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Abstract

The multidimensional Lindstedt–Poincaré (MDLP) method is extended to the nonlinear vibration analysis of axially

moving systems. Galerkin method is used to discretize the governing equations. The forced response of an axially moving

beam with internal resonance between the first two transverse modes is studied. The fundamental harmonic resonance is

studied. The response curves exhibit the same internal resonance characteristics as that of non-transferring thin plates and

beams because all these systems possess cubic nonlinearity and similar frequency distribution. The examples show that the

results of the MDLP method agree reasonably well with that obtained by the incremental harmonic balance (IHB) method.

However, the former is more straightforward and efficient for obtaining the solution.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic tapes, power transmission belts, band saws, aerial cable tramways and pipes conveying fluid can
be considered as axially moving systems. Investigations have been conducted on the linear and nonlinear
responses of axially moving strings and beams. Among them, Ulsoy et al. [1] and Wickert and Mote [2]
presented comprehensive reviews on the subject area up to 1978 and 1988, respectively. More recently,
Wickert [3] analyzed the nonlinear vibration and bifurcation of axially moving beams through the
Krylov–Bogoliubov–Mitropolsky asymptotic method. Pellicano and Vestroni [4,5] studied the bifurcation, the
post-bifurcations velocity with viscous damping and external harmonic excitation. Pellicano et al. [6] also
studied the stability of parametrically excited axially moving systems by experimental and theoretical means.
Chen and his co-workers [7–9] investigated the bifurcations and chaos of an axially moving viscoelastic and
geometric nonlinear string/beam. They studied the nonlinear dynamics behavior of the traveling system with
time-dependent axial velocity and tension. Zhang and Zu [10,11] used the method of multiple scales to study
the dynamic response and stability parametrically for viscoelastic and geometric nonlinear moving belts. Fung
and Chang [12] employed the finite difference method with variable grid for numerical computation of the
string/slider nonlinear coupling system with time-dependent boundary condition. Öz et al. [13,14] also applied
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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the method of multiple scales to study the nonlinear vibrations and stability of axially moving beams and
tensioned pipes conveying fluid at harmonically varying speeds. Suweken and Horssen [15–17] used a two
time-scale perturbation method to approximate the solutions of a conveyor belt moving at low and time-
varying velocities. Cao and Zhang [18] obtained the quasi-periodic solutions of the coupled string-beam
system subjected to a harmonic axial load by the method of multiple scales.

Complex dynamic behavior of the axially moving system occurs when the excitation frequency O is the sum,
difference and small multiples of its natural frequencies. Pellicano et al. [19] considered the primary resonance
and the parametric resonance that occur when O is near the first natural frequency o1 and 2o1, respectively.
Chen et al. [20] studied the dynamic stability of an axially accelerating beam. Sub-harmonic and combination
resonances were considered. On the contrary, only a few studies have been devoted to the internal resonance of
the axially moving system [21]. In this aspect, Riedel and Tan [22] studied the forced responses of an axially
moving strip with internal resonance when O is near o1. The method of multiple scales is used to conduct the
perturbation analysis and to determine the frequency response numerically at low and high axial velocities.
Suweken and Van Horssen [17] investigated the complicated dynamical behavior for sum-type and difference-
type of internal resonances on the transverse vibrations of a conveyor belt with time-varying velocity. The
stability properties of the belt system were demonstrated. The present authors [23] have studied the forced
response of an axially moving strip with internal resonance by using the incremental harmonic balance (IHB)
method developed by Lau et al. [24–26].

Note worthily, Lau et al. [27] and Chen et al. [28] developed an alternative perturbation procedure of
multiple scales for the nonlinear vibration analysis of multi-degree-of-freedom systems. In this paper, the
method is extended to the analysis of nonlinear vibration of axially moving beams which belong to the
gyroscopic system. The method can be considered as a generalization of the Lindstedt–Poincaré method to
multidimensional systems and will be termed as the multidimensional Lindstedt–Poincaré (MDLP) method.
This paper starts with a brief description on the governing equation of the axially moving system followed by
an introduction on the essence of the MDLP method. Typical cases of the axially moving beam problem will
be investigated. Results will be presented and compared with that obtained by the IHB method.
2. Governing equation for axially moving beam

