w, ., are respectively the local, Coriolis and centripetal accelerations. The supporting
conditions are

w0, =w(l,5) =0, w. (0,8) =wi(l,1)=0. (10)

The following separable solution in terms of admissible functions can be assumed as
N
w(x, 1) =Y _ g;(0) sin(jnx). (11)
=

By substituting Eq. (11) into Eq. (9), multiplying all the terms with sin(jzx) and integrating the
resulting equation from x =0 to x = 1, the following second-order ordinary differential equations can be
obtained as

N N N N N N
S My + > Gyg+ Y Kigi+ > DY Kiugiqeg; =0, i=12,...,N, (12)
j=1 J=1 j=1

J=1 k=1 I=1
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where ¢; = dqj/dl and ¢, = dij/dtz. Moreover, My;, Gy, K;; and K;;; are respectively the mass, gyroscopic,

linear stiffness and cubic stiffness coefficients. In particular,

1
M= [ sininx sin jaxdx =15y,
0

1
K= {szj4n4 —(* - l)jznﬂ / sin inx sin jrx dx,

0
4ijv/(i® —j*) for i#jandeven i+,

1
Gj = 2ujn/ sin inx cos jaxdx = .
0 0 otherwise,

I
K = %v%jzkln“/ sin inx sin jmx cos knx cos Inxdx = 3vij7kin Lsyo(i, . k, 1),
0

Losec(ij ke, 1) = L eei = J bk + D)+l — j, k= 1) = Lo+ j, k + 1) — e e(i + j k= )],
0 for i#j,
1
1..(i,)) =/ cos inx cos jmxdx = ¢ 1/2 for i=j#0,
0
1 for i=j=0.

If two transverse modes are considered, we let N = 2 and Eq. (12) would yield:

G — s + kngy + koggs + kag =0, g+ undy + kangy + kangagi + kasgy =0, (13)
where

U =ty = 160/3, ki = (v}nz — P4+ D, k= 31)%714, ki3 = 31)%714/8,

ko = 4(41)}112 — 0+ Dr?, kn = 30%714, fry = 61)%714.

The associated autonomous linear conservation system is governed by the following gyroscopic equations:

gy — Mg t kg =0, ¢+ u1qy +kaig, = 0. (14)
On the other hand, the natural frequencies w;y, and w,q can be solved from
w* — (ki + ka1 + popin))o” + kyika = 0. (15)

3. Multidimensional Lindstedt—Poincaré method

Lau et al. [27] and Chen et al. [28] developed an alternative perturbation procedure of multiple scales for
nonlinear analysis of multi-degree-of-freedom vibrating systems. In this section, the method is extended to
nonlinear vibration analysis of axially moving beams which belong to the gyroscopic system. The method is
indeed a generalization of the Lindstedt—Poincaré method to multidimensional systems and it will be termed
as the MDLP method in this paper.

For the forced response of the system under consideration, modal damping terms (d;; and fi,,) and
excitation terms (£}, and f,;) can be incorporated into Eq. (13), i.e.

q + Mgy — tady + kngy + kogigs + kisgl =7y cos Q1 (16)

Gy + g1 + gy + ka1qy + kngaqt + kasqs = o) cos Q. (17)

It should be remarked that x> and p,; are the gyroscopic coefficients which provide an internal damping effect
to the system whilst ji,, and f,, arise from the external viscous damping.

For the perturbation procedure, a small parameter ¢ <1 is introduced to the last two equations which would
become

) — gy + kngy + enndy + eking @ + ekiaq = ef 1) cos T, (18)
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Gy + 121Gy + ka19s + etindn + kot + ekaagy = ef 5y cos T, (19)
where
ey =ky, i =cefy oy =fn for i=1,2andj=2,3 (20)
and T = Q. Other time variables are introduced as
Tp = wut (n=1,2) 21

in which w,, (n = 1,2) are the nonlinear frequency of the response to be sought and variables ¢, (n = 1,2) can
be regarded as functions of the independent variables 7,,.. Let ¢,, and w,, be expanded in power series of ¢, i.e.

= e, on=)_ oud, (22)
k=0 k=0

where w, (k= 1,2,...) and ¢, are unknowns to be determined. Thus, the derivatives of ¢,, with respect to ¢
can be expressed as

d d
dqznzz az}: ZZSMD Kllnt- dt2 ZZ i ]6‘5 67: ZZZ’J"””@M%W (23)

=0 /=0 =0 /=0 m=

where
D = E cu-ki D? = D;.D; = E E co-kcoyi
=1 tor” " i=1 j=1 ooy

After substituting Eqs. (22) and (23) into Egs. (18) and (19), equating the coefficients of ¢* and ¢' yields the
relations below.

Order &%
Diodio + k11619 — 112Dogag = 0, Diyqag + k21420 + 21 Doqy9 = 0. (24)

Order &'
D%OQII + kg — ti2Dogar = —p11Dogro + 112D1620 — 2D%1‘110 - klzﬂm‘léo - k13qf0 +/f11 cos Q1, (25)

D%OQZI + ka1qy1 + 1 Dogqyy = — i Dogag — ta1 D1gyo — 2D51920 - k22Q%OQZO - k23q;o + /5 cos Q1. (26)

To show the essential features of the MDLP method, the fundamental harmonic resonance will be studied.
For reference purpose, predictions of the IHB method have also been computed by the procedure in Ref. [23].
As a generalization of Lindstedt—Poincaré method from single degree-of-freedom systems to multiple degree-
of-freedom systems, it will be seen that the MDLP procedure is inheritably straightforward and convenient for
studying the steady-state responses including fundamental resonance, super-harmonic and sub-harmonic
resonance under the influence of internal or combination resonances.

With the forcing frequency Q close to the first natural frequency w,g, fundamental resonance will occur. In
this light, one can take f>; = 0 in Eq. (17) and Q = w, i.e.

T=1. 27)

When the second natural frequency w,q is nearly three times of the first natural frequency w;, the internal
resonance is likely to occur. By letting w, = 3wy, i.e.

T3 = 314, (28)
the solutions to Eq. (24) can be solved to be
10 = @10 COS(T1 + @) + a2 COS(T2 + @3), Gy = P10 SIN(T1 + @) + praaz Sin(12 + @y) (29)
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in which ¢; and ¢, are phase angles and

2 2
— +k1] HipM10 — +k11 Ha1 20
P = 10 = 21 , Dy = 20 = 21 . (30)
Ur W10 -y, + ko U220 -3, + ko

In the gyroscopic system, ¢;o and ¢,g are not independent of each other. Substitution of Eq. (29) into Egs. (25)
and (26) gives
Dioqny + kngy — taDogay = Rip cos(ty + @) + Rz cos(ta + ¢3)
+ Ry; sin(ty + @) + Rya sin(zy + @,) + NST, (31)

Dioga1 + ka1qoy + 121 Dogyy = Roy sin(zy + @) + Ry sin(tz + ¢,)
+ Ro3 cos(ty + @) + Rog cos(tz + ¢,) + NST, (32)

where NST denotes “non-secular terms’. Moreover,

Ri1 = 2010011a10 + fppyonian + X=3kialy — 6kizsaas, — kipiay, — 2kinpsainas,)
+ %(—3k13af0a20 + kipplalyaz cos a1 — 2k1ap padiyaxn) cos a1 + £ cos ¢y,

Ri> = 2000021a20 + f12Pr021a20 + H(—6k13aiyang — 3ki3a3y — 2kiapiajyany — kioprdsg)
+ %(—kna?o + klgp%a?o) cos oy,

R13 = U1 W10d10 — %(—3](1361%06120 + k]zp%a%oago — 2k12p1p2a%0a20) sin g1 +f11 sin (B