A beam passing through two simple supports at constant axial or transport velocity V is considered.
Properties of the beam include its cross-sectional area A, mass density r and flexural rigidity EI. The beam is
tensioned by a force P and oscillates in the X– Z-plane with the transverse displacement W(X, T) where T

denotes time, see the sketch in Fig. 1. From previous studies, the natural frequencies of the transverse
vibration are much larger than that of the longitudinal vibration [23]. Their coupled effect is weak and we will
focus on the forced transverse vibrations with the longitudinal ones neglected. The material transverse velocity
of the beam is

dW

dT
¼

qW

qT
þ

qW

qX

qX

qT
¼W ;T þ VW ;X . (1)
Fig. 1. Schematic diagram for an axially moving beam.
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The pertinent kinetic energy Tk and potential energy Up of the beam are

Tk ¼
rA

2

Z L

0

W ;T þ VW ;Xð Þ
2 dX ; Up ¼

Z L

0

P�X þ
1

2
EA �2X þ

1

2
EIW ;2XX

� �
dX , (2)

where the von Karman approximation is employed for the nonlinear axial strain, i.e., ex ¼ (W,x)
2/2. The

Hamilton Principle states

d
Z T2

T1

ðTk �UpÞdT ¼ 0. (3)

By virtue of Eq. (2), the Principle can be expressed as

d
Z T2

T1

Z L

0

F ðT ;X ;W ;T ;W ;X ;W ;XX ÞdX dT ¼ 0, (4)

where

F ¼
rA

2
ðW ;T þ VW ;X Þ

2
� P�X þ

1

2
EA �2X þ

1

2
EIW 2

;XX

� �
.

Further manipulation yields:Z T2

T1

Z L

0

�
q
qX

qF

qW ;X

� �
�

q
qT

qF

qW ;T

� �
þ

q2

qX 2

qF

qW ;XX

� �� �
dW dX dT ¼ 0. (5)

Hence, the Euler equation is

q
qT

qF

qW ;T

� �
þ

q
qX

qF

qW ;X

� �
�

q2

qX 2

qF

qW ;XX

� �
¼ 0. (6)

After some differential operations, the governing equation can be derived to be

rAW ;TT þ 2rAVW ;XT þ rAV 2W ;XX � ðPþ
3
2
EAW 2

;X ÞW ;XX þ EIW ;XXXX ¼ 0. (7)

For simplicity, the following parameters are introduced:

ðw;x; t; v; v1; vf Þ ¼ ðW=L;X=L;T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

q
;V=

ffiffiffiffiffiffiffiffiffiffiffiffi
P=rA

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=P

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=PL2

q
Þ, (8)

where w(x, t), v, v1 and vf are respectively the dimensionless lateral deflection, constant transport velocity,
longitudinal stiffness parameter and flexural stiffness parameter, respectively. With these parameters, Eq. (7)
can be expressed non-dimensionally as

w;tt þ 2vw;xt þ ðv
2 � 1Þw;xx �

3
2
v21w2

;xw;xx þ v2f w;xxxx ¼ 0, (9)

where w,tt, 2vw,xt and v2w,xx are respectively the local, Coriolis and centripetal accelerations. The supporting
conditions are

wð0; tÞ ¼ wð1; tÞ ¼ 0; w;xxð0; tÞ ¼ w;xxð1; tÞ ¼ 0. (10)

The following separable solution in terms of admissible functions can be assumed as

wðx; tÞ ¼
XN

j¼1

qjðtÞ sinðjpxÞ. (11)

By substituting Eq. (11) into Eq. (9), multiplying all the terms with sin(jpx) and integrating the
resulting equation from x ¼ 0 to x ¼ 1, the following second-order ordinary differential equations can be
obtained as

XN

j¼1

Mij €qj þ
XN

j¼1

Gij _qj þ
XN

j¼1

Kijqj þ
XN

j¼1

XN

k¼1

XN

l¼1

Kijklqlqkqj ¼ 0; i ¼ 1; 2; . . . ;N, (12)



ARTICLE IN PRESS
S.H. Chen et al. / Journal of Sound and Vibration 306 (2007) 1–114
where _qj ¼ dqj=dt and €qj ¼ d2qj=dt2. Moreover, Mij, Gij, Kij and Kijkl are respectively the mass, gyroscopic,
linear stiffness and cubic stiffness coefficients. In particular,

Mij ¼

Z 1

0

sin ipx sin jpxdx ¼ 1
2
dij ,

Kij ¼ v2f j4p4 � ðv2 � 1Þj2p2
h i Z 1

0

sin ipx sin jpxdx,

Gij ¼ 2vjp
Z 1

0

sin ipx cos jpxdx ¼
4ijv=ði2 � j2Þ for iaj and even i þ j;

0 otherwise;

(

Kijkl ¼
3
2
v21j2klp4

Z 1

0

sin ipx sin jpx cos kpx cos lpxdx ¼ 3
2
v21j

2klp4Issccði; j; k; lÞ,

Issccði; j; k; lÞ ¼ 1
4

Iccði � j; k þ lÞ;þIccði � j; k � lÞ � Iccði þ j; k þ lÞ � Iccði þ j; k � lÞ½ �,

Iccði; jÞ ¼

Z 1

0

cos ipx cos jpxdx ¼

0 for iaj;

1=2 for i ¼ ja0;

1 for i ¼ j ¼ 0:

8>><
>>:

If two transverse modes are considered, we let N ¼ 2 and Eq. (12) would yield:

€q1 � m12 _q2 þ k11q1 þ k̄12q1q2
2 þ k̄13q3

1 ¼ 0; €q2 þ m21 _q1 þ k21q2 þ k̄22q2q2
1 þ k̄23q3

2 ¼ 0, (13)

where

m12 ¼ m21 ¼ 16v=3; k11 ¼ ðv
2
f p

2 � v2 þ 1Þp2; k̄12 ¼ 3v21p
4; k̄13 ¼ 3v21p

4=8,

k21 ¼ 4ð4v2f p
2 � v2 þ 1Þp2; k̄22 ¼ 3v21p

4; k̄23 ¼ 6v21p
4.

The associated autonomous linear conservation system is governed by the following gyroscopic equations:

€q1 � m12 _q2 þ k11q1 ¼ 0; €q2 þ m21 _q1 þ k21q2 ¼ 0. (14)

On the other hand, the natural frequencies o10 and o20 can be solved from

o4 � ðk11 þ k21 þ m12m21Þo
2 þ k11k21 ¼ 0. (15)

3. Multidimensional Lindstedt–Poincaré method

Lau et al. [27] and Chen et al. [28] developed an alternative perturbation procedure of multiple scales for
nonlinear analysis of multi-degree-of-freedom vibrating systems. In this section, the method is extended to
nonlinear vibration analysis of axially moving beams which belong to the gyroscopic system. The method is
indeed a generalization of the Lindstedt–Poincaré method to multidimensional systems and it will be termed
as the MDLP method in this paper.

For the forced response of the system under consideration, modal damping terms (m̄11 and m̄22) and
excitation terms (f̄ 11 and f̄ 21) can be incorporated into Eq. (13), i.e.

€q1 þ m̄11 _q1 � m12 _q2 þ k11q1 þ k̄12q1q
2
2 þ k̄13q3

1 ¼ f̄ 11 cos Ot, (16)

€q2 þ m21 _q1 þ m̄22 _q2 þ k21q2 þ k̄22q2q
2
1 þ k̄23q3

2 ¼ f̄ 21 cos Ot. (17)

It should be remarked that m12 and m21 are the gyroscopic coefficients which provide an internal damping effect
to the system whilst m̄11 and m̄22 arise from the external viscous damping.

For the perturbation procedure, a small parameter �51 is introduced to the last two equations which would
become

€q1 � m12 _q2 þ k11q1 þ �m11 _q1 þ �k12q1q
2
2 þ �k13q3

1 ¼ �f 11 cos T , (18)
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€q2 þ m21 _q2 þ k21q2 þ �m22 _q2 þ �k22q2q
2
1 þ �k23q3

2 ¼ �f 21 cos T , (19)

where

�kij ¼ k̄ij ; mii ¼ �m̄ii; �f i1 ¼ f̄ i1 for i ¼ 1; 2 and j ¼ 2; 3 (20)

and T ¼ Ot. Other time variables are introduced as

tn ¼ ont ðn ¼ 1; 2Þ (21)

in which on (n ¼ 1,2) are the nonlinear frequency of the response to be sought and variables qn (n ¼ 1,2) can
be regarded as functions of the independent variables tn. Let qn and on be expanded in power series of e, i.e.