Ris = py w0a20 + M—kisaly + kiopiajy) sin a1,

Ro1 = 2p w10011a10 + oy 011@10 + A—kap ajy — 2kanp aiady — 3kaapialy — 6kapip3aieas,)
+ Y2knop atyar — kanp,aiyaz + 3kaspip,aiyax) cos a1,

Roy = 2p, 2021020 + oy 021820 + H(—2knpratoar — kapaasy — 6kaspip,aigany — 3kazpaas)
+ Y —kaap ajy + kaspiajy) cos a1,

Ryz = — tyop anomio + 32kap aigane — kaapaajgann + 3kaspip,ajyan) sin oy,

Ros = — Upppranmy — N—knpajy + kapiajy)sin 6y and o) = ¢, — 30,.

It can be seen that R;;—R,4 are functions of the frequencies (w1, w,;), amplitudes (a9, @29) and phase angles
(1, @2). Let a particular solution set of ¢, and ¢,; assume the following form:

q1 = Py COS(‘E] + (pl) + Pys COS(TZ + QDZ) + Pj3 Sil’l(‘El + QDI) + Py Sin(fz + QDZ), (33)

qr = Py sin(rl + q)l) + Py Sil’l(’l,'g + 902) + Py3 COS(‘L’] + (/)1) + Py COS(’L’Q + 902)' (34)

By substituting the last two equations into Egs. (31) and (32), equating the coefficients of cos(t,+ ¢,) and
sin(t,, + ¢,,) in each of the equations gives

kit — oy —wpoio Py Ri ki — w3y —ppw P> Ri»
[_ﬂZIWIO ky — 3, {le } B Ry |’ [—lewzo ka — w3, {Pzz } - Ry |’
kit — oy o Py3 Ri; (ki — 03)) 1020 Py R4
[ﬂ21w10 ko — i, {P23 } - Ry |’ l#nwzo (ka1 — »3)) {P24 } - Ry |

With reference to Eq. (15) on the natural frequency, one can write

P
kiy — w3y —Hpm0

2
—la w2 ki — w3

>
kit — iy —ppo10

2
—ly g ko — o7

>
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Existence of the non-trivial solutions requires
ki — o3, Ry kit — 3, R _ kii — o}y Ris _ (ki1 — @3)) Rus —0. (39)
—tywi0 R | —lp@  Ry| K21 @10 Ry | Ho1 @20 Ry|

Egs. (35) constitutes the solvability conditions which contain six unknown variables, namely, the two
frequencies (w11, w»1), the two amplitudes (a;¢, a»9) and the two phase angles (¢4, ¢»). One can choose one of
the six unknowns as an independent variable and the remaining five variables expressed in terms of the
independent variable from the above solvability conditions and Eq. (15).

It is worth pointing out that the entire MDLP procedure can be easily and efficiently conducted by Matlab.

This level of convenience is not equally enjoyed by other perturbation methods such as the method of multiple
scales and the Krylov—Bogoliubov—Mitropolsky method.

(a)
15

¢4 o
Present Method

o IHB Method

a,x10°

4.0
(b)

Present Method ' °
©  IHB Method

Ppattpx10°

Fig. 2. Frequency response curves when Q near w,q with fj; = 0.0055 and p;; = po = 0.04.
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Riedel and Tan [22] investigated the internal resonance response of an axially moving strip. Following their
chosen system parameters which are typical for the belt drive system,

v} =1124, 17 =003 and v=0.6
will be employed throughout this section. From the parameters, one can get
w10 = 282232, oy = 913980,

iz = pgy = 3.2,
ka = 72.0226, ko = 33727,

ki = 9.23882,
kay = 67441,

ki = 33727%, ki3 = 421.57%,

p; =0.14099 and p, = —2.5403.

With them, the second natural frequency of the system is nearly three times of the first natural frequency and
therefore internal resonance will occur.