qn ¼
X
k¼0

qnk�
k; on ¼

X
k¼0

onk�
k, (22)

where onk (k ¼ 1,2,y) and qnk are unknowns to be determined. Thus, the derivatives of qn with respect to t

can be expressed as

dqn

dt
¼
X
i¼1

oi

qqn

qti

¼
X
k¼0

X
l¼0

�kþlDkqnl ;
d2qn

dt2
¼
X
i¼1

X
j¼1

oioj

q2qn

qtiqtj

¼
X
k¼0

X
l¼0

X
m¼0

�kþlþmD2
klqnm, (23)

where

Dk ¼
X
i¼1

oik

q
qti

; D2
kl ¼ DkDl ¼

X
i¼1

X
j¼1

oikojl

q2

qtiqtj

.

After substituting Eqs. (22) and (23) into Eqs. (18) and (19), equating the coefficients of e0 and e1 yields the
relations below.

Order e0:

D2
00q10 þ k11q10 � m12D0q20 ¼ 0; D2

00q20 þ k21q20 þ m21D0q10 ¼ 0. (24)

Order e1:

D2
00q11 þ k11q11 � m12D0q21 ¼ �m11D0q10 þ m12D1q20 � 2D2

01q10 � k12q10q2
20 � k13q3

10 þ f 11 cos O t, (25)

D2
00q21 þ k21q21 þ m21D0q11 ¼ �m22D0q20 � m21D1q10 � 2D2

01q20 � k22q2
10q20 � k23q3

20 þ f 21 cos O t. (26)

To show the essential features of the MDLP method, the fundamental harmonic resonance will be studied.
For reference purpose, predictions of the IHB method have also been computed by the procedure in Ref. [23].
As a generalization of Lindstedt–Poincaré method from single degree-of-freedom systems to multiple degree-
of-freedom systems, it will be seen that the MDLP procedure is inheritably straightforward and convenient for
studying the steady-state responses including fundamental resonance, super-harmonic and sub-harmonic
resonance under the influence of internal or combination resonances.

With the forcing frequency O close to the first natural frequency o10, fundamental resonance will occur. In
this light, one can take f21 ¼ 0 in Eq. (17) and O ¼ o1, i.e.

T ¼ t1. (27)

When the second natural frequency o20 is nearly three times of the first natural frequency o10, the internal
resonance is likely to occur. By letting o2 ¼ 3o1, i.e.

t2 ¼ 3t1, (28)

the solutions to Eq. (24) can be solved to be

q10 ¼ a10 cosðt1 þ j1Þ þ a20 cosðt2 þ j2Þ; q20 ¼ p1a10 sinðt1 þ j1Þ þ p2a20 sinðt2 þ j2Þ (29)
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in which j1 and j2 are phase angles and

p1 ¼
�o2

10 þ k11

m21o10
¼

m12o10

�o2
10 þ k21

; p2 ¼
�o2

20 þ k11

m12o20
¼

m21o20

�o2
20 þ k21

. (30)

In the gyroscopic system, q10 and q20 are not independent of each other. Substitution of Eq. (29) into Eqs. (25)
and (26) gives

D2
00q11 þ k11q11 � m12D0q21 ¼ R11 cosðt1 þ j1Þ þ R12 cosðt2 þ j2Þ

þ R13 sinðt1 þ j1Þ þ R14 sinðt2 þ j2Þ þNST, ð31Þ

D2
00q21 þ k21q21 þ m21D0q11 ¼ R21 sinðt1 þ j1Þ þ R22 sinðt2 þ j2Þ

þ R23 cosðt1 þ j1Þ þ R24 cosðt2 þ j2Þ þNST, ð32Þ

where NST denotes ‘‘non-secular terms’’. Moreover,

R11 ¼ 2o10o11a10 þ m12p1o11a10 þ
1
4
ð�3k13a3

10 � 6k13a10a2
20 � k12p2

1a
3
10 � 2k12p2

2a10a2
20Þ

þ 1
4
ð�3k13a2

10a20 þ k12p2
1a

2
10a20 cos s1 � 2k12p1p2a

2
10a20Þ cos s1 þ f 11 cos j1,

R12 ¼ 2o20o21a20 þ m12p2o21a20 þ
1
4
ð�6k13a2

10a20 � 3k13a3
20 � 2k12p2

1a
2
10a20 � k12p2

2a
3
20Þ

þ 1
4ð�k13a3

10 þ k12p2
1a

3
10Þ cos s1,

R13 ¼ m11o10a10 �
1
4
ð�3k13a2

10a20 þ k12p2
1a

2
10a20 � 2k12p1p2a2

10a20Þ sin s1 þ f 11 sin j1,

R14 ¼ m11o20a20 þ
1
4
ð�k13a3

10 þ k12p2
1a3

10Þ sin s1,

R21 ¼ 2p1o10o11a10 þ m21o11a10 þ
1
4
ð�k22p1a

3
10 � 2k22p1a10a2

20 � 3k23p3
1a3

10 � 6k23p1p
2
2a10a2

20Þ

þ 1
4
ð2k22p1a2

10a20 � k22p2a
2
10a20 þ 3k23p2

1p2a2
10a20Þ cos s1,

R22 ¼ 2p2o20o21a20 þ m21o21a20 þ
1
4
ð�2k22p2a

2
10a20 � k22p2a3

20 � 6k23p2
1p2a

2
10a20 � 3k23p3

2a3
20Þ

þ 1
4
ð�k22p1a

3
10 þ k23p3

1a
3
10Þ cos s1,

R23 ¼ � m22p1a10o10 þ
1
4
ð2k22p1a2

10a20 � k22p2a2
10a20 þ 3k23p2

1p2a2
10a20Þ sin s1,

R24 ¼ � m22p2a20o20 �
1
4
ð�k22p1a

3
10 þ k23p3

1a
3
10Þ sin s1 and s1 ¼ j2 � 3j1.

It can be seen that R11–R24 are functions of the frequencies (o11, o21), amplitudes (a10, a20) and phase angles
(j1, j2). Let a particular solution set of q11 and q21 assume the following form:

q11 ¼ P11 cosðt1 þ j1Þ þ P12 cosðt2 þ j2Þ þ P13 sinðt1 þ j1Þ þ P14 sinðt2 þ j2Þ, (33)

q21 ¼ P21 sinðt1 þ j1Þ þ P22 sinðt2 þ j2Þ þ P23 cosðt1 þ j1Þ þ P24 cosðt2 þ j2Þ. (34)

By substituting the last two equations into Eqs. (31) and (32), equating the coefficients of cos(tn+jn) and
sin(tn+jn) in each of the equations gives

k11 � o2
10 �m12o10

�m21o10 k21 � o2
10

" #
P11

P21

( )
¼

R11

R21

" #
;

k11 � o2
20 �m12o20

�m21o20 k21 � o2
20

" #
P12

P22

( )
¼

R12

R22

" #
,

k11 � o2
10 m12o10

m21o10 k21 � o2
10

" #
P13

P23

( )
¼

R13

R23

" #
;
ðk11 � o2

20Þ m12o20

m21o20 ðk21 � o2
20Þ

" #
P14

P24

( )
¼

R14

R24

" #
.

With reference to Eq. (15) on the natural frequency, one can write

k11 � o2
10 �m12o10

�m21o10 k21 � o2
10

�����
����� ¼ 0;

k11 � o2
20 �m12o20

�m21o20 k21 � o2
20

�����
����� ¼ 0.
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Existence of the non-trivial solutions requires

k11 � o2
10 R11

�m21o10 R21

�����
����� ¼ 0;

k11 � o2
20 R12

�m21o20 R22

�����
����� ¼ 0;

k11 � o2
10 R13

m21o10 R23

�����
����� ¼ 0;

ðk11 � o2
20Þ R14

m21o20 R24

�����
����� ¼ 0. (35)

Eqs. (35) constitutes the solvability conditions which contain six unknown variables, namely, the two
frequencies (o11, o21), the two amplitudes (a10, a20) and the two phase angles (j1, j2). One can choose one of
the six unknowns as an independent variable and the remaining five variables expressed in terms of the
independent variable from the above solvability conditions and Eq. (15).