Fig. 2 shows the frequency response curves of the systems with f1; = 0.0055, y;; = por = 0.04 and Qr w.
Fig. 2(a) shows the Q—a;q curve and Fig. 2(b) shows the Q—p,a,, curve where a;q and p»a,, defined in Eq.
(29) are the amplitudes of the first harmonic terms of the first variable ¢; and the third harmonic terms of the
second variable ¢,, respectively. In the figures, the solid lines and small circles represent the results of the

(a)

T T
Present Method
©  [HB Method
10 -

(1)
a
10

S5+
-10 -
-15 L
2.0 2.5
(b)
10 T
Present Method
o IHB Method
5k
E
X
2
)
N9

Fig. 3. Frequency response curves when Q near mq with f;; = 0.0055 and p;; = po; = 0.
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(a)

a,px103

2.0 2.5 3.0 3.5 4.0
Q
(b)
4 T T T
3 - -
E
% 2r ]
R
= (l20
] - -
0 + T 1 T
2.0 2.5 3.0 3.5 4.0
Q

Fig. 4. Frequency response curves when Q near w;o with f;; = 0.0055 and p; = pip» = 0.15.

MDLP and IHB methods, respectively. Internal resonance can be noted from the amplitudes of the
responding modes.

Both a;¢ and a,, have two solutions. The first solutions a(llo) and pza%) exhibit the characters of internal
resonance, which is similar to those of clamped-hinged beams computed with an alternative perturbation
procedure of multiple scales by Chen et al. [28], thin plates computed with IHB method by Lau et al. [29] and
frames computed with the combination of the IHB method and the finite element method by Leung and Fung
[30], respectively. These similarities are due to the common cubic nonlinearity and frequency distribution.
However, for the second solutions a%) and pza(zzo), there is no exchange of responding modes. Internal
resonance occurs in the first solution only.

Fig. 3 shows the frequency response curves of the system for f;; = 0.0055 and zero external damping, i.e.,
111 = Hr> = 0. One can note that the response curves also have loops which demonstrate the characteristic of
internal resonance. Fig. 4 shows the frequency response curves of the system for f;; = 0.0055 and
111 = p» = 0.1. There is no loop in the response curves. The external damping coefficients are sufficiently
large to annihilate any internal resonance.

It can be seen from Figs. 2—4 that the results of the MDLP method are almost identical to that obtained by
the IHB method for the first solutions a(llo) and pzaglo). For the second solutions a(lzo) and pza%), the result
obtained by IHB method and MDLP method are almost identical from the points ¢5’s to turning points ¢g'’s.
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After cg’s, the results of two methods are only slightly different. This leads to the conclusion that the MDLP
method is a reliable analytic method for periodic solutions of multiple degree of freedom systems.

Comparing with the IHB method, the MDLP method can yield the solution more readily. In the IHB
method, it is difficult to choose the initial values for iteration. However, the IHB method can give more exact
solution especially for strongly nonlinear systems. Therefore, these two methods can complement each other.
The results of MDLP can be taken as the initial values of iteration in the IHB method such that one can obtain
the solution more easily and exactly.

Same as the afore-discussed fundamental resonance, other resonances such as sub-harmonic resonance,
super-harmonic resonance and combination resonance can also be studied by using the MDLP method.

4. Concluding remarks

The MDLP method is extended to analyze the nonlinear vibration of axially moving systems. The
considered typical example has illustrated that the MDLP method is more straightforward and efficient than
other perturbation methods for multiple degree-of-freedom systems such as the method of multiple scales and
the Krylov—Bogoliubov—Mitropolsky method.

The forced responses of an axially moving beam with the excitation frequency Q near the first natural
frequency w;o were investigated. When the damping is small, all the response curves exhibit the same internal
resonance characteristics as that of non-transferring thin plates and beams because all these systems possess
cubic nonlinearity and similar frequency distribution.

When the vibration amplitude is small, the predictions of the MDLP method are in good agreement with
those of the IHB method. Two methods can complement each other.
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