It is worth pointing out that the entire MDLP procedure can be easily and efficiently conducted by Matlab.
This level of convenience is not equally enjoyed by other perturbation methods such as the method of multiple
scales and the Krylov–Bogoliubov–Mitropolsky method.
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Fig. 2. Frequency response curves when O near o10 with f11 ¼ 0.0055 and m11 ¼ m22 ¼ 0.04.
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Riedel and Tan [22] investigated the internal resonance response of an axially moving strip. Following their
chosen system parameters which are typical for the belt drive system,

v21 ¼ 1124; v2f ¼ 0:03 and v ¼ 0:6

will be employed throughout this section. From the parameters, one can get

o10 ¼ 2:82232; o20 ¼ 9:13980; m12 ¼ m21 ¼ 3:2; k11 ¼ 9:23882; k12 ¼ 3372p4; k13 ¼ 421:5p4,

k21 ¼ 72:0226; k22 ¼ 3372p4; k23 ¼ 6744p4; p1 ¼ 0:14099 and p2 ¼ �2:5403.

With them, the second natural frequency of the system is nearly three times of the first natural frequency and
therefore internal resonance will occur.

Fig. 2 shows the frequency response curves of the systems with f11 ¼ 0.0055, m11 ¼ m22 ¼ 0.04 and OEo10.
Fig. 2(a) shows the O�a10 curve and Fig. 2(b) shows the O�p2a20 curve where a10 and p2a20 defined in Eq.

(29) are the amplitudes of the first harmonic terms of the first variable q1 and the third harmonic terms of the
second variable q2, respectively. In the figures, the solid lines and small circles represent the results of the
-10
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Fig. 3. Frequency response curves when O near o10 with f11 ¼ 0.0055 and m11 ¼ m22 ¼ 0.
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MDLP and IHB methods, respectively. Internal resonance can be noted from the amplitudes of the
responding modes.

Both a10 and a20 have two solutions. The first solutions a
ð1Þ
10 and p2a

ð1Þ
20 exhibit the characters of internal

resonance, which is similar to those of clamped-hinged beams computed with an alternative perturbation
procedure of multiple scales by Chen et al. [28], thin plates computed with IHB method by Lau et al. [29] and
frames computed with the combination of the IHB method and the finite element method by Leung and Fung
[30], respectively. These similarities are due to the common cubic nonlinearity and frequency distribution.
However, for the second solutions a

ð2Þ
10 and p2a

ð2Þ
20 , there is no exchange of responding modes. Internal

resonance occurs in the first solution only.
Fig. 3 shows the frequency response curves of the system for f11 ¼ 0.0055 and zero external damping, i.e.,

m11 ¼ m22 ¼ 0. One can note that the response curves also have loops which demonstrate the characteristic of
internal resonance. Fig. 4 shows the frequency response curves of the system for f11 ¼ 0.0055 and
m11 ¼ m22 ¼ 0.1. There is no loop in the response curves. The external damping coefficients are sufficiently
large to annihilate any internal resonance.

It can be seen from Figs. 2–4 that the results of the MDLP method are almost identical to that obtained by
the IHB method for the first solutions a

ð1Þ
10 and p2a

ð1Þ
20 . For the second solutions a

ð2Þ
10 and p2a

ð2Þ
20 , the result

obtained by IHB method and MDLP method are almost identical from the points c5’s to turning points c6’s.
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After c6’s, the results of two methods are only slightly different. This leads to the conclusion that the MDLP
method is a reliable analytic method for periodic solutions of multiple degree of freedom systems.

Comparing with the IHB method, the MDLP method can yield the solution more readily. In the IHB
method, it is difficult to choose the initial values for iteration. However, the IHB method can give more exact
solution especially for strongly nonlinear systems. Therefore, these two methods can complement each other.
The results of MDLP can be taken as the initial values of iteration in the IHB method such that one can obtain
the solution more easily and exactly.

Same as the afore-discussed fundamental resonance, other resonances such as sub-harmonic resonance,
super-harmonic resonance and combination resonance can also be studied by using the MDLP method.

4. Concluding remarks

The MDLP method is extended to analyze the nonlinear vibration of axially moving systems. The
considered typical example has illustrated that the MDLP method is more straightforward and efficient than
other perturbation methods for multiple degree-of-freedom systems such as the method of multiple scales and
the Krylov–Bogoliubov–Mitropolsky method.

The forced responses of an axially moving beam with the excitation frequency O near the first natural
frequency o10 were investigated. When the damping is small, all the response curves exhibit the same internal
resonance characteristics as that of non-transferring thin plates and beams because all these systems possess
cubic nonlinearity and similar frequency distribution.

When the vibration amplitude is small, the predictions of the MDLP method are in good agreement with
those of the IHB method. Two methods can complement each other.
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